Method and apparatus for obtaining telephone status over a network

A system and method for monitoring the state of a structure over a network. The system and method provides for providing the status of a monitoring device to a status file. The status file is accessible over the Internet by computer so that a party can first determine the status of the device. The system operates over normal PSTN's, over cable systems, over wireless networks and over the Internet.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a divisional application of U.S. patent application Ser. No. 11/182,674, filed Jul. 15, 2005, which is a continuation in part of U.S. patent application Ser. No. 09/759,107 filed Jan. 12, 2001, now U.S. Pat. No. 7,088,802, which is a continuation in part of U.S. patent application Ser. No. 08/963,373, filed Oct. 20, 1997, now U.S. Pat. No. 6,175,616 and a continuation in part of application Ser. No. 09/265,656, filed Mar. 2, 1999, now U.S. Pat. No. 6,483,900. The 11/182,674, 09/759,107, 09/265,656, and 08/963,373 applications are incorporated herein by reference, in the entirety, for all purposes.

BACKGROUND

This invention relates generally to electronically determining the status of a telephone over a network. More specifically, the present invention provides a method and apparatus for obtaining the status of a telephone (whether on-hook or off-hook) over a network in order to maximize the probability of reaching a desired party. It also provides a method and apparatus for sending an e-mail to the desired party for storage as a voice mail message.

Literally millions of times per day, parties attempt to contact one another, only to find that the party initiating the telephone call receives a busy signal or is put into the phone mail of the receiving telephone when that telephone is off-hook. Not only is this experience frustrating for the caller, but also can result in lost business or social opportunities on the part of the receiving party who is on the line speaking with someone else. In addition, receiving busy signals and the inability to complete telephone calls results in the loss of millions of dollars in revenue both from the time expended by the caller in trying to reach the desired party, as well as lost opportunities for commerce or other social contact.

Telephone line activity monitoring has been the subject of invention in the past. A form of line activity monitoring has been proposed for the purpose of obtaining information regarding statistics of line usage. This proposed system detects the usage of the line, but does not transmit status information to others in any current fashion. For further details, refer to U.S. Pat. No. 4,559,416 to Theis et al.

Another monitoring system has been described whose purpose is to notify an operator that a telephone line is open so that a desired message can be delivered by the operator to a receiving party. This system comprises an automatic dialer that attempts to reach individuals on a repetitive basis until a connection is made. Again, status of the telephone at any given point of time is not provided. For further details, refer to U.S. Pat. No. 3,989,899 to Norwich.

An integrated calling directory has been described that utilizes a personal computer that stores information about the numbers being called. It does not address the problem associated with the called party telephone being in an off-hook condition. This condition is not reported in any fashion to the initiator of the telephone call. For further details, refer to U.S. Pat. No. 4,734,931 to Bourg et al.

A communication system has been proposed that uses a voice message system for storing and retrieving voice messages and faxed data and for converting text into voice messages. This proposed system does not deal with the issue of how to contact the party receiving the phone call but only leaves a message for that party in the event that the phone is in an off-hook condition. For further details, refer to U.S. Pat. No. 5,530,740 to Irribarren et al.

Another information processing system has been described as having a telephone and an informational processing device. This system does not address the issue of whether a called party telephone is in an on-hook or off-hook condition. For further details, refer to U.S. Pat. No. 5,500,893 to Onosaka.

A system for synchronization of mail boxes over a network has been proposed. This system is designed to ensure that information in electronic mail is complete in a series of different mailboxes. The issue of providing information to a caller regarding the status of a called party's telephone is not dealt with. For further details, refer to U.S. Pat. No. 5,647,002 to Brunson.

What is desired is a system whereby a calling party can pre-determine the status of a called party's telephone (on-hook or off-hook) so as to maximize the opportunity for completing a telephone call to the desired party.

SUMMARY

It is therefore an object of the present invention to maximize the probability that a calling party will actually contact a called party when a telephone call is made.

It is a further objective of the present invention to provide a status of the called party's telephone (on-hook or off-hook) before the calling party makes the telephone call to the called party.

It is a further objective of the present invention to provide telephone status information over a network.

