Double-nosed inductive transducer with reduced off-track writing
A thin film electromagnetic head has an inductive transducer with a double-nosed ferromagnetic trailing pole layer. The trailing pole layer has a trailing pole tip disposed adjacent to a media-facing surface, a trailing pole yoke disposed distal to the media-facing surface, and a trailing pole nose disposed between the trailing pole tip and the trailing pole yoke. The media-facing surface extends as a substantially flat surface in all directions from the trailing pole tip. The length of the trailing pole nose may be at least twice as long as the trailing pole tip length. The width of the trailing pole nose can be 10 to 30 times as wide as the trailing pole tip width. An inductive transducer having a double-nosed trailing pole layer provides a higher ratio of on-track to off-track write fields, thereby improving the density with which data can be written to the recording media. Such a double-nosed trailing pole layer can be used in transducers for either longitudinal or perpendicular magnetic recording.
Latest Western Digital (Fremont), Inc. Patents:
- Head gimbal assembly with air bearing slider crown having reduced temperature sensitivity
- Head with an air bearing surface having a shallow recessed trailing air flow dam
- Slider with an air bearing surface having a inter-cavity dam with OD and ID dam surfaces of different heights
- Head having a transducer heater and an air bearing surface with a flow-diversion dam and pressure-relief trough disposed upstream of the transducer
- Magnetic head with stitched top pole layer and single layer coil or solenoidal coil
The present invention relates to electromagnetic transducers, which may for example be employed in thin film inductive write heads of the type formed on the trailing ends of air bearing sliders used in magnetic recording disk drives.
An inductive transducer used for writing and/or reading magnetic information on storage media, such as a disk or tape, typically includes electrically conductive coil windings that encircle a magnetic core. The magnetic core has leading and trailing pole layers. The pole layers have pole tip portions adjacent to the recording media. The magnetic core is interrupted by a submicron nonmagnetic gap disposed between the pole tip portions to divert magnetic flux to the media during writing. To write to the media, electric current is flowed through the coil windings, which produces magnetic flux in the core encircling the coil windings, the magnetic flux fringing across the nonmagnetic gap adjacent to the media so as to write bits of magnetic field information in tracks on the recording media.
The leading pole layer is typically substantially flat, whereas the trailing pole layer can be curved in order to cover coil windings and insulation disposed between the pole layers. Alternatively, the trailing pole layer can be flat if a pedestal adjacent to the recording media is magnetically coupled to either the leading or the trailing pole layer. In that case, the submicron nonmagnetic gap is located between the pedestal and the pole layer to which it is not magnetically coupled.
The width of the pole tip portion, which corresponds to the track width, may be decreased to allow more tracks to be written on the recording media. As track width is decreased, however, it becomes more difficult to transmit high-intensity magnetic flux through the pole tip portion. A standard technique for increasing the strength of the magnetic field at the pole tip surface has been to increase the magnetic moment of the material near both the pole tip surface and the recording gap. One way to accomplish this is to form a pedestal of material having a high magnetic moment between a pole layer and the recording gap, increasing the magnetic field at the edge of the pole tip surface adjoining the gap.
As noted above, the trailing pole layer and/or pedestal may have a flared or tapered width near the region around the pole tip surface in which the sides are parallel. Various geometries of tapered pole layers near the pole tip portions have been used, such as the geometries depicted in
A geometry of a pole layer is disclosed that increases the amount of high magnetic moment material near the pole tip surface while limiting off-track writing produced by such material. Such geometry may increase a magnetic flux to be transmitted through the pole tip surface while avoiding leakage of such magnetic flux onto the recording media from areas of the pole layer other than the pole tip surface. For example, an inductive transducer is disclosed that has a double-nosed ferromagnetic trailing pole layer disposed adjacent to electrically conductive coil sections, which are also disposed adjacent to a leading pole layer. The trailing pole layer has a trailing pole tip disposed adjacent to a media-facing surface, a trailing pole yoke disposed distal to the media-facing surface, and a trailing pole nose disposed between the trailing pole tip and the trailing pole yoke. This summary merely lists a few aspects of the disclosure while the invention is defined by the claims appended below.
A second layer of nonmagnetic, electrically insulating material 40 is disposed between the MR sensor 46 and a second magnetically soft shield layer. The shield layer also serves as a leading pole layer 22 in this example of a merged read/write head. A magnetically soft leading pedestal 50 is magnetically coupled to the leading pole layer 22.
