Electrical isolation of optical components in photonic integrated circuits (PICs)
A method of electrically isolating and operating electro-optical components integrated in a monolithic semiconductor photonic chip, such as an EML or PIC chip. A bias, VC, is applied to the isolation region so that any parasitical current path developed between adjacent active or passive optical components, now separated by an isolation region, is established through the electrical isolation region and clamped to the bias, VC. The applied bias, VC, may be a positive bias, a negative bias, or a zero or a ground bias. The electrical isolation regions are formed by spatial current blocking regions formed at adjacent sides of the electrical isolations region transverse to a direction of light propagation through the optical components, or between the electrical isolation regions and adjacent optical components. The spatial current blocking regions may be comprised of a pair of spatially disposed trenches or ion implanted regions or high resistance implanted regions.
Latest Infinera Corporation Patents:
This application is a continuation of patent application, Ser. No. 10/283,476, filed Oct. 30, 2002, now U.S. Pat. No. 6,771,682, which application claims priority to U.S. provisional application, Ser. No. 60/402,801, filed Aug. 12, 2002, which applications are incorporated herein by reference.
BACKGROUND OF THE INVENTION1. Field of the Invention
This invention relates generally to photonic integrated circuits (PICs), including electro-absorption modulators/lasers (EMLs), and more particularly to electrical isolation of electro-optical components in such circuits.
2. Description of the Related Art
In photonic integrated circuits or PICs, two or more active or electro-optical components as well as possibly at least one passive optical component are generally integrated on a single semiconductor or other type of chip. A well known example of this kind of PIC chip is an EML (Electro-absorption Modulator/Laser) where, for example, a distributed feedback (DFB) laser is integrated with an electro-optical modulator such as illustrated, for example, in U.S. Pat. No. 6,148,017, employing the InGaAsP/InP regime. There are many such examples of EMLs in the art and this just one recent example of this type of device. In order that there is no electrical interference between the operation of these integrated electro-optical components, an electrical isolation region (which is shown at reference number 5 in the above mentioned patent), which is usually an isolation trench, is generally deployed between such optical components. The trench usually extends down into the bulk of the PIC chip as far as the upper confinement layer, for example, above the active region of the PIC chip. However, it is desirable not to extend such a trench too far into the chip so as to perturb the optical mode propagating in the active region of the device as well as cause significant backward reflections of the optical mode since such a trench can function as a partial mirror to the propagating mode.
These types of EMLs suffer from lack of good electrical isolation between the optical modulator and the DFB laser because the trench is still not deep enough to provide good avoidance of electrical interference, particularly in the separation of the operation of the DFB laser from the electrical modulation of the optical modulator. In particular, parasitic current paths still exist between these electro-optical components. For example, in EMLs, a parasitic path will exist below the isolation trench between the DFB laser and the electro-optical modulator such that the DFB laser will experience fluctuation changes in its drive current via the fluctuations of the parasitic current established between the laser and modulator. This modulated parasitic current perturbs the operation of the DFB laser. As indicated above, generally the isolation trench cannot be made deeper into the PIC chip in an attempt to further electrically isolate the DFB laser from the optical modulator without affecting the properties of the propagating optical mode.
OBJECTS OF THE INVENTIONIt an object of the present invention to overcome the aforementioned problems.
It is a further object of this invention to provide for electrical isolation particularly between electro-optical components in a PIC, such as an EML without affecting the propagating optical mode in the PIC.
SUMMARY OF THE INVENTIONAccording to this invention, a method is directed to forming an electrical isolation region is formed between adjacently disposed electro-optical components integrated in a monolithic semiconductor photonic chip, such as an EML or PIC chip, wherein a bias, VC, is applied to the isolation region so that any parasitic current path developed between adjacently disposed electro-optical components, now separated by the isolation region, is established through the electrical isolation region and clamped to the bias, VC. The applied bias, VC, may be a positive bias, a negative bias, or a zero or a ground bias. While EMLs have been exemplified herein, other electro-optical devices integrated on a semiconductor chip may also be benefited by the isolation region utilized in this invention, such as, for example, a photodetector (PIN) photodiode or avalanche photodiode (APD)), a semiconductor optical amplifier (SOA) or a gain clamped semiconductor amplifier (GCSOA), also referred to as a semiconductor laser amplifier, as well as a semiconductor electro-absorption modulator (EAM), Mach-Zehnder modulator (MZM), DFB laser or DBR laser.