It is a further objection of the present invention to continually monitor the status of a telephone in order to provide the telephone in order to provide the telephone status information desired.

It is a further objective of the present invention to store telephone line status in a file that can be accessed by others.

It is a further objective of the present invention to constantly update the telephone line status file so that callers accessing the file can have an up-to-date record of the status of a telephone to be called.

It is a further objective of the present invention to obtain the status of a called party's telephone over cable systems connected to public switched telephone networks.

It is yet another objection to obtain the status of a called party's telephone when both the called party and the calling party are connected to cable systems.

It is a further objective of the present invention to obtain the status of a called party's telephone when the called party is connected to a cable system but the calling party is not.

It is yet another objective of the present invention to generally provide information concerning home and office equipment and functions to a file that can be accessed by networks external to the home, such as the Internet.

These and other objectives of the present invention will become apparent from a review of the general and detailed descriptions that follow. The present invention provides a method for a calling party to receive constantly updated information concerning the status of a telephone (on-hook or off-hook) to be called. For purposes of this specification this status will generally be called the “telephone status.” The present invention also provides a way for a calling party to leave e-mail and voice mail to the called party as part of the determination of telephone status.

The present invention comprises a monitoring system that can constantly poll a series of telephones, and stores information concerning the telephone status in a telephone status file. Alternatively, the system switch simply records the off-hook status of a telephone of the system and provides a notation to a file that is accessible to others. Thus, a telephone is presumed to be on-hook unless it is determined to be off-hook. That file is one that, in a preferred embodiment, can be accessed over the Internet. When a calling party desires to maximize its probability of actually being connected with a called party, the calling party accesses the telephone's status file over the Internet and receives a determination of whether the called telephone is on-hook or off-hook. When an off-hook condition is noted, the calling party will not attempt to place the telephone call. In addition, the calling party may elect to alert the called party that a call was attempted, to send an e-mail and have the e-mail delivered as a voice mail message, or to be signaled when the called party's phone is on-hook. When the telephone status is noted as on-hook, the calling party can then make the telephone call with some reasonable assurance of reaching the telephone of the called party.

This system differs from existing private branch exchanges (PBX) in that a current PBX can have a “camp on” feature that allows a use to place a phone call to a telephone on the PBX, note that the called telephone is off-hook and “camp on” to the called party's telephone line so that when an on-hook condition is noted, the PBX can automatically connect the calling party to the called party. The difficulty with such camp on systems is that they cannot be used by people outside the PBX. In addition, when using the camp on feature, the call is “camped” only after is placed. The caller still has invested both time and money in exchange for a busy signal. In contrast to existing PB camp on systems, the system and method of the present invention allows a user to be advised of the status of a telephone via network external to the location of the telephone to maximize the probability of actually making the desired connection.

An alternative embodiment of the present invention is to connect the calling party's telephone to the computer at the calling party's location. Thereafter, upon a determination by the calling party's telephone is such that a call can be made, the user's computer will then dial the user's telephone prompting the user to pick that telephone up and thereafter dial the called party's telephone thereby completing the telephone call in an automated fashion.

A further embodiment of the present invention is to use a telecommunications device (wireless or otherwise, e.g., a computer, a telephone, or a personal digital assistant) to send the called party an e-mail and then have the e-mail delivered to the called party's voice mail box. The called party retrieves the e-mail-converted-to-voice message from the voice mail box using any of a number of devices (e.g., a computer, a telephone, or a personal digital assistant).

It is also the case the telephone companies are seeking to expand their markets for both long distance and local services. This expansion has caused certain long distance to acquire cable companies in order to provide local service to customers. This cable-borne telephone is yet another way for long distance carriers to reach local users by virtue of the cable system infrastructure already in place. Where such cable infrastructure exists, it is also possible to obtain the telephone status of users telephones over the cable system.

Obtaining telephone status over the cable network occurs in a similar fashion to that already noted above. In a first embodiment, a called party's telephone is either plugged into a set-top box or other interface through which telephone services are offered. Alternatively, the called party's telephone is connected to a computer system which is in turn connected to a set-top box ore other telephone and/or data interface for those cable operations that offer Internet-over-cable service. The off-hook status of the telephone at the called party's location is determined via a switch at the telephone company (telco). That off-hook status is provided to a file that is accessible over the Internet.

