Lighting device with variable length conductor
An improved flashlight includes a barrel, a light source and a variable length conductor. The barrel contains a plurality of batteries which may be arranged end-to-end. The light source is held in a holder. The variable length conductor is interposed between the plurality of batteries and the light source. The variable length conductor is configured to selectively electrically couple or de-couple the light source and the batteries. The holder of the light source may further be configured to move the light source substantially laterally relative to an axis of the reflector.
Latest Mag Instrument, Inc. Patents:
This application is a continuation of U.S. patent application Ser. No. 11/378,803, filed on Mar. 16, 2006, issuing on Mar. 18, 2008, as U.S. Pat. No. 7,344,269, which in turn is a divisional of U.S. patent application Ser. No. 10/802,265, filed on Mar. 16, 2004, issuing on Sep. 4, 2007, as U.S. Pat. No. 7,264,372.
BACKGROUNDThe field of the present invention relates to hand held or portable lighting devices, including flashlights and flashlight components.
Various hand held or portable lighting devices, including flashlight designs, are known in the art. Flashlights typically include one or more dry cell batteries having positive and negative electrodes. In certain designs, the batteries are arranged in series in a battery compartment of a barrel or housing that can be used to hold the flashlight. An electrical circuit is frequently established from a battery electrode through conductive means which are in electrical contact with an electrode of a lamp bulb. After passing through the lamp bulb, the electric circuit continues through a second electrode of the lamp bulb in electrical contact with conductive means, which in turn are in electrical contact with the other electrode of a battery. Incandescent lamp bulbs include a bulb filament. Typically, the circuit includes a switch to open or close the circuit. Actuation of the switch to close the electric circuit enables electricity to pass through the lamp bulb and though the filament, in the case of an incandescent lamp bulb, thereby generating light.
The light generated by a filament is typically reflected by a reflector to produce a beam of light. The filament typically includes a substantial point source of light which is the hottest portion of the filament and generates the most light. The position of the substantial point source of light of the filament relative to the reflector determines the type of beam that emanates from the flashlight.
The production of light from flashlights, which include headlamps, can be degraded by the quality of the reflector used and the optical characteristics of the lens interposed in the beam path. As a result, efforts at improving flashlights have often attempted to address the quality of the optical characteristics of the reflector or the lens. For example, more highly reflective, well-defined reflectors have been found to provide a better-defined focus thereby enhancing the quality of the light beam produced. Additionally, certain advances have been achieved with respect to the lens materials. Another significant factor in the quality of light produced by a flashlight is the lamp bulb used in the flashlight. Several improvements have been made in the light emitting qualities of lamp bulbs.
Despite such efforts, there is still a need to improve the quality and intensity of the light produced by known hand held or portable lighting devices, including flashlights. The light pattern formed by the beam emanating from such light devices is frequently asymmetrical or elongated in shape which adversely impacts on the quality and intensity of the beam. These beam aberrations generally result from the fact that the flashlight lamp bulb is not properly aligned with the reflector of the assembled flashlight.
In various designs, the lamp bulb is supported within the lighting device by a holder or spacer within a battery compartment or barrel and extends into a reflector. Due to manufacturing and assembly operations and tolerances, however, after manufacture of the lighting device is fully completed, the lamp is typically misaligned with the reflector, resulting in degraded performance.
One attempt at addressing the misalignment of the lamp bulb is described in U.S. Pat. No. 5,260,858, by A. Maglica, which is hereby incorporated by reference. This patent describes a flashlight that includes a switch housing that partially floats within the barrel thereby helping to center the lamp bulb relative to the reflector. Although this patent's attempt to avoid a misalignment of the lamp bulb to the reflector is an improvement over the prior art, simply aligning the lamp bulb relative to the reflector does not ensure that aberrations in the projected light beam will be eliminated. This is because light is mostly emitted from the substantial point source of light of the lamp bulb. Accordingly, the critical component of the lamp that must be aligned relative to the reflector is the substantial point source of light of the lamp bulb.
An attempt at aligning the substantial point source of light of a lamp bulb to the reflector is described in the co-pending application Ser. No. 09/932,443, which is hereby incorporated by reference. This application describes a combination that includes a lamp base that secures a lamp bulb in such a way that the lamp bulb filament is aligned to a predetermined axis extending through the lamp base. The lamp base is then seated in a base receiver mounted adjacent to the reflector in a way that the predetermined axis of the lamp base is aligned to the axis of an axisymmetrical reflector. Although alignment of a lamp bulb filament to the reflector axis is significantly improved in this manner, alternate means to align the lamp bulb filament to the reflector axis are desirable.
Manually maneuvering the lamp bulb to address the misalignment problem is impractical. During operation, the temperature of an illuminating lamp bulb is too high to allow for manual adjustment. Also, the alignment of the substantial point source of light with the reflector is verified by assessing the quality of the light beam emanating from the light device. Accordingly, any attempt to maneuver the lamp bulb from the forward end of the light device will block the light beam and prevent the user from performing a contemporaneous visual assessment of the beam.
The present invention provides an apparatus and method for adjusting and maintaining alignment of the substantial point source of light with a characteristic feature of the reflector. The present invention further provides an apparatus and method for the user to perform a contemporaneous visual assessment of the light beam as the substantial point source of light adjustment is being performed.
Another feature of the present invention relates to the switch design. Switch designs that are adapted to close an electrical path between the lamp bulb and battery, or batteries, in response to axial movement of the head along the barrel and to open the electrical path in response to axial movement in the opposite direction along the barrel are known. While such switches have generally worked well for flashlights that employ smaller batteries of the AA or AAA type, known designs are less suitable for flashlights that employ larger battery sizes, such as C or D size batteries. One reason such designs are not well suited for flashlights employing larger batteries is that the positive electrode of the battery closest to the head end of the flashlight is urged against a conductor mounted flush against the bottom of the switch. As a result, the battery or batteries or the conductor may become damaged in the event that the flashlight is shaken or dropped. The problem also becomes more acute as the number of batteries connected in series increases due to the added weight, and hence momentum, of the multiple batteries.
One attempt at addressing the problem of damage that may occur to the battery or batteries due to physical impact to a flashlight is described in U.S. Pat. No. 5,804,331, by A. Maglica, which is hereby incorporated by reference. Although a protection to the battery electrodes is improved in the manner described in U.S. Pat. No. 5,804,331, alternate means to protect the batteries and other components of a portable lighting device, such as a flashlight, are desirable.
The development of lighting devices having a variable focus, which produces a beam of light having variable dispersion, has also been accomplished. In flashlights, the head assembly is typically rotatably connected to the barrel of the flashlight at the end where the bulb is retained. In addition, the head assembly is adapted to be controllably translatable along the barrel such that the relative positional relationship between the reflector and the lamp bulb may be varied, thereby varying the dispersion of the light beam emanating through the lens from the lamb bulb. While variable focus flashlights have also employed switches that are adapted to open and close in response to the axial movement of the head assembly, such flashlights have generally been limited to flashlights employing AA and AAA batteries for a variety of reasons, including some of those described above.
SUMMARY OF THE INVENTIONThe present invention provides a combination for use in positioning a substantial point source of light with a reflector. The substantial point source of light may be along a filament of a lamp bulb. In one embodiment, the combination includes a reflector, lamp bulb, a movable lamp bulb holder and an actuating member. The reflector has a first open end adapted to emit a light beam, a second end, and an axis extending therebetween. A movable lamp bulb holder holds the lamp bulb which extends through the second end of the reflector. The actuating member is operatively coupled to the movable lamp bulb holder for moving the point source of light relative to the axis of the reflector. A holder axis is defined about which the movable lamp bulb holder moves. The actuating member moves the lamp bulb and the substantial point source of light by rotating the lamp bulb holder about the holder axis. The actuating member may be a lever or cam.
The combination may also includes a lock mechanism that is coupled to the actuating member to maintain the position of the substantial point source of light with the reflector axis after the point source of light of the filament has been aligned with the reflector axis. As a result, the combination advantageously maintains the position of the point source of light once it has been moved to a desired position.
In a flashlight, the invention includes a means for adjusting the position of a substantial point source of light relative to a reflector. In one embodiment, the substantial point source of light is along a filament of a lamp bulb. The flashlight includes a barrel, a head assembly, a lamp bulb, a movable lamp holder, an actuating member and an electrical circuit. The barrel retains one or more batteries. The head assembly is adjacent to a first end of the barrel. The head assembly includes a reflector and lens in a mutually fixed relationship. The reflector includes a first open end to emit a light beam, a second end and an axis extending therebetween. The lamp bulb can comprise an incandescent lamp bulb including a filament and the filament typically includes a substantial point source of light. The movable lamp holder holds the lamp bulb extending through the second end of the reflector. The actuating member is operatively coupled to the movable lamp bulb holder for moving the substantial point source of the lamp bulb relative to the reflector axis. The electrical circuit couples the lamp bulb to the battery.
The substantial point source of light of the lamp bulb may be moved in a non-linear path. Further, the flashlight may include means to maintain the position of the point source of light after it is properly aligned with the reflector axis. The flashlight may include an adaptable conductor means in the electrical circuit. As a result, the electrical circuit may be maintained while the point source of light is being moved.
An adjustable focusing means varies the position of the point source of light with respect to the focal point in a direction parallel to the axis of the reflector. The movable lamp holder holds the lamp bulb and maintains the operable connection with the battery. The actuating member is operatively coupled to the movable lamp bulb holder for moving the point source of light of the lamp bulb to a position coaxial with the reflector axis.