In the method of establishing electrical isolation regions, they may be, for example, formed by spatial current blocking regions at adjacent sides of the electrical isolations region transverse to a direction of light propagation through electro-optic components and/or optical passive components formed in the PIC chip, or said another way, between each electrical isolation region and an adjacent optical component which all integrated into the PIC chip. The spatial current blocking regions sandwiching the electrical isolation region is coupled to bias, VC, for capturing any parasitic current flow between the electro-optic components or optical passive components in the PIC chip. The preferred embodiment for spatial current blocking regions herein is spatially disposed trenches between which the electrical, biased isolation region of this invention is achieved. However, it is within the scope of this invention to provide such isolation regions utilizing means other than trenches, such as by forming insulating regions via doping, e.g., Fe doping, or via ion implant, e. g., H+ implantation, or other processes or structures that would form such an electrical isolation region.
While general mention here is made of active or electro-optical components and their electrical isolation from one another, it should be understood that the isolation regions of this invention may also be utilized between active and passive optical components formed in a PIC chip, such as between PIN photodetectors or electro-optical modulators and an optical combiner (multiplexer), such as an arrayed waveguide grating (AWG), where the refractive index of the latter can be affected by induced parasitic current paths established from such active devices to the passive device changing slightly its waveguide properties due a to slight change in refractive index in at least a portion of the passive device due to such parasitic current flow.
Other objects and attainments together with a fuller understanding of the invention will become apparent and appreciated by referring to the following description and claims taken in conjunction with the accompanying drawings.
In the drawings wherein like reference symbols refer to like parts:
Reference is now made to the details of an embodiment of a type of photonic integrated circuit (PIC) that may be utilized in connection with this invention. It should be understood that while a multi-component PIC devices are illustrated in connection with this invention, any optical device that includes adjacently integrated optical components where at least one of the components is an active device, i.e., an electro-optical operated component, may utilize this invention.
Referring now to
In
Reference is now made to
As shown in
As illustrated in
Returning now to
Isolation regions 32 are formed by forming spatial current blocking regions 30 via performing a selective etch to provide dual isolation trenches 30 between which is defined isolation region 32, as shown in
In order to provide some passivation, trenches 30 as well as the surface of PIC chip 10 may be covered with a layer of dielectric material, such as BCB or polyimide. As previously indicated, beside the deployment of etched trenches 30, spatial current blocking regions 30, comprising etched trenches 30,can be made of high resistance by Fe doping into unetched spatial current blocking regions 30 or performing an ion implant into unetched spatial current blocking regions 30 such as via an H+ implant.
It should be understood that a balance is achieved between the parameters of the height of the ridge waveguide 61, the depth of the trenches 30 and the control of bulk resistance in regions below trenches 30. It is desirable, for example, to increase the height of ridge waveguide 61 but not so high that the propagating mode experiences significant reflections due to the walls of trenches 30. Thus, the trenches 30 should not be so deep as to significantly affect the propagating mode but it is also desirable to make trenches 30 sufficiently deep to better electrically isolate adjacent optical components where the propagating mode experiences only negligible optical reflections. One additional parameter in this balance of parameters is to also enhance the resistive nature of the of areas below isolation regions 32, such as, for example, p-InP layer 56 and/or Q layer 54 where the doping concentration in layer 56, in particular, is decreased or an ion implant is made into the areas of layers 54 and 56 below isolation regions 32 during the growth process to render the bulk resistance of these areas higher, as previously alluded to above concerning the two functions pertaining to isolation regions 32.