Thus, a calling party, desiring to obtain the status of the telephone at a location having cable service would again access the Internet and obtain information from the telephone status file which is constantly updated by the telco switch. Conversely, information concerning telephone status file over the cable network. In this manner, any user can obtain the telephone status via a computer system linked to the Internet via a cable operator. In addition, telephone status can be provided to a telephone status file over the Internet for those telephones that can use local cable operator infrastructure to connect to the public switched telephone network.

As noted above, a calling party at the cable location can also obtain the telephone status of the called party telephone by simply using the computer that is plugged into the set-top box or other telephony/data interface provided to go over the Internet to the telephone status file. This additional cable network thereby allows updating of the telephone status file and allows telephone status to be obtained in yet another fashion.

DESCRIPTION OF THE DRAWINGS

Additional objects and advantages of the present invention will be apparent in the following detailed description read in conjunction with the accompanying drawing figures.

FIG. 1 illustrates the basic architecture of a telephone status monitor according to an embodiment of the present invention.

FIG. 2 illustrates a telephone status monitor according to an alternate embodiment of the present invention.

FIG. 3 illustrates an operational process of a telephone status monitor according to the present invention.

FIG. 4 illustrates an operational process of a telephone status monitor according to an alternate embodiment.

FIG. 5 illustrates a telephone status monitor system embodiment using wireless network components.

FIG. 5A illustrates an alternate embodiment using cable infrastructure.

FIG. 6 illustrates a cable infrastructure embodiment with telephone status provided over the cable infrastructure.

DETAILED DESCRIPTION

The present invention is a system and method for obtaining the telephone status (on-hook/off-hook) of a called party's telephone over a network external to the location of the called party's telephone, such as the Internet.

Referring to FIG. 1, the general architecture of the telephone status monitor is described. Using a personal computer or other similar type of processor 12 a user accesses a network, in this case the Internet 10, although this is not meant as a limitation. Any network that can be connected to a calling party and a called party can also be used. The calling party accesses the telephone status file 8 which is continually updated by a telephone status monitor 6 which constantly monitors a series of telephones 2, 4. It should be noted that it is anticipated that many thousands of telephones will be monitored in this fashion. Eventually it is anticipated that millions of phones will be so monitored. The monitoring function can be accomplished by special equipment for that purpose or is simply the output of a switch that recognizes when a particular telephone is off-hook on the network.

The status file 8 is continually updated by monitor 6 with the on-hook or off-hook status of telephones that are monitored. Thus, the calling party communicating with a PC 12 can receive “real time” status (as determined by the sampling rate of the monitor) of a telephone being called by simply monitoring the telephone status file that is accessible over the Internet.

Since the status file is anticipated to contain many thousands of numbers it is anticipated as past of the present invention that when a calling party using its PC 12 requests the status of a particular telephone that only the status of that telephone will subsequently be displayed on the user PC. Alternatively, the user PC 12 may create a list of numbers to monitor and have the data “pushed” over the Internet 10 to the calling party's PC 12.

Referring to FIG. 2, an alternate embodiment of the present invention is shown. In this case, calling party's PC 20 accesses the telephone status file 22 over the Internet 30. Again, the telephone status file 22 is continually updated by a telephone status monitor 24 which monitors telephones 26 and 28 (again these are representative of a plurality of telephones fully monitored by the system). In this case, however, the calling party has a telephone 32 that is connected to the calling party's PC 20. When the calling party's PC 20 monitors the status of a called party via the status file 22 as soon as the called party status indicates an on-hook condition, the PC 20 will then place a telephone call to the called party. This makes the entire connection process an automated one. This embodiment finds particular utility in a private branch exchange (PBX) where a telco switch is ordinarily not monitoring individual telephones.

Although the invention may be embodied so as to monitor status any type of telephone, it has particular value for monitoring the status of ordinary telephones on the plain old telephone system (i.e., POTS telephones). That is because the POTS does not have the sort of telephone status monitoring features that may be included in newer generations of telephone networks.