The flashlight may also include a curved conductor that is interposed in the electrical circuit and operably connected to an electrode of the lamp bulb. The curved conductor advantageously maintains the operable connection between the lamp bulb electrodes and the battery when the point source of light of the lamp bulb is moved relative to the reflector axis.
In another aspect of the invention, the flashlight includes an improved switch design. A tail cap is removably mounted to the second end of the housing of the flashlight. The tail cap includes a tail cap spring that urges the battery or batteries towards the first end of the housing. The electrical circuit couples the lamp bulb to the battery or batteries. The switch includes a spring biased conductor that is interposed in the electrical circuit between the battery and the lamp bulb. The spring biased conductor advantageously absorbs stresses that might otherwise damage the center electrode of the battery or other flashlight components. As a result, the flashlight is more durable and the components contained in the flashlight and the battery electrode are better protected.
In another aspect of the present invention, a method is provided to align the substantial point source of light of a lamp bulb with the axis of a flashlight reflector. The method includes positioning the point source of light of the lamp bulb relative to a reflector and moving the point source of light from a first position relative to the reflector axis to a second position aligned with the reflector axis, and confirming alignment of the point source of light by visually observing the quality of the light beam and maintaining the aligned position.
The above and other features and advantages of the present invention will become apparent from the following detailed description of a preferred embodiments.
Embodiments of the present invention will now be described with reference to the drawings. To facilitate description, any reference numeral representing an element in one figure will represent the same element in any other figure. Further, in the description of the present invention that is to follow, upper, front, forward or forward facing side of a component shall generally mean the orientation or the side of the component facing the direction toward the front end of the flashlight where the light source is disposed. Similarly, lower, aft, back, rearward or rearward facing side of a component shall generally mean the orientation or the side of the component facing the direction toward the rear of the flashlight where the tail cap is located.
Referring to
Referring to
The substantial point source of light 3 may be any suitable device that generates light. For example, the substantial point source of light 3 may be a light emitting diode (LED), an arc lamp or a filament-based incandescent lamp. The substantial point source of light 3 may also be a bi-pin or potted type lamp, or other types as known in the art.
Referring to
Generally during operation of the lamp 359, there exists a substantial point source of light along the filament that emits a substantial amount of light relative to other points along filament 360. This point is the hottest portion of the filament and is intended to be located at the middle of the overall length of the wire filament extending between the ends of the electrodes. However, this substantial point source of light on the filament is oftentimes not located on the center axis of the lamp or mid-way between electrodes 357 and 358. This may be due to a number of factors. For example, the filament may be more tightly wound at one end versus the other end, thus shifting the point source of the filament closer to the end of one electrode than the end of the other electrode and closer to one side of the lamp.
Even if the filament is uniformly wound, the filament may be attached to electrodes 357, 358 so that the substantial point source is not aligned with the axis of the lamp. Furthermore, even if the substantial point source of the filament 360 is properly positioned equidistant between the ends of the electrodes 357, 358, misalignment may occur if the ends of the electrodes themselves are not exactly equally spaced from the axis 363 of the lamp or if the ends of the electrodes are not properly positioned on a common plane with the central axis 363 of the lamp. These misalignment problems are not unique to filament type lamps and also apply to other substantial point source of light devices, such as, among others, LED's and arc lamps.
Flashlight 10, among other things, includes a movable holder that facilitates moving and aligning the substantial point source of light 3 with characteristic features of a reflector to improve the performance of a flashlight. In particular, in an illustrative embodiment, the movable holder holds the substantial point source of light relative to a reflector's axis and is rotatable about an axis that is not coincident with the reflector's axis. Preferably, the movable holder is rotatable about at least two axes of rotation. Those skilled in the art will appreciate that a movable holder that is rotatable about two axes, wherein the second axis is oriented perpendicular to the first axis, will result in a substantial point source of light displacement range that is generally two-dimensional. Flashlight 10, therefore, includes a feature of aligning the point source of light with a characteristic axis of a flashlight reflector. Flashlight 10 also includes a feature for moving the substantial point source of light along the axis of the reflector and aligning it to the focal point of the reflector. It should be noted that the present invention is not limited by the specific manner in which the substantial point source of light is moved or displaced.
Referring to
Referring to
The tail cap assembly 30 of the illustrative embodiment includes a tail cap 322 and conductive spring member 334. Tail cap assembly 30 may include a removable spare lamp holder disposed in a cavity that opens to the end of the tail cap that engages barrel 4. Removable spare lamp holder may include an inner hub that frictionally retains a spare lamp. Spokes from the hub may extend to an outer hub in frictional contact with the inner surface of the cavity formed in the tail cap 322 to prevent damage to the spare lamp.
Tail cap 322 preferably includes a region of external threading 332 for engaging matching back threaded portion 9 formed on the interior of the barrel 4. However, other suitable means may also be employed for attaching tail cap 322 to barrel 4 such as, for example, spring clips. A sealing element 14 may be provided at the interface between the tail cap 322 and the barrel 4 to provide a watertight seal. In a preferred embodiment, the sealing element 14 is a one-way valve that is oriented so as to prevent flow from outside into the interior of the flashlight 10, while simultaneously allowing overpressure within the flashlight to escape or vent to the atmosphere. However, as those skilled in the art will appreciate, the sealing element 14 may be other suitable sealing devices such as an O-ring.
The external threading 332 of the tail cap 322 that mates with the barrel 4 may be provided with a flattened top so as to create a spiral passage through the mating threads between the barrel 4 and the tail cap 322. Additionally, radial spines may be formed in a mating face 351 of the tail cap 322 to ensure that the end of barrel 4 does not provide a gas tight seal against the adjacent flange, thereby impeding the flow of overpressure gases from the interior of the flashlight.
The design and use of one-way valves in flashlights is more fully described in U.S. Pat. No. 5,113,326 to Anthony Maglica, which is hereby incorporated by reference.
Referring to
The spring member 334 also urges the batteries 331 forward towards the front of the flashlight 10. As a result, the center electrode 337 of the rear battery 331 is in electrical contact with the case electrode of the forward battery 331, and the center electrode 338 of the forward battery 331 is urged into contact with a spring biased lower contact assembly 80 disposed about the forward end of the flashlight 10.
As shown in
The movable assembly 40 includes an end cap 16, sleeve retainer 18, a holder housing 22, an upper spring member 24, a cam follower assembly 50, an upper contact assembly 70, and a movable holder assembly 90.
Referring to
Referring to
Referring to
Still referring to
In a preferred embodiment, the positive electrode contact 28 and the negative electrode contact 29 are made from a sheet of a conductor material that is formed to an hour glass shape having a neck 44, 48 as illustrated in
Referring to
Referring to
The socket 58 of the ball housing 31 is an actuation interface that is adapted to receive an actuating member to move the movable holder assembly 90. In the illustrative embodiment, the socket 58 has a hexagonal form.
Referring to
Also, as shown in
Still referring to
The lamp 359 is received by the movable lamp holder assembly 90 through apertures 32. The lamp electrodes 357, 358 extend through the apertures 32 and frictionally engage with the necks 44, 48 of the positive electrode contact 28 and the negative electrode contact 29, respectively. This illustrative embodiment discloses one way of holding and making electrical connections to a lamp 359. It should be evident to those skilled in the art that other configurations may be employed to receive the lamp 359 and make electrical connections to the lamp electrodes 357, 358.
Referring to
Referring to
In the illustrative embodiment, the cam follower receiver 73 of the holder housing 22 is a threaded port. The pair of access holes 72 are generally disposed 180° apart and each extends through the wall of the holder housing 22. The snap-in groove 68 is disposed towards the aft of the holder housing 22 and includes a forward side that is tapered and a back side that is generally perpendicular to the axis of the holder housing 22. In a preferred embodiment, the holder housing 22 is a conductor such as, for example, aluminum.
Still referring to
Referring to
The end cap 16 has an outer diameter that corresponds to the inner diameter of the holder housing 22. Because of the relief slots 204, the flexible segment 202 may flex sufficiently inward when the end cap 16 is assembled with the holder housing 22. Each outer tab 206 fits into the snap-in groove 68 of the holder housing 22 and is sized such that the back face 212 bears against the aft face of the snap-in groove 68. In a preferred embodiment, the end cap is a non-conductor such as, for example, plastic.
Referring to
Referring to
Referring to
Referring to
To assemble the movable assembly 40, the movable holder assembly 90 is installed such that its outer profile 52 of the ball housing 31 bears against the profiled contour 69 of the holder housing 22. The movable holder assembly sockets 58 are aligned with the holder housing access holes 72. The sleeve retainer 18 is installed to have its mating profile 65 bear against the back contour 39 of the movable holder assembly 90. The upper spring member 24 is disposed over the sleeve retainer's cylindrical aft section 62 and against the aft side of the sleeve retainer flange 63. The upper contact assembly 70 is slidably positioned in the sleeve retainer's through hole 64 to make an electrical connection with the contact base 46 of the positive electrode contact 28. The end cap 16 is installed to secure and contain the components. The cam follower assembly 50 may be secured to the cam follower receiver 73 on the holder housing 22. An insulator ring 53 may also be secured to the aft end of the contact post 77.
Arranged this way, the upper spring member 24 is contained between the sleeve retainer 18 and the end cap 16. The housing holder snap-in groove 68 prevents the end cap 16 from moving aft once the outer tabs 206 have snapped into the snap-in groove 68. The aft travel of the contact post 77 is limited because the contact post's taper 222 bears against the support taper 216 of the end cap 16. The upper spring member 24 and the contact spring 70 serve to maintain the desired component relationship. Accordingly, the movable assembly 40 is described wherein the assembly of its internal components is accomplished by snap-fit.