Reference is now made to
While the invention has been described in conjunction with several specific embodiments, it is evident to those skilled in the art that many further alternatives, modifications and variations will be apparent in light of the foregoing description. As previously indicated, for example, this invention may be applied to any PIC chip or associated optical component including for example, EMLs, RxPIC chips or any other chip that contains optical or electro-optical adjacently disposed components or elements. In connection with components such as photodetectors that follow EAMs on a PIC, it should be noted that are instances that these photodetecting elements may also, themselves, be modulated for purposes of tagging or otherwise identifying the respective outputs of the several DFB lasers l4 as well as performing a monitoring function for the electro-optical characteristics of MODs 16. In such cases, the electrical isolation of fluctuating parasitic currents from either the EAMs or the photodetector elements due to their modulation can be accomplished by the use of clamping isolation regions 32. Thus, the invention described herein is intended to embrace all such alternatives, modifications, applications and variations as may fall within the spirit and scope of the appended claims.
Claims
1. A method of electrically isolating spatially disposed semiconductor electro-optic components integrated on a substrate, where a first electro-optic component is operated with a first bias current with a steady state condition and a second electro-optic component is operated with a second bias current with modulated variations in accordance with an electrical modulated signal applied to the second electro-optic component, comprising the steps of:
- activating the electro-optic components with the first and second applied bias currents whereby an undesired parasitic current is established along a first electrical path between them, the parasitic current also transferring modulated variations created at the second electro-optic component over to the first electro-optic component via the first electrical path so that the latter no longer operates in its steady state condition;
- establishing an electrical isolation region between the first and second electro-optic components to create a second electrical path transverse to the first electrical path; and
- applying a bias at a bias point at the electrical isolation region to divert the parasitic current from the electrical first path through the second electrical path to the bias point resulting in divided parasitic currents, respectively, between the first electro-optic component and the bias point and between the bias point and the second electro-optic component so that the undesired modulated variations along the first electrical path are substantially eliminated from affecting the first electro-optic component.
2. The method of claim 1 wherein the applied electrical isolation region bias is a positive bias.
3. The method of claim 1 wherein the applied electrical isolation region bias is a negative bias.
4. The method of claim 1 wherein the applied electrical isolation region bias is at ground reference.
5. The method of claim 1 comprising the further step of forming the electrical isolation region by providing a pair of spaced current blocking regions forming the second electrical path therebetween.
6. The method of claim 5 wherein the spaced blocking regions are formed as a pair of spaced trenches or ion implanted regions or high resistance implanted regions.
7. The method of claim 5 further comprising the steps of:
- forming a pair of spaced trenches comprising the electrical isolation region forming the second electrical path therebetween;
- determining the depth of the spaced isolation trenches to be sufficiently deep to minimize the parasitical current flow in the first electrical path between the first and second electro-optic components; and
- limiting the depth of the isolation trenches to be not as deep as to substantially affect the optical properties of an optical mode propagating between the first and second electro-optic components.
8. The method of claim 7 wherein in the step of limiting the depth of the trenches includes not forming so deep so as to size-suppress or cause substantial reflection of the optical mode propagating between the first and second electro-optic components.
9. The method of claim 5 comprising the further steps of
- forming a pair of spaced trenches at the electrical isolation region forming the second electrical path therebetween;
- forming the trenches sufficiently deep so that the parasitical current in the first electrical path between the first and second electro-optic components is reduced to the microampere range.
10. The method of claim 5 comprising the further step of forming in a region in the first electrical path between the first and second electro-optic components below the electrical isolation regions having a high bulk resistivity to further reduce the parasitic current to the microampere range.
11. The method of claim 1 comprising the further step of forming the electrical isolation region by providing a pair of spaced current blocking regions comprising high resistance regions and forming the second electrical path therebetween.
12. The method of claim 11 wherein the current blocking regions are ion implanted regions or high resistance implanted regions.
13. The method of claim 11 comprising the further steps of
- determining the depth of the current blocking regions to be sufficiently deep to minimize the parasitical current flow in the first electrical path between the first and second electro-optic components; and
- limiting the depth of the current blocking regions to be not as deep as to substantially affect the optical properties of an optical mode propagating between the first and second electro-optic components.