Referring again to FIG. 2, the calling party may also send an e-mail to the called party's PC 34. The e-mail is converted from text to digital voice at converter 36 and routed to the voice mail box 36 and routed to the voice mail box 36 of the called party.

Referring to FIG. 3, the flow of the method of the present invention is shown. A calling party having a PC inputs a telephone number to be called (the called party) 101. Thereafter, the calling party's PC connects to the Internet 103 subsequently accesses the telephone status file 105. The status of the called party's telephone number is then determined 107 and that status is provided back to the calling party's PC 109 noting that status of the called party's telephone line.

Upon receipt of the called party's status, that information is displayed for the calling party 111 and thereafter, if the called party's telephone line status is in an on-hook condition, the user can then dial the called party 113.

Referring to FIG. 4, an alternate embodiment of the present invention is shown. All of the steps of the access to the status of the called party's telephone line is the same is noted previously in FIG. 3. However, instead of the user making the telephone call, the PC continually monitors the telephone status file. Upon noting that the called party's telephone status is in an on-hook condition, the calling party's PC dials the called party's telephone 115. The calling party's PC then waits to receive an on-hook signal from the called party's telephone 117, thereby signaling that the calling party is on the telephone ready to make the telephone call. The calling party's PC then places the telephone call to the called party's telephone 119, thereby completing the telephone call. It should be noted that at the present time it is possible to place a telephone call over the Internet. Therefore, the calling party's PC can place the call over the Internet to a called party's telephone or, in the alternative, the calling party's PC can simply place a call over the public switch telephone network to the called party's telephone.

Referring to FIG. 5, an alternative embodiment of the present invention is illustrated. While it is important for long-distance callers to be able to ascertain whether the party is online or not, this is also particularly important when one is dealing with wireless communications. For example, and as described earlier, personal computer 20 can connect to, for example, the Internet 102 to ascertain the status of wireless telephones 112, 114, and 118. The query concerning the telephone status then proceeds through a wireless application protocol (WAP) interface 106 to wireless network 108. The request then flows to the wireless network manager 110 which records which wireless phones are currently available on the network and, of key importance, which of those telephones is engaged in an active telephone call. Thus network manager knows that wireless telephones 112 and 114 are available for telephone calls or in the alternative that, for example, wireless telephone 114 is engaged in an active phone call. This information is then sent by network manager 110 over wireless network 108 through WAP interface 106 through Internet 102 to PC 20. At that point the user can decide to make a telephone call using conventional telephone 32 over the public switch telephone network 104 through the WAP interface 106 over wireless network 108 to the wireless telephones 112, 114. Alternatively, telephone 32 can place its call through PC 20 via Internet telephony over the Internet 102 to the wireless telephones 112, 114.

This knowledge of the status of telephones in a wireless system is particularly important, since certain trends exist to charge only the caller for calls that are to be made to or from a wireless network. This is consistent with the current method of charging for telephone calls over a public switch telephone network. Thus, in a situation where a caller is charged for all telephone calls made, it will be particularly important to the caller that it not get charged for leaving a message over a wireless network which tends to be particularly expensive.

The expense in dealing with a wireless network is all the more apparent when one considers that a telephone may be in a “roaming” mode where the telephone is in a network which is not the home network for the wireless telephone. Thus, in the case where wireless telephone 118 is roaming in a second wireless network 116, a telephone call that is not completed or wherein a message is simply left, becomes all the more expensive since roaming charges will be charged to the caller as well.

It is also important to note that an entire generation of video phones 100 are becoming available. The video phone in certain instances will take the place of personal computer 20 for interacting with the Internet and making telephone calls. Such a telephone is the I Phone® model 2050, for example, whose functionality, technical aspects, and capabilities are incorporated herein by reference in their entirety. Such a video phone 100 can also interact with Internet 102 through WAP interface 106 to ascertain the status of wireless telephones 112, 114 over wireless network 108. When information is subsequently displayed on video phone 100 regarding the availability of wireless telephones 112, 114, a call can be placed either over the Internet 102 or over public switch telephone network 104 through the wireless network to the wireless telephones desired.