The inventive features of the embodiment described herein are not limited by the specific mode of assembly, and other suitable fastening schemes may be utilized. For example, press-fitting, crimping, or using adhesives may be employed to secure or assemble the end cap 16 to the holder housing 22. However, among other things, the combination of components assembled by snap-fitting as described above provides component assembly that eases manufacturing and reduces cost because assemblies may be completed without the need for holding tight tolerances as demanded by press fit or interference fit, and without the need for special tooling as demanded by a crimping operation.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Still referring to
Referring to
Preferably, the movable cam 96 is a two-piece construction that may be fitted over the outer diameter undercut 88 of the reflector module 2 and the cam follower assembly 50. The two pieces of the movable cam 96 may be secured by suitable methods known in the art. Referring to
Referring to
Arranging the movable assembly 40, the reflector module 2 and the movable cam 96 as described, rotating the movable cam 96 relative to the movable assembly 40 will cause the movable assembly 40 to axially displace along the inside diameter 86 of the reflector module 2. In this way, the lamp 359 may be caused to translate along the reflector axis 43.
Referring to
Referring to
The circuit assembly 60 preferably contains electronics to, among other things, control the energy flowing to the lamp 359 or regulate the recharging of the rechargeable batteries 331. The circuit assembly 60 may include a processor for performing the desired operations and functions. The circuit assembly 60 is interposed between the first and second recharging members 5, 7. The circuit assembly 60 includes a plurality of contact areas to selectively and electrically couple to the first recharging member 5, the second recharging member 7, the upper contact assembly 70, the lower contact assembly 80 and the spring 108. Referring to
Referring to
Referring to
The contact receptacle 78a is slidably disposed in the central bore 33 of the lower insulator 25. The lower insulator's flexible arms 132 allow the contact post's flange 59 to be contained within the counterbore of the lower insulator 25. The flange of the contact receptacle 78a, disposed adjacent to the counterbore shoulder 115, limits the axial displacement of the contact receptacle 78a in the aft direction. The contact post 77a, being biased forward by the contact spring member 79a, couples with the contact area 137e of the circuit assembly 60.
Preferably, the axial length of the contact receptacle 78a is sized so that the end contact 112a is adjacent to or slightly forward of the back face 121 and remains within the envelope defined by the recess 122 of the lower housing 25. In the illustrated embodiment, the recess 122 is a frustoconical cavity with the base facing to the back of the flashlight 10. The recess 122 is dimensioned to be deeper than the height of the battery's center electrode 338 that extends beyond the battery casing.
Arranged this way, when the battery is urged forward against the back face 121 of the lower housing 25, the center electrode 338 of the battery engages with the end contact 112a of the contact receptacle and lifts its flange off the lower insulator's counterbore shoulder 115. Concurrently, the contact spring member 79a urges the contact receptacle 78a in the rearward direction against the battery's center electrode to achieve a spring biased electrical connection with the battery 331. In this way, the lower contact assembly 80 provides a simple configuration that enhances the electrical coupling between components even when the flashlight is jarred or dropped, which may cause the battery or batteries 331 to suddenly displace axially within the barrel 4. Further, because the contact spring member 79a may absorb impact stresses due to, for example mishandling, the battery's center electrode and the flashlight components, for example the circuit assembly 60, are better protected.
Also, because the depth of the recess 122 is greater than the distance the center electrode 338 extends beyond the end of the battery case, if a battery or batteries 331 are inserted backwards into the barrel 4 so that their case electrodes are directed forward, no coupling with the lower contact assembly 80 is formed. When the batteries are inserted correctly, the center electrode of the forwardmost battery is urged into contact with and compresses the lower contact assembly 80. Such an arrangement immediately notifies the user of improper battery installation.
Referring to
The face cap includes a flange 152, which extends radially towards the axis of the face cap, a groove 153 and aft threads 154. In the illustrative embodiment, the lens 144 is disposed in the groove 153 of the face cap and is positioned against the sealing ring 148. Preferably, the lens 144 is fitted into the groove 153 by snap-fit, as commonly known in the art. The flange 152 of the face cap is positioned forward of the flange 84 of the reflector module 2. The aft threads 154 is adapted to engage with corresponding threads of the sleeve 146.
The sleeve 146 protects the inner components of the flashlight from contamination by covering the axial slot 94 and the socket 58 of the ball housing 31. The sleeve 146 is generally a hollow cylinder with a tapered outer surface. The sleeve 146 includes threads about its forward end to engage with the face cap threads 154. The forward end of the sleeve 146 is positioned on the aft side of the flange 84 of the reflector module 2. The corresponding diameters between the face cap 142 and the flange 84 of the reflector module 2 are also sized and controlled for a clearance fit. Configured and arranged this way, the face cap 142 and the sleeve 146 define a clearance envelope surrounding the reflector module flange 84 and the head assembly 20 may rotate about the axis of flashlight 10 relative to the reflector module 2. Optionally, a spacer 156 may be installed to fill any excess axial clearance. In a preferred embodiment, the spacer 156 is made of nylon.
Referring to
Referring to
The combination described above is one embodiment for moving the substantial point source of light along or parallel to the axis 43 of the reflector 82. Although other combinations may be suitable for this purpose, having the reflector 82 integral to the feature that controls the fidelity of the light source's axial displacement, i.e., the inside diameter 86, advantageously improves manufacturability and reduces cost. Also, having the reflector fixed to the barrel and to other features of the flashlight reduces the number of components needed and advantageously eases manufacturing.
Also, although the embodiment described above uses a cam that rotates with the head assembly to effectuate axial translation of the light source, the present invention is not limited by the configuration and arrangement of the cam. The light source may be axially translated by other suitable means, such as for example, having a cam fixed to the barrel and coupling the movable holder to the head assembly.
The flashlight 10 described above is also one embodiment that is suitable for moving the substantial point source of light in a direction other than parallel to or along the reflector axis 43. Referring to
As described above, the movable holder assembly 90 is secured in place by spring forces provided through the sleeve retainer 18 and the upper contact assembly 70. In the illustrative embodiment, the lamp 359 is moved by, for example, rotating the actuating member with sufficient pressure to overcome the spring forces and causing the movable holder assembly 90 to roll within the spherical envelope defined in part by the holder housing 22 and the sleeve retainer 18. Rotating the hex key causes the lamp bulb to rotate about a rotation axis 61 that is not coincident to the reflector axis 43, as defined by the socket 58. In this regard, the socket 58 is an actuation interface of the movable holder assembly 90 that facilitates the substantial point source of light to move relative to the reflector axis 43.
Also, the movable holder assembly 90 may move the lamp 359 and its filament 360 in a second direction when the actuating member in a lever motion as indicated by arrow A in
It should be noted that the movement of the movable holder assembly 90 is not limited by two axes of rotation as described above. The spherical form of the ball holder assembly 90 and the envelope containing the ball holder assembly 90 advantageously provides a full range of motion, similar to a ball joint, and the actuating member may be maneuvered in any direction.
The spring force(s) exerted by the upper spring member 24 through the sleeve retainer 18 and/or the upper contact assembly 70 serve as an alignment locking mechanism by providing sufficient forward force to maintain the position of the lamp 359 before and after the lamp is moved to align the substantial point source of light with the axis of the reflector. Although other methods to maintain the position of the lamp after alignment may be employed, spring force, preferably in a form of a coil spring, provides a simple and effective configuration to achieve the desired result.
In the embodiment described above, the substantial point source of light is caused to move by maneuvering the axis defined by the socket 58 of the movable holder assembly 90. While a removable actuating member is described herein, the actuating member may be integral to the movable holder assembly 90.
Therefore, one embodiment of a movable holder that is able to move a substantial point source of light in substantially the lateral direction relative to the reflector axis, and that is able to move the substantial point source of light along the axis of the reflector axis has been described. By having such an adjustment capability, the movable holder of the present invention facilitates aligning the substantial point source of light with the focal point of the reflector. Even after the substantial point source of light is aligned with the focal point along the reflector's axis, the movable holder of the present invention facilitates moving the point source away from the focal point along the reflector's axis and varying the dispersion of light emanating from the point source. Because of the alignment locking mechanism described above, the substantial point source's alignment to the reflector axis is maintained and the point source may be re-aligned with the focal point by translating it back along the reflector axis.
The movable assembly 40 and the movable cam 96 are one distinct combination for moving and aligning the substantial point source of light relative to the reflector axis or the focal point of the reflector. By providing such a combination, the performance of the flashlight is advantageously improved. However, it is expressly noted that the present invention is not limited to any specific combination or arrangement for moving a substantial point source of light relative to the reflector axis.
In another aspect of the present invention, the spring loaded upper contact assembly 70 engages with the contact base 46 that conforms to the spherical back contour 39 of the aft contact holder 12. Advantageously, such a relationship between the contacts provides an electrical connection between the two components even where there is movement or rotation of the movable holder assembly 90 because the spring loaded upper contact assembly 70 follows the curvature of the contact base 46.
In the illustrative embodiment in
Also, the actuation interface of the movable holder assembly 90 may be any suitable combination that may facilitate the movable holder assembly (and the lamp held thereon) to move. For example, the movable holder assembly 90 may be configured without a socket 58 so that the spherical outer profile 52 of the ball housing 31 is made as the actuation interface. The access to the spherical outer profile 52 may be achieved by, for example, appropriately sizing the adjacent structures to facilitate the user's finger or thumb to access and engage with the outer profile 52. To enhance the engagement, the outer profile 52 may be knurled or roughened to increase the friction with the user's hand or finger. In this alternate movable holder configuration, the user can move the lamp by handling the spherical outer profile 52 to move the ball housing 31 within the spherical envelope defined in part by the holder housing 22 and sleeve retainer 18.