14. The method of claim 11 wherein said current blocking region is not so deep so as to size-suppress or cause significant reflection of the optical mode propagating in the optical waveguide.
15. The method of claim 1 wherein the first electro-optic component is a semiconductor laser, a photodetector or a semiconductor optical amplifier.
16. The method of claim 15 wherein said semiconductor laser is a DFB laser or a DBR laser.
17. The method of claim 1 wherein the second electro-optic component is an electro-optic modulator or a photodetector.
18. The method of claim 17 wherein said electro-optic modulator is an electro-absorption modulator or a Mach-Zehnder modulator.
19. The method of claim 17 wherein said photodetector is a PIN photodiode or an avalanche photodiode (APD).
20. The method of operating a photonic integrated circuit comprising the steps of:
- forming spatially disposed semiconductor electro-optic components integrated on a substrate where a first electro-optic component is operated with a first bias current with a steady state condition and a second electro-optic component is operated with a second bias current with modulated variations in accordance with an electrical modulated signal applied to the second electro-optic component;
- establishing an electrical isolation region between the first and second electro-optic components to create a second electrical path transverse in direction to the first path and formed between a bias point at a surface region of the electrical isolation region and the first electrical path between the first and second electro-optic components;
- applying a first bias current, I1, to the first electro-optic component as a steady state condition;
- applying a second bias current, I3, to the second electro-optic component which is different from the first applied bias current, I1, and having modulated variations with time;
- creating a parasitic current, I2, upon application of the first and second applied bias currents, I1 and I3, in a semiconductor bulk region in a first electrical path between the first and second electro-optic components, resulting in modulated variations to the parasitic current, I2, and, in turn, resulting in undesirable modulated variations of the first applied bias current, I1, through the first electro-optic component so that it no longer operates in a steady state condition;
- forming an electrical isolation region into the semiconductor bulk between the first and second electro-optic components and extending into the semiconductor bulk from an exposed surface of the electrical isolation region to a depth of the parasitic current, I2, in the semiconductor bulk and forming a second electrical path coupled to the first electrical path; and
- applying a bias to the electrical isolation region to divert the parasitic current, I2, through the second electrical path such that there results divided parasitic currents, I2A and I2B, established, respectively, between the first electro-optic component and the electrical isolation region and the second electro-optic component and the electrical isolation region such that the undesired modulated variations affecting the first applied bias current, I1, to the first electro-optic component are substantially eliminated.
21. A photonic integrated circuit (PIC) comprising:
- at least two electro-optic components that are integrated on a substrate and including an optical waveguide between said electro-optic components, said first electro-optic component operated with a first bias current with a steady state condition and said second electro-optic component operated with a second bias current with modulated variations in accordance with an electrical modulated signal applied to said second electro-optic component;
- a parasitic current established in a first electrical path between said first and second electro-optic components upon application of said first and second bias currents causing undesirable modulated variations to the first applied bias current through the first electro-optic component so that it no longer operated in a steady state condition;
- an electrically isolated region formed between said first and second components forming a second electrical path between as well as transverse to said first and second electro-optic components; and
- means to bias said electrically isolated region to interrupt said parasitic current in said first path by diverting its flow through said second electrical path so that the undesired modulated variations originally along the first electrical path are substantially eliminated from affecting the steady state condition of the first electro-optic component.
22. The photonic integrated circuit (PIC) of claim 21 wherein said electrically isolated region bias is a positive bias.
23. The photonic integrated circuit (PIC) of claim 21 wherein said electrically isolated region bias is a negative bias.
24. The photonic integrated circuit (PIC) of claim 21 wherein said electrically isolated region bias is at ground reference.
25. The photonic integrated circuit (PIC) of claim 21 wherein said electrical isolation region comprises a pair of spaced current blocking regions forming said second electrical path.
26. The photonic integrated circuit (PIC) of claim 25 wherein said spaced blocking regions are a pair of spaced trenches, ion implanted regions or high resistance implanted regions.