Referring to FIG. 5A, an alternative embodiment of the present invention using cable network services is shown. In this instance, the calling party is connected to cable service for voice and data services. The cable network operations center 50 is connected to the Internet using known cable-to-Internet connections. The set-top box at a calling party's location 52 is remotely connected to a cable operations center 50. A television 53 is connected to the set-top box 52. In one embodiment, a calling party's telephone 54 is directly connected to be set-top box 52 where telephone service is offered over a cable network. In addition, however, the calling party's computer 56 can also be connected to the cable set-top box 52 and, using the access to the Internet 10 obtain the status of a remote telephone 2, 3, 4 via information in the telephone status file 8. The connection of the cable system can also be through any other voice/data interface provided by the cable carrier since set top boxes will not be the only interface to voice and data services over cable. If a calling party has a telephone 58 connected to the calling party's computer, upon obtaining a status indicating that a called party's telephone is available, calling party telephone 58 can make a telephone calls through the calling party's computer 56 through the set-top box (or other interface) 52 through the cable operations center 50 via the telephone company over the public switched telephone network 62 to the called party's telephone 2, 3 or 4.

Alternatively, where Internet telephone service is available and the calling party, via the computer 56 determines that a remote telephone is available, a calling party places a telephone call over the Internet via the calling party's telephone 58 through the calling party's computer 56 through the set-top box (or other interface) 52 to cable network operations center 50 through the Internet 10 via a computer at the called party's location to the called party's telephone 2, 3, or 4.

Referring to FIG. 6 a cable infrastructure embodiment of the present invention is illustrated. Telephone 60, 82 are connect to a residential telephone service provided over a cable infrastructure. As noted above it is a growing trend in the current telecommunications market for telephone companies to merge with or acquire cable networks in order to provide local and long distance services over cable instead of over normal telephone wires.

When, for example, telephone 60 is making a call over cable infrastructure 64, the telephone call ultimately goes through some form of switch 68, and then to the public switched telephone network 72 for routing to its ultimate destination by known networks and means. Switch 68, having knowledge of the off hook status of telephone 60, provides that status to telephone status file 70 which is accessible over the Internet 66. A calling party having a computer 74 can then access the Internet 66 to gain access to the telephone status file 70 thereby determining if user 60 is on the line or not. Once the calling party determines that the called party telephone 60 is not off hook, a call can be made from the calling party telephone 76 over PSTN 72 to the called party 60. Alternatively, the calling party can place an Internet telephone call to the third party if the called party has this capability. Thus it can be seen that the telephone status file can be accessed over those cable systems that are linked to the normal telephone company long distance operations.

A telephone line status monitoring system and method has been described herein. It will be appreciated by those skilled in the art that minor modifications to the present invention could be made without departing from the scope of the invention as disclosed. For example, it is also possible with the system of the present invention to monitor temperature of the home. In this instance, the system has a thermostat in place of the telephone system. The thermostat places its readings into a file over the Internet which can be read by a user when the user is at a remote location. In this manner the user can monitor home temperature during absences.

Monitoring of temperature is also useful for refrigerators, freezers, and commercial HVAC systems. The present invention allows for problems in such thermal systems to be monitored remotely, spotted early, and corrected before any serious economic consequences occur.

Similarly, just as messages can be transmitted to the user of the telephone, so can instructions to raise or lower temperature in the home be transmitted to the thermostat over the Internet.

Alarm monitoring can also be accomplished using the system and method of the present invention. As will be appreciated by those skilled in the art, alarm monitoring comprises monitoring the status of sensors placed in a dwelling or other structure. Sensors may detect motion, glass breakage, opening and closing of windows and doors, heat, water, and environmental conditions. Monitoring may also comprise video imaging of a structure and the space defined by the structure. In this instance, when an alarm goes off, the alarm company can be notified. However, the alarm could also be noted in a file to be reviewed by a user when the user is away from the premises. In this case the user will know an alarm has gone off and can contact the alarm company to ascertain the meaning of the alarm.

An additional embodiment of the alarm concept of the present invention is for a formatted email to be sent to the owner of the premises so that the owner can have more specific notification of the meaning of any alarm that goes off.