Further, the actuation interface of the movable holder may be an external feature. For example, an extension may protrude from the ball housing 31 that has an external hexagonal form. In such a configuration, the actuating member may be a socket or other female-type coupling to engage with the external feature of the extension. If the extension is sufficiently sized, the user may be able to maneuver the movable holder directly without the use of an actuating member.
There are other ways to move the point source of light. For example, the movable lamp holder may be configured with an aft extension that protrudes through two actuator rings. By arranging the two actuator rings to move in a direction perpendicular to the axis of the flashlight, and by arranging the first and second actuator rings to translate in a direction perpendicular to each other, a two-dimensional light source displacement range can be achieved. Similarly, a single actuating ring that is translatable in two directions will also yield a two-dimensional light source displacement range.
Moreover, the embodiment described above tend to move the substantial point source of light in an arcuate or non-linear path. The present invention is not limited to the displacement path of the substantial point source of light. Linear translation of the point source of light in a perpendicular direction relative to the reflector axis may also be employed to align the point source of light. Those skilled in the art will appreciate that coupling two actuating members, disposed 90° apart and perpendicular to the reflector axis, to a movable holder will allow the substantial point source of light to be translated in any direction along a plane perpendicular to the reflector axis.
The present invention also contemplates any suitable means to move the substantial point source of light to align the light source to the reflector axis. Although only mechanical means to move the substantial point source of light has been described herein, the present invention is not limited to moving the substantial point source of light relative to the reflector solely by mechanical means. For example, electrical or electro-mechanical devices may be used to move the lamp and its filament. The control of such devices may be provided by, for example, a microprocessor disposed on the circuit assembly 60. Accordingly, the present invention is not limited to a mechanical or a mechanically controlled means of moving the substantial point source of light.
Therefore, an apparatus for moving and aligning a substantial point source of light to a reflector axis has been disclosed. Combined with features that facilitates adjusting the position of the point source of light parallel or along the axis of the reflector as described above, the flashlight 10 discloses one configuration that can align the substantial point source of light of a light source to the focal point or the axis of a reflector.
Advantageously, the apparatus described herein moves the substantial point source of light while maintaining flow of electrical energy to the source of light. It is preferable to have the flashlight turned on while the alignment steps are performed so that the user is able to visually confirm the quality of the light beam while moving the movable holder.
Moreover, although the particular order is not essential, the user may: (1) turn on the flashlight; (2) actuate the movable holder and move the substantial point source of light to substantially reduce the asymmetrical or comet-tail effect of the light beam until a substantially symmetrical light beam is observed—which signifies that the substantial point source of light is substantially aligned with the axis of the reflector; and (3) rotate the head assembly to axially translate the point source of light along the reflector axis until the brightest beam is observed—which signifies that the substantial point source of light is substantially aligned with the focal point of the reflector.
With the configuration and the steps above described, a light beam that maximizes the focal properties of a reflector, such as a parabolic reflector, may be achieved. In doing so, unwanted dispersion of light caused by a misaligned point source of light may be substantially reduced. Also, efficient use of battery energy is realized because higher intensity light beam is generated using the same energy. Accordingly, the flashlight according to the present invention operates at a superior optical performance level than previously known flashlights.
In a preferred implementation of the illustrative embodiment, the tail cap 322, the barrel 4, the reflector module 2, the sleeve 146, and the face cap 144, generally forming the external surfaces of the flashlight 10 are manufactured from aircraft quality, heat treated aluminum, which are anodized for corrosion resistance. All interior electrical contact surfaces are preferably appropriately formed or machined to provide efficient electrical conduction. All insulating or non-conducting components are preferably made from polyester plastic or other suitable material for insulation and heat resistance. The reflector 82 is preferably provided with a computer-generated parabolic reflecting surface that is metallized to ensure high precision optics. Optionally, the reflector 82 may include a electroformed nickel substrate for heat resistance.
The electrical circuit of flashlight 10 will now be described. Referring to
Referring to
The tactile response feature of the present invention will now be described. Referring to
Similarly, a detent may be disposed on the cam 101 at a position wherein the electrical circuit is closed. In this instance, the tactile response will indicate to the user that the flashlight is held in the ON position.
Although a rotating type switch that opens and closes the electrical circuit by separating the circuit at the interface between the upper contact assembly 70 and the circuit assembly 60 has been described, the electrical circuit may be closed or opened at other locations.
Moreover, although a rotating type switch has been described, the various aspects of the invention as described herein is not limited by the type of switching scheme employed. Other suitable switch device, such as a push-button switch or an electronic switch may be employed.
The flashlight 10 is preferably a rechargeable flashlight. As described above, the flashlight 10 includes conducting members 5, 7 that are electrically coupled to the circuit assembly 60. Accordingly, a recharging device or a recharger electrically coupled to the conducting members 5, 7 would also be electrically coupled to the circuit assembly 60 and the rechargeable batteries. In this way, the portable source of light may be recharged without removing it from the barrel 4.
Turning to
Referring to
Referring to
Referring to
Referring to
In a preferred embodiment, the lower insulator 376 and the middle insulator 382 together house the battery contact assembly 370 and, optionally, the PCB 378. The rearward facing side of the lower insulator 376 is disposed adjacent to the battery 331. The lower insulator 376 also includes mating features to receive and attach with the middle insulator 382 and the upper insulated retainer 374. Accordingly, the configuration of the lower insulator 376, as do other components, depends in part on the assembly features employed to mate the respective parts.
Referring particularly to
Further, the lower insulator 376 includes a base 386, an internal support 387, a recess 388, a central bore 389, a shoulder 391, a counterbore 392, inner bores 394 and outer bores 396.
The internal support 387 includes a generally cylindrical center 398 and three ribs 402. Each rib 402 extends radially outward from the cylindrical center 398 to the inside surface of side wall 385. The ribs 402 are 120 degrees from each other and include inner bores 394 and outer bores 396, which extend in the axial direction. In addition to defining the inner bores 394 and outer bores 396, the internal support 387 advantageously provides stiffness to the cylinder form defined by side wall 385 and contributes, among other things, to achieve the non-tilting, non-binding slidable relationship between the lower insulator 376 and the barrel 312.
Although the internal support 387 is shown as including a cylindrical center and three ribs, other suitable configurations to stiffen the side wall 385 and/or to contain the recess, central bore, counterbore and inner and outer bores may be employed. For example, the entire inner region of the lower insulator 376 may be filled solid. However, among other things, the illustrative embodiment of the lower insulator 376 shown reduces material waste and keeps the overall weight of the flashlight low.
Preferably, the inner bores 394 are configured for an interference fit with inner extensions 436 of the middle insulator 382. Similarly, the outer bores 396 are configured for an interference fit with extensions 456 of the upper insulated retainer 374. As described above, the bores 394 and 396 preferably include a hexagonal form to fit with a cylindrical form of the extensions 436 and 456, respectively.
Referring to
The base 386 defines the end of the lower insulator 376 and extends radially outward from the recess 388 to the side wall 385. The base 386 also advantageously contributes to the overall stiffness of the cylinder defined by side wall 385.
Referring to
Referring to
Referring to
The upper receptacle 408 may be an open-ended flange-less receptacle including a contact end 416 at the closed end of the receptacle. The spring 409 is sized to fit into the lower receptacle 406.
In assembly, the upper receptacle 408 is fitted into the lower receptacle 406 with the spring 409 contained therebetween. Sufficient pressure is required to overcome the slight interference between the upper receptacle 408 and the dimples 415 of the lower receptacle 406, and resistance from the spring 409. Once assembled, the slight interference fit between the upper receptacle 408 and the dimpled area provides an enhanced electrical connection between the upper and lower receptacle. This enhanced electrical connection is maintained even when relative axial movement between the upper and lower receptacle is experienced.
Referring to
Further, because the depth of the recess is greater than the distance center electrode 338 extends beyond the end of the battery casing, if batteries 331 are inserted backwards into the barrel 312 so that their case electrodes are pointing forward, an electrical circuit is not formed. When the batteries are inserted correctly, the center electrode of the forwardmost battery is urged into contact with, and compresses, the battery contact assembly 370. Such an arrangement immediately notifies the user of improper battery installation.
Referring to
Referring to
Referring to
Referring to
The middle insulator 382 may be one of many suitable configurations to support and interface with the adjacent components. In the illustrative embodiment shown in
The incomplete hollow cylinder 429 extends perpendicularly from the forward facing side of the base 428 and its inside diameter defines the aperture 431 which extends through the base 428. At the cutout 432 of the incomplete hollow cylinder 429, the support tab 429 extends radially inward and coplanar with the face of the undercut 439. The outer perimeter wall 434 is sized to abut the side wall 385 of the lower insulator 376. Preferably, the diameter defined by the outer perimeter wall 434 corresponds to the diameter defined by the side wall 385. The undercut 435 on the back side of the base 428 is sized to provide a corresponding step to the step 404 of the lower insulator 376 to contain the PCB 378 therebetween. The outer clearance holes are arranged to correspond with the outer bores 396 of the lower insulator 376. The undercut 439 has a shape corresponding to the perimeter of the mating component—the second conductor 384—and has a depth corresponding to the thickness of the second conductor 384. The beveled surface 438 extends radially between the perimeter of the forward end of the base 428 and the outer perimeter wall 434. The beveled surface 438 is preferably configured to receive the barrel contact 445 of the second conductor 384 and to engage with the taper 318 of the barrel 312. The beveled surface 438 may be beveled at a wide variety of angles. In the illustrative embodiment, an angle of approximately 30° with respect to the central axis of the barrel 312 is employed.