27. The photonic integrated circuit (PIC) of claim 25 comprising a pair of spaced trenches forming said electrical isolation region and said second electrical path;
- said spaced isolation trenches sufficiently deep between said first and second electro-optic components to minimize the parasitical current flow in the first electrical path between the first and second electro-optic components but not so deep as to substantially affect the optical properties of an optical mode propagating between said first and second electro-optic components.
28. The photonic integrated circuit (PIC) of claim 25 wherein said pair of spaced current blocking regions are a pair of spaced trenches forming said second electrical path therebetween, the depth of said trenches sufficiently deep so that the parasitical current in the first electrical path between the first and second electro-optic components is reduced to the microampere range.
29. The photonic integrated circuit (PIC) of claim 25 wherein said pair of spaced current blocking regions are a pair of spaced regions comprising high resistance regions and forming said second electrical path therebetween.
30. The photonic integrated circuit (PIC) of claim 29 wherein said current blocking regions are ion implanted regions or high resistance implanted regions.
31. The photonic integrated circuit (PIC) of claim 25 wherein the depth of said current blocking regions are sufficiently deep to minimize the parasitical current flow in said first electrical path between said first and second electro-optic components but not to a depth so as to substantially affect the optical properties of an optical mode propagating between the first and second electro-optic components.
32. The photonic integrated circuit (PIC) of claim 31 wherein said current blocking region are not so deep so as to size-suppress or cause significant reflection of the optical mode propagating between the first and second electro-optic components.
33. The photonic integrated circuit (PIC) of claim 25 wherein said pair of spaced current blocking regions are a pair of spaced trenches forming said second electrical path therebetween, said trenches provided with a diffusion or implantation to produce a high bulk resistivity around said trenches.
34. The photonic integrated circuit (PIC) of claim 33 wherein said diffusion comprises Fe doping.
35. The photonic integrated circuit (PIC) of claim 33 wherein said implantation is ion implant.
36. The photonic integrated circuit (PIC) of claim 35 wherein said ion implant is H+ implant.
37. The photonic integrated circuit (PIC) of claim 21 wherein the first electro-optic component is a semiconductor laser, a photodetector or a semiconductor optical amplifier.
38. The photonic integrated circuit (PIC) of claim 37 wherein said semiconductor laser is a DFB laser or a DBR laser.
39. The photonic integrated circuit (PIC) of claim 21 wherein said second electro-optic component is an electro-optic modulator or a photodetector.
40. The photonic integrated circuit (PIC) of claim 39 wherein said electro-optic modulator is an electro-absorption modulator or a Mach-Zehnder modulator.
41. The photonic integrated circuit (PIC) of claim 39 wherein said photodetector is a PIN photodiode or an avalanche photodiode (APD).
42. The photonic integrated circuit (PIC) of claim 21 further comprising an array of said at least two electro-optic components.
43. The photonic integrated circuit (PIC) of claim 42 wherein the PIC is in an optical transmitter in an optical transmission network.
44. An optical transmission network comprising an optical transmitter incorporating the photonic integrated circuit (PIC) of claim 21.
5084894 | January 28, 1992 | Yamamoto |
5642371 | June 24, 1997 | Tohyama et al. |
5764670 | June 9, 1998 | Ouchi |
5909294 | June 1, 1999 | Doerr et al. |
6081361 | June 27, 2000 | Adams et al. |
6108362 | August 22, 2000 | Adams et al. |
6148017 | November 14, 2000 | Borchert et al. |
6236794 | May 22, 2001 | Mallecot et al. |
6414298 | July 2, 2002 | Nakajima |
6452220 | September 17, 2002 | Morse et al. |
Type: Grant
Filed: Mar 24, 2004
Date of Patent: Feb 14, 2006
Patent Publication Number: 20040218850
Assignee: Infinera Corporation (Sunnyvale, CA)
Inventor: Frank H. Peters (San Jose, CA)
Primary Examiner: Wilson Lee
Assistant Examiner: Hung Tran Vy
Attorney: W. Douglas Carothers, Jr.
Application Number: 10/807,729
International Classification: H01S 5/00 (20060101);