A telephone status monitoring system and method has now been shown. It will be appreciated by those skilled in the art that other equipment in the home of office may be monitored as well using the system of the present invention without departing from the scope of the invention as disclosed.

The present invention has been described in terms of preferred embodiments, however, it will be appreciated that various modifications and improvements may be made to the described embodiments without departing from the scope of the invention. The present invention is limited only by the appended claims.

Claims

1. A method comprising:

monitoring, by a telephone status monitoring device, a status of a telephone via a first network, wherein the status includes an indication of whether the telephone is engaged in an active telephone call; and
transmitting, by the telephone status monitoring device, the status of the telephone to another device via a second network, wherein the transmitting is in response to the another device attempting to place a call to the telephone, and wherein the first and the second networks are different networks.

2. The method of claim 1, wherein monitoring the status of the telephone comprises monitoring the status of a wireless telephone.

3. The method of claim 1, wherein monitoring the status of the telephone comprises monitoring a roaming status of a wireless telephone, wherein the roaming status indicates that the wireless telephone is operating outside of a home network.

4. The method of claim 1, further comprising:

storing, by the telephone status monitoring device, the status of the telephone in a telephone status file associated with the telephone and that is accessible via the second network, or accessible via a third network that is different from the first or second networks.

5. The method of claim 1, further comprising:

updating, by the telephone status monitoring device, the status of the telephone in a telephone status file in response to detecting a change in the status of the telephone.

6. An apparatus, comprising:

means for monitoring a status of a telephone via a first network, wherein the status includes an indication of whether the telephone is engaged in an active telephone call; and
means for transmitting the status of the telephone to another device via a second network in response to the another device attempting to place a call to the telephone, wherein the first and the second networks are different networks.

7. The apparatus of claim 6, wherein the telephone is a wireless telephone.

8. The apparatus of claim 6, wherein the means for monitoring the status of the telephone comprises means for monitoring a roaming status of a wireless telephone, wherein the roaming status indicates that the wireless telephone is operating outside of a home network.

9. The apparatus of claim 6, further comprising:

means for storing the status of the telephone in a telephone status file associated with the telephone and that is accessible via the second network, or accessible via a third network that is different from the first or second networks.

10. The apparatus of claim 6, further comprising means for storing the status of the telephone and for updating the status of the telephone in a telephone status file in response to detecting a change in the status of the telephone.