The inner extensions 436 secure the middle insulator 382 to the lower insulator 376. Inner extensions 436 extend perpendicularly from the rearward facing side of the base 428 and correspond to and are sized for an interference fit with the inner bores 394 of the lower insulator 376. Three inner extensions 436 are employed in the present embodiment of flashlight 300, with each extension being spaced 120 degrees from the other extensions to align with and pass through inner clearance holes 426 provided in the PCB 378 and to engage with the inner bores 394. The interference fit with the inner bore 394 may be sufficiently strong to secure the constituent components during normal use.
While the middle insulator 382 is mounted to the lower insulator 376 using inner extensions and bores, it will be appreciated by those skilled in the art that other suitable means of mounting may also be employed. For example, adhesives or ultrasonic welding may be used to secure and align the components together. Alternatively, alignment pins or slots may be used to align the constituent components. Further, an interference fit between the side wall 385 of the lower insulator 376 and the outer perimeter wall 434 of the middle insulator 382 may be used to secure the components together. However, use of inner extensions 436 as described above advantageously aligns and secures the constituent components in a simple and effective form.
Referring to
The central opening 448 is sized to fit over the incomplete hollow cylinder 429 of the middle insulator 382. The leg 444, which extends radially inward from the central opening 448, is sized to fit through the cutout 432 of the incomplete hollow cylinder 429 and rest on support tab 433 of the middle insulator 382.
The second electrode contact 442 extends perpendicularly from the end of the leg 444 in the forward direction. The second electrode contact 442 is preferably offset from the center axis of the barrel 312. The second electrode contact 442 is adapted to frictionally receive and establish electrical connection with the second terminal electrode 358 of lamp bulb 359. The offset location of the second electrode contact 442 facilitates receiving the second electrode 358 of lamp bulb 359 while allowing the substantial point source of light positioned on the lamp filament 360 to be aligned to the axis of the reflector assembly 324.
The central body 443 of the second conductor 384 includes one or more arms 449 that extend radially outward. On each arm 449, a barrel contact 445 depends therefrom at an angle corresponding to the beveled surface 438 of the middle insulator 382. The outer clearance holes 446 of the second conductor 384 are disposed on the central body 443 to correspond with extensions of the upper insulated retainer 374.
The leg 444, the central opening 448, and the undercut 439 serve to align and orient the second conductor 384 to the middle insulator 382. As a result, the barrel contacts 445 are properly positioned to cup around and rest against the beveled surface 438 of the middle insulator 382; the second conductor's outer clearance holes 446 are aligned to the middle insulator outer clearance holes 437; and the second electrode contact 442 is aligned to fit into an offset slot 488 of the contact insulator 366.
Although the leg 444, the central opening 448, and the undercut 439 are employed in the illustrative embodiment to align and orient the second conductor 384 to the middle insulator 382, any or all of the three features need not be used for this purpose and other suitable and well known aligning schemes may be instead employed. For example, aligning pins, clips and other means may be used. However, the second conductor configuration 384 as described herein provides a manufacture friendly, material efficient design to provide an electrical conduction path from a generally central location to a radially outward location.
Further, although the second conductor 384 is illustrated as including three barrel contacts 445 spaced symmetrically 120° apart, more or less barrel contacts may be employed to practice the present invention.
Thus, the structure and the assembly of the front subassembly 350 has now been described. Absent further assembly, the front subassembly 350 disposed inside the barrel 312 is urged to move forward by the action of the spring 334 until barrel contacts 445 come into contact with taper 318 of the barrel 312. To minimize resistance and maximize contact area, the taper 318 of the barrel 312 is preferably angled at the same angle as the beveled surface 438 with respect to the central axis of the flashlight.
Referring to
In a preferred embodiment, the upper insulated retainer 374 comprises an annular body 451 having an outer edge 452, a center opening 453, a plurality of locking tabs 454, a plurality of extensions 456, spacers 458 and a raised center 459.
The forward facing side of the annular body 451 and the locking tabs 454 are coplanar to each other and, together, may bear against the back end abutment 349 of the reflector assembly 324 of the head assembly 330. Outer edge 461 of the locking tabs 454 may coincide with the outer edge 452 of the annular body 451. Side edges 462 of the locking tabs 454 are preferably parallel to yield a tab 454 having a constant width. Viewing from the rearward facing side of the upper insulated retainer 374, the locking tabs 454 are illustrated including a cap 464 and a relief 465. The relief 465 is disposed at the base of the locking tab and allows deflection of the tab. The cap 464 is a small raised area on the rearward facing side of the locking tab 454 for engaging with the radial ribs 518 of the actuator 364.
The rearward facing side of the annular body 451 includes the plurality of extensions 456 with spacers 458, and the raised center 459. The extensions 456 extend perpendicularly to the rearward facing side of the annular body 451. Three extensions 456 are employed in the present embodiment and are equally spaced from each other. The extensions 456 are each sized for an interference fit with the outer bores 396 of the lower insulator 376 to mount thereto. More or less extensions 456 may be employed to practice the invention.
In a preferred embodiment, the axial spacing between the movable parts of the front end assembly 340 is defined by spacers 458. In the illustrative embodiment, each spacer 458 is integral to the end of the extension 456 adjacent to the annular body 451. Preferably, the spacers 458 are each configured as a segment of a hollow cylinder having a center line coincident with the center line of the center opening 453. Each spacer 458 also includes a shoulder 463 that abuts against the second conductor 384 disposed on the front end of subassembly 350. Accordingly, the axial height of spacers 458 defines the axial spacing between the annular body 451 of the upper insulated retainer 374 and the front subassembly 350. The shoulder 463 further serves to secure the second conductor 384 against the undercut 439 of the middle insulator 382.
Also on the rearward facing side of the upper insulated retainer 374 is the raised center 459. The raised center 459 includes the rearward end of the center opening 453 and holder slots 466. The raised center 459 is a hollow cylinder having a constant outer diameter and an inside contour defined by the center opening 453.
In a preferred embodiment, the center opening 453 generally has a concave contoured surface and facilitates the movement of the movable lamp bulb holder 372. Referring to
The raised center 459 also includes holder slots 466. The holder slots 466 are configured to receive the holder tabs 476 of the movable lamp bulb holder 372 and facilitates rotation of the movable lamp bulb holder 372 about an axis of rotation defined by the holder tabs 476.
As best seen in
Referring to
The receptacle 472 is configured to receive the lamp bulb 359. The receptacle 472 includes a raised hollow cylinder 473 and lamp electrode apertures 475. The raised hollow cylinder 473 is sized to receive the lamp bulb 359 and provides lateral support thereto. The electrode apertures 475 are sized to receive the electrodes 357, 358 extending from the lamp bulb 359.
Although a cylinder/aperture-type receptacle 472 is described and illustrated herein, other suitable means known in the industry may be employed to receive or facilitate receiving the lamp bulb without deviating from the present invention. For example, a discontinuous cylinder, raised tabs or a counterbore may be used to provide lateral support. In fact, a cylinder is not needed to hold the lamp bulb 359—the apertures 475 can facilitate the electrodes to frictionally engage with electrode contacts that sufficiently holds the lamp bulb in place as shown in
The rearward facing side of the movable lamp bulb holder 372 includes the holder base 413 and a pair of mating slots 478 for mating with the contact insulator 366. In the illustrative embodiment, each mating slot 478 is a cavity configured as a partial segment of a hollow cylinder for mating with contact insulator 366.
Preferably, the body 471 has a convex outer profile 474 that corresponds to the concave contour of the center opening 453 of the upper insulated retainer 374. Accordingly, the first diameter 477 on the forward facing side of the body 471 increases non-linearly as it extends to the rearward facing side and ends at the second diameter 479. Preferably, the non-linearity and the dimensions of the center opening 453 contour and the convex outer profile 474 are such that when the two components are assembled and caused to move relative to each other, no binding between the parts will be experienced. Arranged this way, the movable lamp bulb holder 372 is able to move about the cavity defined by the center opening 453 of upper insulated retainer 374.
In a preferred embodiment of the upper insulated retainer 374 and the movable lamp bulb holder 372, the non-linear contours of the mating parts have a 0.25 inch radius. However, any suitable profile and dimension may be employed to configure the inside feature of the center opening 453 and the convex outer profile 474 to achieve a relatively movable set of mating components. As will be appreciated by those skilled in the art, a mating/matching contour is not essential to facilitate movement of the movable lamp bulb holder 372 relative to the upper insulated retainer 374. All that is required is clearance between the parts as relative movement occurs. However, the configuration described provides clearance for relative movement and also serves to prevent the movable lamp bulb holder 372 from falling into the reflector assembly 324
The holder tabs 476 define an axis of rotation 481 of the movable lamp bulb holder 372. The holder tabs 476 are configured to rotatably mate with the holder slots 466 of the upper retainer 374. In a preferred embodiment, the holder tabs 476 have a semi-circle cross-section to provide a non-binding relative movement between the movable lamp bulb holder 372 and the upper insulated retainer 374. Although a semi-circle configuration is shown, those skilled in the art will appreciate that other suitable mating contours may be employed. For example, as the holder slot 466 is defined as having a semi-circle cross-section, the holder tabs 476 may have, among others, a semi-circular, a circular, or a hollow cylindrical cross section.
Alternatively, slots instead of tabs may define the axis of rotation 481 in the movable lamp bulb holder 372. In such a configuration, the upper insulated retainer 374 may include tabs that mate and correspond with the slots.