An electrically conductive coil layer 24 has coil sections 26 that are separated from the leading pole layer 22 by additional nonmagnetic, electrically insulating material 54. The coil sections 26 are substantially parallel in the cross-section shown, and coil layer 24 spirals about a magnetically soft back gap stud, not shown, extending away from a media-facing surface 32 in an area outside that shown in
A flat trailing pole layer 28 is disposed atop the insulating material 54. The magnetically soft trailing pole layer 28 is composed of high magnetic moment material. The trailing pole layer 28 is coupled to a back gap stud, not shown, so that leading pedestal 50, leading pole layer 22, the back gap stud and trailing pole layer 28 form a magnetic loop substantially encircling and electrically isolated from coil sections 26. The trailing pole layer 28 and the leading pedestal 50 have substantially planar surfaces 34 and 48 adjacent to the recording media. The pole tip surface 48 on leading pedestal 50 is separated from the trailing pole tip surface 34 by a submicron nonferromagnetic gap layer 52. A protective coating layer 42 forms a trailing end 44 of the body. In this design, the media-facing surface 32 lies on a second, thin protective coating layer 30 that protects the MR sensor 46 from damage and corrosion. In another embodiment the pole tip surface 34 may form part of the media-facing surface 32.
The media-facing surface 32 is in close proximity to a relatively moving medium, not shown, such as a spinning disk. The medium moves in a direction indicated by the arrow pointing towards “y”, so that a leading end of the body encounters a portion of the moving media before the trailing end encounters that media portion.
The double-nosed trailing pole layer 28 has three regions: a trailing pole tip 72 disposed adjacent to the media-facing surface 32, a trailing pole yoke 76 disposed distal to the media-facing surface 32, and a trailing pole nose 74 disposed between the trailing pole tip and trailing pole yoke. The trailing pole tip 72 has sides 60 that are parallel to each other and perpendicular to the media-facing surface 32.
The trailing pole nose 74 has both parallel sides 66 that are parallel to each other and perpendicular to the media-facing surface 32, as well as flared sides 64 that widen from the trailing pole tip width (TPTW) to the trailing pole nose width (TPNW). The flared sides 64 diverge from each other in a track width dimension, shown in
The trailing pole yoke 76 also has both parallel sides 70 that are parallel to each other and perpendicular to the media-facing surface 32, as well as flared sides 68 that widen from the trailing pole nose width (TPNW) to the trailing pole yoke width (TPYW). The flared sides 68 diverge from each other in the z dimension with increasing distance from the media-facing surface 32.
The double-nosed geometry of the trailing pole layer 28 increases the amount of the high magnetic moment material in the pole layer that can be placed near the pole tip surface without increasing off-track writing produced by such material. The double-nosed geometry reduces leakage of magnetic flux onto the recording media from areas of the trailing pole layer other than the pole tip surface. Where a conventional trailing pole layer geometry, such as one of the geometries shown in
Off-track writing is significantly reduced with the double-nosed geometry of the flat trailing pole layer shown in
The on-track field in
The off-track magnetic field for pole layers with conventional geometries does not saturate, and increasing the write current beyond 15 mA results in a more or less linear increase in the off-track magnetic field. The off-track magnetic field for double-nosed pole layers, however, begins to saturate beyond about 15 mA of write current, and increasing the write current produces a smaller proportionate increase in the off-track field 15 mA.
The double-nosed pole layer, therefore, permits write currents to be used that may reach levels significantly higher than 15 mA, while at the same time keeping the off-track write field within a desired limit, for example, under 3500 Oe. Using higher write currents can have advantages, such as increasing the speed of writing onto the recording media. The on-track write field can be increased to 50 mA with a double-nosed pole layer, for example, without resulting in an off-track write field of more than 3000 Oe. The off-track write field with a conventional pole layer at the same write current would be 5000 Oe.
The dimensions of the double-nosed trailing pole layer that were used for the aforementioned modeling were: trailing pole tip width (TPTW) 0.28 μm; trailing pole tip length (TPTL) 0.5 μm; trailing pole nose width (TPNW) 2.0 μm; trailing pole nose length (TPNL) 3.0 μm; trailing pole yoke width (TPYW) 20 μm; and trailing pole yoke length of about 40 μm. The angle θ1 by which the flared sides 64 diverge away from parallel to the media-facing surface was about 35°, as was the angle θ2 by which the flared sides 68 diverge away from parallel to the media-facing surface. The conventional pole layer used in the modeling also had a flare angle of 35°, as illustrated by angle θ3 in
For increasing write currents, the area of the trailing pole nose that yields the maximum difference between on-track and off-track write fields increases. In
In addition to the difference in on-track and off-track write fields,
Trailing pole layer 102 is disposed atop the insulating material 128. Trailing pole layer 102 is flat and does not extend all the way to media-facing surface 108. Magnetically soft trailing pedestal 126 extends to a coating layer 106 that forms the media-facing surface 108, and the trailing pedestal is magnetically coupled to trailing pole layer 102. Trailing pedestal 126 and leading pole layer 116 are separated by a submicron gap layer 124. Another protective coating layer 120 forms a trailing end 130 of the transducer 100.
A double-nosed trailing pole layer can also be formed using a trailing pedestal and a curved trailing pole layer. A curved trailing pole layer might be employed, for example, to cover multiple coil layers.