Referring to
The mating posts 483 extend generally perpendicularly from the forward facing side of the base 482 and are configured to mate with the pair of mating slots 478 of the movable lamp bulb holder 372 to assemble therewith. The base 482 butts against the holder base 413 of the movable lamp bulb holder 372 when the mating posts 483 are inserted into the mating slots 478. In a preferred embodiment each mating post 483 is a partial segment of a hollow cylinder correspondingly sized for an interference fit with the mating slot 478 of the movable lamp bulb holder 372. Suitable mating features that may be used to assemble the movable lamp bulb holder 372 and the contact insulator 366 include, among others, circular posts and bore, clips, or assembly using an adhesive, as well known in the art. However, the mating slots and posts configuration as illustrated herein provides a convenient way to secure and align the mating components.
The first and second follower arms 484, 485 depend from the base 482. The follower arms 484, 485 are disposed opposite each other and extends radially outward from the outer edge of the body 482. Further, when the contact insulator 366 is assembled with the movable lamp bulb holder 372, the follower arms 484, 485 are preferably disposed 90° from the two holder tabs 476. The follower arm optionally includes a curved shoe 491 on the rearward facing side. The curved shoe 491 may be integrally formed on the follower arm and has a raised circular arc segment as shown in
The central extension 486 extends perpendicularly from the central region of the rearward facing side of the base 482. The central extension 486 is a supporting structure to electrically couple the lamp bulb 359 to the first conductor 368 and the second conductor 384.
The first slot 488 is a through slot that extends axially from the rearward facing side of the central extension 486 to the forward facing side of the base 482. The first slot 488 is aligned with one of the electrode apertures 475 of the movable lamp bulb holder 372. Most clearly shown in
Referring to
The electrode contact 496 of the first conductor 368 is disposed in the large cavity 492 of the first slot 488. The arm 497 is generally disposed in the small cavity 493 and the lower contact 498 cups around the first slot exit and rests and conforms to the contour of the curved undercut 494. Preferably, the depth of the undercut 494 is less than the thickness of the lower contact 498 so that the lower contact 498 defines the outermost curved profile disposed on the rearward side of the contact insulator 366.
Based on the foregoing description of the movable lamp bulb holder 372, the first conductor 368 and the contact insulator 366, when the lamp bulb's first electrode 357 is installed into the receptacle 472 of the lamp bulb holder 372, the electrode extends through the electrode aperture 475 and into the first slot 488 of the contact insulator 366 whereat the electrode contact 496 of the first conductor 368 is disposed. The neck 499 of the electrode contact 496 is sized to frictionally receive and retain electrode 357 of the lamp bulb. The axial length of the lamp bulb electrode, the movable lamp bulb holder 372 and the contact insulator 366 is dimensioned such that the lower contact 498, which rests and conforms to the curved contour of the rearward facing end of the central extension 486, contacts the flexible top contact 424 of the PCB 378 to achieve electrical connection thereto.
The lower contact 498 of the first conductor 368 and the flexible top contact 424 of the PCB advantageously provides a relationship between the conductors such that even where there is movement or rotation of the movable lamp bulb holder 372, an electrical connection may be maintained between the lamp bulb electrode and the PCB as the contact follows the curvature of lower contact 398.
Referring to
Thus, when the lamp bulb's second electrode 358 is installed into the receptacle 472 of the lamp bulb holder 372, the electrode extends through the electrode aperture 475 and through the hole 487 of the contact insulator 366 and into the second electrode contact 442 disposed in the second slot 489. The second electrode contact 442 is adapted to frictionally receive and retain electrode 358 of the lamp bulb.
Advantageously, by arranging the first and second slots offset from the centerline of the lower insulator 376, once the front end assembly 340 is assembled, the lamp bulb may be substantially aligned to the barrel centerline. More particularly, by offsetting the first and second slots equidistant and on opposite sides of the barrel centerline, the point source of light positioned on the lamp bulb filament is in a better position to align with the reflector axis and the focal point.
Referring to
In a preferred embodiment, the actuator 364 is in part interposed between the contact insulator 366 and the middle insulator 382. The actuator 364 includes a central clearance 501, a cam ring 502, radial supports 503 and actuator ring 504. The inside diameter of the cam ring 502 defines the central clearance 501. The central clearance is sized to provide access for the central extension 486 of the contact insulator 366 to reach and electrically couple with the top contact 424 of the PCB.
The cam ring 502 is a face or barrel cam and includes a hollow cylinder 506, a forward end 507 and a rearward end 508. The diameter of the hollow cylinder 506 is sized such that the forward end 507 of the cam ring 502 slidably engages the first and second follower arms 484, 485 of the contact insulator 366. Optionally, the forward end 507 may support the follower arms 484, 485 at the curved shoe 491 location, if a curved shoe feature is present. The axial rise and fall of the forward end 507 in the circumferential direction defines the rise, return and dwell of the follower arm. Referring to
The rearward end 508 is generally perpendicular to the centerline of the hollow cylinder 506. When the upper insulated retainer 374 is installed, the rearward end 508 of the actuator 364 abuts the second conductor 384.
Plurality of radial supports 503 fixedly connects the cam ring 502 and actuator ring 504 in a concentric arrangement. Each radial support 503 extends radially outward from the outer diameter of the cam ring 502 and connects to and inside feature of the actuator ring 504. The clearance between the supports allow the extensions of the upper insulator retainer 374 to pass through.
The actuator ring 504 includes a tubular ring 514 and a flange 515. The flange 515 depends radially inward from the forward end of the tubular ring 514. The tubular ring 514 includes axial ribs 516 on the outer surface for engaging with an alignment ring 519 (See
Referring to
Referring to
The head 341 is configured, among other things, to have sufficient stiffness to rigidly retain the reflector assembly 324 and lens 355 against the face cap 343 on the forward end; movably mount to the barrel and support the sleeve 342 on the rearward end; and to provide access for the user to actuate the movable lamp bulb holder 372. In the illustrative embodiment, the head 341 includes front outer threads 319, a grip diameter 321, windows 323, back inner threads 353, and back outer threads 327.
On the front end of the head 341, front outer threads 319 are formed to mate with the threads of the face cap 343 to fixedly retain the lens 355 and the reflector assembly 324 therebetween. The reflector assembly 324, at its flange 339, is secured about the front end of the head 341 where it is rigidly held in place by the lens 355 which is in turn retained by the face cap 343 which is engaged with mating threads formed on the front outer threads 319 of the head 341. Arranged this way, the lens 355 and the reflector assembly 324 are securely retained and the axis of the reflector assembly 324 coincides with the axis of the head assembly 323 and the axis of the barrel 312 when the flashlight is fully assembled.
Referring to
Referring to
The second end 348 of the reflector assembly 324 provides access for the lamp bulb to be disposed within the cavity defined by the reflector 345. In a preferred embodiment, the second end 348 is an opening generally disposed about the vertex of the parabola and is co-axial with the axis 325 of the reflector 345. The second end 348 is sized to receive the lamp bulb 359 and the receptacle 472 of the movable lamp bulb holder 372. In a preferred embodiment, the second end 348 is a circular opening, however, other suitable configurations that provide for the lamp bulb to be disposed within the cavity defined by the reflector 345 and that allows movement of the lamp bulb therein may be employed.
On the rearward facing end of the head 341, back inner threads 353 are formed to mate with threads 316 formed on the barrel 312 for movably mounting the head assembly 330 thereto. Back outer threads 327 are formed to mate with corresponding threads on the sleeve 342 for removably mounting the sleeve 342 to the head assembly 330.
Referring to
Referring to
A sealing element, such as an O-ring, may be incorporated at the interface between the face cap 343 and the lens 355, the face cap 343 and the head 341, the sleeve 342 and the head 341, and sleeve 342 and the barrel 312 to provide a watertight seal.
The tail cap assembly 20 of flashlight 10 may also be used for flashlight 300. As described previously, the tail cap assembly 20 includes a spring member 334 that urges the batteries 331 forward. Referring to
The barrel 312, tail cap 322, head 341, face cap 343 and sleeve 342, forming all of the exterior surfaces of the flashlight 300 are manufactured from aircraft quality, heat treated aluminum, which is anodized for corrosion resistance. All interior electrical contact surfaces are preferably appropriately formed or machined to provide efficient electrical conduction. All insulating components are preferably made from polyester plastic or other suitable material for insulation and heat resistance. The reflector 345 is preferably provided with a computer-generated parabolic reflecting surface that is vacuum aluminum metallized to ensure high precision optics.
Front end assembly 340 is adapted to close the electrical path between the lamp bulb and batteries in response to axial movement of the head along the barrel and to open the electrical path in response to axial movement of the head in the opposite direction. It will be appreciated, however, that other types of switches that are commonly used in flashlights may also be employed with the other aspects of the invention described herein.
Referring to
Unscrewing the head 341 about the axis of the barrel 312 causes the head assembly 330, including the reflector assembly 324, to translate in the forward direction. The forward axial movement of the reflector assembly 324 enables the front end assembly 340 to be moved forward a like distance by the urging of the spring 334 disposed in the tail cap assembly 320 translating the batteries forward. Sufficient forward axial displacement will bring the barrel contacts 445 to be in contact with the taper 318 of the barrel 312, which closes the electrical circuit. Moreover, once the barrel contacts 445 contact the taper 318 of the barrel, the front end assembly 340, and the lamp bulb 359 held thereby, are prevented from translating forward any further. The battery urged forward by the spring 334 disposed in the tail cap assembly holds the front end assembly 340 against the taper 318 of the barrel 312.
In this manner the front end assembly 340 is adapted to close the electrical path to illuminate the lamp bulb in response to axial movement of the head assembly 330 along the barrel 312 and to open the electrical path in response to axial movement of the head assembly in the opposite direction.
However, the head assembly 330, and the reflector assembly 324 contained therein, may be rotated and translated still further while the front end assembly 340 remain in a fixed position. Thus, by continuing to translate the reflector assembly 324, relative shift in the position of the substantial point source of light with respect to the focal point 326 of the reflector 345 is effectuated. Thus, such an arrangement advantageously facilitates controllably translating the head assembly 330 for positioning the substantial point source of light axially along the axis of the reflector to yield a high intensity light to emanate through the lens 355. Further, such an arrangement to change the relative axial position of the substantial point source of light with respect to the reflector's focal point facilitates varying the dispersion of light emanating from the lamp bulb 359 through the lens 355.
Those skilled in the art will appreciate that the fidelity in the translation of the head assembly, and therefore the axial positioning of the substantial point source of light, in the illustrative embodiment is governed by the type of threads that are employed on threads 316, 353 of the barrel 312 and head 341, respectively. However, other suitable translation means may be employed to practice the present invention.
An additional utilization of the flashlight 310 in accordance with the present invention is achieved by rotatably translating the head assembly 330 until the head assembly 330 is completely disengaged from the barrel 312. By placing the head assembly 330 upon a substantially horizontal surface such that the face cap 343 rests on the surface, the tail cap 322 of the flashlight may be inserted into the head to hold the barrel 312 in a substantially vertical alignment. Since the reflector 345 is located within the head assembly 330, the lamp bulb 359 will emit a substantially spherical or candle-like illumination, thereby providing an ambient light level.
In use as a means for moving the light source in a substantially lateral direction, the front end assembly 340 facilitates aligning the substantial point source of light with the reflector axis 325.
The fully assembled flashlight 300 has the lamp bulb 359 held in the movable lamp bulb holder 372 and extended through the opening 347 of the reflector assembly 324. Preferably during the point source of light alignment process, the flashlight 300 is turned on so that the user is able to see the shape of the light beam emanating from the lens 355 by, for example, projecting the light against a flat surface. The user may disengage the sleeve 342 from the head 341 by relatively rotating the respective parts before or after the flashlight 300 is turned on. Once the sleeve 342 is free from the head 341, the sleeve 342 may be moved out of the way by sliding it in the rearward direction over the outer surface of the barrel 312. With the sleeve 342 disengaged from the head 341, the user has access to the alignment ring 519 for moving the substantial point source of light relative to the reflector axis as shown in
The alignment ring 519 is accessible to the user through windows 323 on the head 341. While viewing the light beam shape projected on the flat surface, the user advances or rotates the alignment ring about the central axis of the flashlight 300. The axial ribs on the alignment ring 519 advantageously provides friction between the alignment ring 519 and the user's finger or thumb to ease advancing or rotating the alignment ring 519.
As inside diameter of the alignment ring 519 is mechanically coupled to the axial ribs 516 of the actuator ring 504, advancing the alignment ring 519 advances the actuator 364. Because the radial supports 503 of the actuator 364 are disposed between spacers 458 of the upper insulated retainer 374, the rotation of the actuator 364 is limited to the circumferential clearance between the spacers. In the illustrative embodiment, the actuator 364, once assembled, has a rotational range of approximately 60°. Those skilled in the art may readily appreciate that the rotational range may be increased or decreased.
For the purpose of describing the operation of the front end assembly 340, “zero-tilt” shall mean the condition wherein the front face of the body 471 of the movable lamp bulb holder 372 is substantially perpendicular to the reflector axis. Accordingly, the zero-tilt condition is achieved when the first and second follower arms 484, 485 each rests on the cam ring 502 at a location 1800 apart that has the same axial height. Such a location is at the circumferential mid point of the first and second transition segments 509, 511. Thus, starting from the zero-tilt position, when the cam ring 502 is advanced by rotating the actuator ring 504 in one direction, the first follower arm 484 travels up the ramp of the first transition segment 509 while the second follower arm 485 travels down the ramp of the second transition segment 511 by an equal amount. The movable lamp bulb holder 372, fixedly installed onto the contact insulator 366 and operatively coupled to the cam ring 502, will then rotate about the axis of rotation 481 in one direction and move off zero-tilt. Consequently, the substantial point source of light positioned on the lamp bulb filament will be caused to displace in an arcuate path in a substantially perpendicular direction relative to the reflector axis.
Subsequently, when the cam ring 502 is advanced in the opposite direction, the first follower arm 484 travels down the ramp of the first transition segment 509 while the second follower arm 485 travels up the ramp of the second transition segment 511 by an equal amount. The movable lamp bulb holder 372 will then rotate about the axis of rotation 481 in the opposing direction and, eventually return to zero-tilt. Advancing the cam ring 502 further will move the movable lamp bulb holder 372 beyond the zero-tilt position. In this way, the substantial point source of light positioned on the lamp bulb filament will displace in an arcuate path in a substantially perpendicular direction relative to the reflector axis in the opposing direction.
In a preferred embodiment, the electrodes 357, 358 extending from the lamp bulb are aligned to the axis of rotation 481 of the movable lamp bulb holder 372 so that the longitudinal direction of the filament 360 is substantially parallel to the axis of rotation 481. This may be accomplished by positioning the electrode apertures 475 of the movable lamp bulb holder 372 receiving the lamp bulb electrodes 357, 358 to extend through the axis of rotation 481 defined by the holder tabs 476 as shown in
Those skilled in the art will appreciate that the rise of the transition segments on the cam ring, the position of the follower areas, the position of the holder axis and the axial distance between the holder axis to the filament, among other things, contribute to the range of point source of light displacement. Various combinations of these parameters may be employed to achieve the desired point source of light displacement without departing from the present invention. Preferably the range the substantial point source of light about zero-tilt is ±0.020-080; ±0.040-060; or ±0.050 inches; and the range of angular tilt is ±2°-10°; ±4°-8°; or ±6.5°.
In the illustrative flashlight 300 described above, the holder base 413 of the movable bulb holder 372 can be viewed as the actuation interface because the actuating pressure from the cam driven contact insulator 366 is transmitted through the holder base 413. Viewed another way, as the contact insulator 366 moves together with the movable bulb holder 372, the first follower arm 485, the second follower arm 485 or the curved shoe 491 may be viewed as the actuation interface.
While a barrel-type cam with a two arm follower system is disclosed in the illustrative embodiment of front end assembly 340, other suitable means of moving the substantial point source of light relative to the reflector axis may also be employed without departing from the present invention. For example, rotating the movable lamp bulb holder 372 may alternately be achieved by extending an actuating member that is coaxial with the axis of rotation 481 of the lamp bulb holder 372. Rotating the coaxial actuating member may rotate the lamp bulb holder 372 about its axis 481 and consequently move the substantial point source of light relative to the reflector.
Alternately, an actuating member may extend from the movable lamp bulb holder 472 perpendicular to the axis of rotation 481. In this arrangement, the lamp bulb holder 372 may be caused to rotate about its axis of rotation 481 and move the point source of light relative to the reflector by moving the end of the actuating member up or down.
Still further, a plate cam may be employed to move the lamp bulb. In such a configuration, only a single follower arm would be required. By actuating the plate cam, the movable lamp bulb holder 372 and the lamp bulb may be rotated about the axis of rotation 481. Thus, various combinations may be employed to actuate the movable lamp bulb holder. The embodiment represented in flashlight 300 illustrates one possible combination of parts that effectively moves the substantial point source of light relative to the reflector axis.
The function and the benefit of the locking tabs 154 of the upper insulated retainer 374 will now be described. After the actuator ring 504 has been advanced and the substantial point source of light has been moved to the desired location, the user will eventually turn the flashlight off. The locking tabs 454 and the rack 517 on the forward side of the actuator ring 504 serve to maintain the point source of light alignment after the alignment steps and also when the flashlight is turned off.
Referring to
Subsequently, when the flashlight is turned off, the head assembly 330 is translated rearward and the abutment of the reflector assembly 324 is urged against the front end assembly 340 until the barrel contact 445 lifts off the taper 318 of the barrel. Hence, when the flashlight is turned off, the reflector assembly 324 bears against the locking tabs 454 and prevents the tabs from deflecting forward. Accordingly, the caps 464 are rigidly held between the radial ribs 518 and the actuator ring 504 is restrained from advancing. In this way, the point source of light position is advantageously maintained even when the flashlight is turned off and less future alignment is needed. Although three locking tabs are illustrated in a preferred embodiment, less or more tabs may be employed to practice the present invention.
In the front end assembly 340 configuration where the PCB 378 is not employed, the curved contour of the contact end 416 of the upper receptacle 408 and the spring 409 provides a similarly effective and advantageous contact combination as described above.
Further, although a certain lamp bulb is illustrated in the figures, any suitable substantial point source of light device may be used with the teaching according to the present invention. The means to secure and to make electrical connections to other suitable substantial point source of light devices should be known to those skilled in the art. Also, the teaching according to the present invention may be used with an arc lamp, LED, or other light emitting devices to improve the quality of light produced therefrom.
Various embodiments of improved high quality flashlights and their respective components have been presented in the foregoing disclosure. While preferred embodiments of the herein invention have been described, numerous modifications, alterations, alternate embodiments, and alternate materials may be contemplated by those skilled in the art and may be utilized in accomplishing the various aspects of the present invention. For example, while the front end assembly includes an aspect for moving the substantial point source of light as well as an aspect for turning the flashlight on and off, use of the point source of light aspect of the present invention may be employed together or independently from any other aspects disclosed herein. It is envisioned that all such alternate embodiments are considered to be within the scope of the present invention as described by the appended claims.