As with transducer 100 in
Also shown in
The first embodiment shown in
A double-nosed trailing pole layer can also be used in a perpendicular recording configuration, such as transducer 180 in
Transducer 180 in
A transducer in accordance with the present disclosure may be formed as taught in U.S. patent application Ser. No. 09/999,694, filed Oct. 24, 2001 by inventors Yingian Chen et al. and incorporated by reference herein. In addition, by precisely aligning the pole layers and the nose with the MR sensor, it is possible to lap the media-facing surface of the pole tips by the precise amount required to achieve a desired proximity between the nose and the media-facing surface. Precise alignment can be achieved by using a field alignment mark on the lowest layer. Masks for subsequently deposited layers are then always aligned to the same field alignment mark on the lowest layer so that misalignment errors are not compounded when each subsequent layer contains the alignment marks for the layer above.
Although the present invention is described in connection with specific embodiments for instructional purposes, the present invention is not limited thereto. The terms leading and trailing are relative to one another and are otherwise not limiting. The sides of the trailing pole nose need not be planar surfaces, and there need be no parallel sides of the trailing pole nose, in order to place the critical amount of trailing pole layer material that is required for the desired on-track write field sufficiently far from the media-facing surface to reduce substantially the off-track write field. Accordingly, various modifications, adaptations and combinations of various features of the described embodiments can be practiced without departing from the scope of the invention as set forth in the following claims.
Claims
1. A device having a leading end, a trailing end and a media-facing surface, said device extending in a y direction from said leading end to said trailing end, in an x direction substantially orthogonal to said media-facing surface and in a z direction perpendicular to both said x direction and said y direction, said device comprising:
- an electrically conductive coil including a plurality of coil sections disposed adjacent to each other;
- a ferromagnetic leading pole layer disposed adjacent to said coil sections and extending in said x direction and in said z direction;
- a ferromagnetic trailing pole layer disposed adjacent to said coil sections and extending in said x direction and in said z direction, said trailing pole layer having a trailing pole yoke width in said z direction; and
- a trailing pedestal disposed adjacent to said trailing pole layer and to the media-facing surface, said trailing pedestal disposed between said leading pole layer and said trailing pole layer, said trailing pedestal having a trailing pole tip disposed adjacent to said media-facing surface and a trailing pole nose disposed distal to said media-facing surface, said trailing pole tip having a trailing pole tip width in said z direction that corresponds to a track width and having a trailing pole tip length in said x direction, said trailing pole tip having two substantially planar trailing pole tip sides each oriented substantially parallel to an xy plane, said trailing pole nose having a trailing pole nose length in said x direction that is at least twice as large as said trailing pole tip length, further having a trailing pole nose width in said z direction that is at least twice as large as said trailing pole tip width, wherein the trailing pedestal and the trailing pole layer have different material compositions.
2. The device of claim 1, wherein the media-facing surface has a substantially flat face adjoining said trailing pole tip and extending beyond said trailing pole tip in said z direction.
3. The device of claim 1, wherein said trailing pole layer is elongated in said x direction and in said z direction and is curved about said coil sections.
4. The device of claim 1, wherein said trailing pedestal is separated from said leading pole layer adjacent to the media-facing surface by a submicron nonferromagnetic gap.
5. The device of claim 4, wherein said trailing pedestal is separated from said leading pole layer adjacent to the media-facing surface by plural microns of nonferromagnetic material.
6. The device of claim 1, wherein the media-facing surface has a substantially flat face adjacent to said trailing pole tip, said face extending at least as far in said z direction as said trailing pole nose width.
3723665 | March 1973 | Lazzari et al. |
4921508 | May 1, 1990 | Nonaka |
5384680 | January 24, 1995 | Mallary |
5801910 | September 1, 1998 | Mallary |
5805391 | September 8, 1998 | Chang et al. |
6122144 | September 19, 2000 | Chang et al. |
6301076 | October 9, 2001 | Stageberg et al. |
6327116 | December 4, 2001 | Watanabe et al. |
6525904 | February 25, 2003 | Sasaki |
6742241 | June 1, 2004 | Sasaki |
6826012 | November 30, 2004 | Sasaki |
6826014 | November 30, 2004 | Lam et al. |
6870712 | March 22, 2005 | Chen et al. |
20020030929 | March 14, 2002 | Sasaki |
20030048581 | March 13, 2003 | Ohtomo et al. |
20030053251 | March 20, 2003 | Yoshida et al. |
Type: Grant
Filed: Nov 7, 2002
Date of Patent: Sep 26, 2006
Assignee: Western Digital (Fremont), Inc. (Fremont, CA)
Inventors: Yugang Wang (Milpitas, CA), Kroum Stoev (Fremont, CA), Francis Liu (Fremont, CA), Yingjian Chen (Fremont, CA)
Primary Examiner: Angel Castro
Attorney: Sawyer Law Group LLP
Application Number: 10/290,880
International Classification: G11B 5/187 (20060101);