Claims
1. A lighting device comprising:
- a barrel containing at least one battery;
- a reflector disposed at one end of the barrel and held in a first position, wherein the reflector includes a first open end, a second end, and a reflector axis extending between the first open end and the second end;
- a movable holder rotatable about an axis that is not coincident with the reflector axis;
- a light source held in the movable holder; and
- a variable length conductor that maintains electrical coupling of the battery to the light source while the movable holder moves the light source in a direction that is not coincident with the reflector axis and the reflector remains in the first position.
2. A lighting device of claim 1 further including a head mounted to one end of the barrel, wherein the variable length conductor selectively electrically couples or de-couples the light source and the battery in response to rotation of the head.
3. A lighting device of claim 2, wherein a tactile feedback is provided when the light source and the battery are selectively coupled or decoupled.
4. A lighting device of claim 1, wherein the variable length conductor includes a first receptacle, a second receptacle and a spring member interposed therebetween.
5. A lighting device of claim 1, wherein the movable holder is configured to move the light source substantially laterally relative to the reflector axis.
6. A lighting device comprising:
- at least one battery;
- a movable holder having a substantially spherical housing, wherein the spherical housing moves within a spherical envelope;
- a light source held in the movable holder; and
- a switch interposed between the battery and the movable holder, wherein the switch includes a spring-biased conductor that maintains electrical couple between the light source and the battery when the movable holder moves the light source relative to the battery.
7. A lighting device of claim 6 further including a barrel that contains the battery.
8. A lighting device of claim 6, wherein the movable holder moves the light source by rotating about an axis not coincident with a reflector axis.
9. A lighting device of claim 6, wherein the holder includes a receiver for holding the light source, wherein the movable holder is adapted to move the light source substantially laterally relative to a reflector axis.
10. A lighting device of claim 6, wherein the spring-biased conductor includes a first receptacle, a second receptacle, and a spring member interposed therebetween.
11. A flashlight comprising:
- a barrel containing at least one battery;
- a reflector disposed at one end of the barrel having a first open end configured to emit a light beam, a second end, and a reflector axis extending therebetween, wherein the reflector is held in a first position;
- a movable holder tilable about the reflector axis;
- a light source held in the movable holder; and
- a variable length conductor electrically coupling the battery to the light source, wherein the variable length conductor maintains electrical coupling of the battery to the light source while the movable holder moves the light source.
12. A flashlight of claim 11, wherein the variable length conductor includes a first receptacle, a second receptacle, and a spring member interposed therebetween.
13. A flashlight of claim 12 further including a circuit board electrically coupled to the second receptacle of the variable length conductor.
14. A flashlight of claim 13, wherein the circuit board includes electronics to control energy flowing from the battery to the light source.
15. A flashlight of claim 11, wherein the movable holder includes a spherical housing and moves the light source in a direction substantially perpendicular relative to the reflector axis to align the light source with the reflector axis.
16. A flashlight of claim 14, wherein the variable length conductor includes a first receptacle and a spring member, wherein the first receptacle has an end shaped with at least part of a spherical profile, wherein the spring member arranged to urge the at least part of a spherical profile of the first receptacle against the spherical housing of the movable holder.
17. A flashlight of claim 11, wherein the movable holder includes a spherical housing, wherein the spherical housing moves within a spherical envelope.
18. A flashlight of claim 11, wherein the movable holder is externally accessible by a user to move the light source.
19. A flashlight of claim 11, wherein the movable holder is externally operable by a user to move the light source.
20. A flashlight of claim 11 further including an actuating member, wherein the actuating member is operatively connected to the movable holder to move the light source.
21. The flashlight of claim 11, wherein the movable holder moves the light source with respect to both the reflector and the barrel.
1513211 | October 1924 | Barany |
1584539 | May 1926 | Hopkins |
1603272 | October 1926 | Eaton |
1608195 | November 1926 | Barany |
1610289 | December 1926 | Jones |
1638716 | August 1927 | Surles |
1644126 | October 1927 | Harris |
1674650 | June 1928 | Leser |
1680169 | August 1928 | Osean |
1758835 | May 1930 | Hime |
1851503 | March 1932 | Flamm |
1932102 | October 1933 | Eaton |
2016819 | October 1935 | Meginniss |
2097222 | October 1937 | Tompkins |
2107599 | February 1938 | Chan |
2173650 | September 1939 | Fullmer |
2176301 | October 1939 | Haas |
2212103 | August 1940 | Rothenberg et al. |
2264284 | December 1941 | Bassett |
2272907 | February 1942 | Deibel |
2339356 | January 1944 | Sachs |
2490830 | December 1949 | Norton |
2530913 | November 1950 | Shackel |
2599295 | June 1952 | Thomas |
2915621 | December 1959 | Garland |
2931005 | March 1960 | Saurwein |
2945944 | July 1960 | Gillespie |
3014125 | December 1961 | Draudt |
3076891 | February 1963 | Moore |
3314331 | April 1967 | Wiley |
3469140 | September 1969 | Bottone et al. |
3622832 | November 1971 | Schlessel et al. |
3652846 | March 1972 | Starck, II |
3997808 | December 14, 1976 | Wojtowicz |
4114187 | September 12, 1978 | Uke |
4151583 | April 24, 1979 | Miller |
4156271 | May 22, 1979 | Vercellotti |
4171534 | October 16, 1979 | Strowe |
4203150 | May 13, 1980 | Shamlian |
4234913 | November 18, 1980 | Ramme |
4261026 | April 7, 1981 | Bolha |
4274130 | June 16, 1981 | Elliott |
4286311 | August 25, 1981 | Maglica |
4287448 | September 1, 1981 | Bradley |
4329740 | May 1982 | Colvin |
4388673 | June 14, 1983 | Maglica |
4398232 | August 9, 1983 | Elmore |
4398238 | August 9, 1983 | Nelson |
4429351 | January 31, 1984 | Petzl et al. |
4464600 | August 7, 1984 | Kosmatka et al. |
4472766 | September 18, 1984 | Hung |
4495551 | January 22, 1985 | Foltz |
4527223 | July 2, 1985 | Maglica |
4531178 | July 23, 1985 | Uke |
4570208 | February 11, 1986 | Sassmannshausen |
4577263 | March 18, 1986 | Maglica |
4581686 | April 8, 1986 | Nelson |
4644220 | February 17, 1987 | Carley |
4656565 | April 7, 1987 | Maglica |
4658336 | April 14, 1987 | Maglica |
4695551 | September 22, 1987 | Samhaber et al. |
4725932 | February 16, 1988 | Gammache |
4733337 | March 22, 1988 | Bieberstein |
4777582 | October 11, 1988 | Sharrah |
4819141 | April 4, 1989 | Maglica et al. |
4841417 | June 20, 1989 | Maglica et al. |
4843526 | June 27, 1989 | Price, III |
4864474 | September 5, 1989 | Maglica |
4888670 | December 19, 1989 | Sharrah |
4899265 | February 6, 1990 | Maglica |
4942505 | July 17, 1990 | Maglica |
4951183 | August 21, 1990 | Wang |
4967325 | October 30, 1990 | Shiau |
5003440 | March 26, 1991 | Maglica |
5113326 | May 12, 1992 | Maglica |
5121308 | June 9, 1992 | Maglica et al. |
5122935 | June 16, 1992 | Peterson |
5126927 | June 30, 1992 | Reeves et al. |
5138537 | August 11, 1992 | Wang |
5158358 | October 27, 1992 | Maglica et al. |
5207502 | May 4, 1993 | Maglica |
5260858 | November 9, 1993 | Maglica |
5293307 | March 8, 1994 | Maglica |
5349506 | September 20, 1994 | Maglica |
5459649 | October 17, 1995 | Ellion |
5461552 | October 24, 1995 | Tillery |
5535107 | July 9, 1996 | Prok |
5560705 | October 1, 1996 | Shiau |
5593222 | January 14, 1997 | Maglica |
5601359 | February 11, 1997 | Sharrah et al. |
5806964 | September 15, 1998 | Maglica |
5826971 | October 27, 1998 | Kibler |
5826972 | October 27, 1998 | Chiu |
5865525 | February 2, 1999 | Kibler et al. |
5959306 | September 28, 1999 | Kalley et al. |
5999749 | December 7, 1999 | Kobayashi et al. |
6074072 | June 13, 2000 | Parsons et al. |
6170960 | January 9, 2001 | Maglica |
6183106 | February 6, 2001 | Thummel et al. |
6193389 | February 27, 2001 | Maglica |
6206539 | March 27, 2001 | Ko |
6347878 | February 19, 2002 | Shiao |
6386732 | May 14, 2002 | Shiau |
6394629 | May 28, 2002 | Kobayashi et al. |
6722772 | April 20, 2004 | Maglica |
6726342 | April 27, 2004 | Lai |
7264372 | September 4, 2007 | Maglica |
7334914 | February 26, 2008 | Maglica |
7344269 | March 18, 2008 | Maglica |
887248 | November 1943 | FR |
830 221 | March 1960 | GB |
578888 | March 2004 | TW |
WO/02/033310 | April 2002 | WO |
- European Search Report dated Apr. 22, 2008 for European Application No. EP 05 72 4993.
Type: Grant
Filed: Mar 18, 2008
Date of Patent: Mar 1, 2011
Patent Publication Number: 20080259594
Assignee: Mag Instrument, Inc. (Ontario)
Inventor: Anthony Maglica (Ontario, CA)
Primary Examiner: Jason Moon Han
Attorney: Jones Day
Application Number: 12/050,893
International Classification: F21L 4/00 (20060101);