Referenced Cited
U.S. Patent Documents
3989899 November 2, 1976 Norwich
4166929 September 4, 1979 Sheinbein
4335682 June 22, 1982 Gonda et al.
4559416 December 17, 1985 Theis et al.
4675656 June 23, 1987 Narcisse
4734931 March 29, 1988 Bourg et al.
4759055 July 19, 1988 Okumura et al.
4792796 December 20, 1988 Bradshaw
4918425 April 17, 1990 Greenberg et al.
4969182 November 6, 1990 Ohtsubo et al.
5023868 June 11, 1991 Davidson et al.
5054428 October 8, 1991 Farkus
5062147 October 29, 1991 Pickett et al.
5223815 June 29, 1993 Rosenthal et al.
5353744 October 11, 1994 Custer
5381129 January 10, 1995 Boardman
5418835 May 23, 1995 Frohman et al.
5425091 June 13, 1995 Josephs
5425330 June 20, 1995 Touchton et al.
5446553 August 29, 1995 Grube
5461365 October 24, 1995 Schlager et al.
5461372 October 24, 1995 Busak et al.
5465687 November 14, 1995 Custer
5477210 December 19, 1995 Belcher
5500893 March 19, 1996 Onosaka
5530740 June 25, 1996 Irribarren et al.
5553469 September 10, 1996 Seidel
5605116 February 25, 1997 Kim et al.
5608786 March 4, 1997 Gordon
5642690 July 1, 1997 Calabrese et al.
5646593 July 8, 1997 Hughes et al.
5647002 July 8, 1997 Brunson
5689235 November 18, 1997 Sugimoto et al.
5742668 April 21, 1998 Pepe et al.
5781102 July 14, 1998 Huang
5794143 August 11, 1998 McCarthy et al.
5796394 August 18, 1998 Wicks et al.
5857433 January 12, 1999 Files
5868100 February 9, 1999 Marsch
5923731 July 13, 1999 McClure
5928325 July 27, 1999 Shaughnessy et al.
5939988 August 17, 1999 Neyhart
5943399 August 24, 1999 Bannister et al.
5977913 November 2, 1999 Christ
6011471 January 4, 2000 Huang
6029047 February 22, 2000 Ishida et al.
6038666 March 14, 2000 Hsu et al.
6075443 June 13, 2000 Schepps et al.
6078649 June 20, 2000 Small et al.
6081546 June 27, 2000 Williamson et al.
6125176 September 26, 2000 Foladare et al.
6130933 October 10, 2000 Miloslavsky
6154525 November 28, 2000 Formosa
6157943 December 5, 2000 Meyer
6166635 December 26, 2000 Huang
6169484 January 2, 2001 Schuchman et al.
6169734 January 2, 2001 Wilson
6175616 January 16, 2001 Light et al.
6189105 February 13, 2001 Lopes
6208725 March 27, 2001 Davies
6298120 October 2, 2001 Civanlar et al.
6366575 April 2, 2002 Barkan et al.
6385510 May 7, 2002 Hoog et al.
6404764 June 11, 2002 Jones et al.
6405132 June 11, 2002 Breed et al.
6412813 July 2, 2002 Breed et al.
6438217 August 20, 2002 Huna
6490680 December 3, 2002 Scheidt et al.
6529131 March 4, 2003 Wentworth
6545589 April 8, 2003 Fuller
6577238 June 10, 2003 Whitesmith
6600422 July 29, 2003 Barry et al.
6614884 September 2, 2003 Jang
6671355 December 30, 2003 Spielman et al.
6686881 February 3, 2004 Lu et al.
6687609 February 3, 2004 Hsiao et al.
6720920 April 13, 2004 Breed et al.
6807423 October 19, 2004 Armstrong et al.
6820897 November 23, 2004 Breed et al.
6825762 November 30, 2004 Giacopelli et al.
6837427 January 4, 2005 Overhultz et al.
6861944 March 1, 2005 Hoepelman
6917291 July 12, 2005 Allen
6989745 January 24, 2006 Milinusic et al.
7006833 February 28, 2006 Contractor
7031695 April 18, 2006 Aono et al.
7034663 April 25, 2006 Mansfield et al.
7053765 May 30, 2006 Clark
7061376 June 13, 2006 Wang et al.
7092794 August 15, 2006 Hill et al.
7120238 October 10, 2006 Bednarz et al.
7301451 November 27, 2007 Hastings
7312759 December 25, 2007 Kinney et al.
7322043 January 22, 2008 Letsinger
7356137 April 8, 2008 Burg et al.
7441108 October 21, 2008 Fisher et al.
7502615 March 10, 2009 Wilhoite et al.
7516325 April 7, 2009 Willey
7894825 February 22, 2011 Wallace et al.
20020198632 December 26, 2002 Breed et al.
20030035514 February 20, 2003 Jang
20030074575 April 17, 2003 Hoberock et al.
20030110371 June 12, 2003 Yang et al.
20030142794 July 31, 2003 Giacopelli et al.
20030233189 December 18, 2003 Hsiao et al.
20030236991 December 25, 2003 Letsinger
20040180646 September 16, 2004 Donley et al.
20040204215 October 14, 2004 Meehan et al.
20040257219 December 23, 2004 Spiess et al.
20050125102 June 9, 2005 Nichols et al.
20050128057 June 16, 2005 Mansfield et al.
20050151640 July 14, 2005 Hastings
20050198063 September 8, 2005 Thomas et al.
20050231375 October 20, 2005 Kingston et al.
20050240918 October 27, 2005 Shlomai
20060023848 February 2, 2006 Mohler et al.
20060034255 February 16, 2006 Benning et al.
20060064603 March 23, 2006 Relan et al.
20060068752 March 30, 2006 Lin et al.
20060093118 May 4, 2006 Agrawal et al.
20060103520 May 18, 2006 Clark
20060116127 June 1, 2006 Wilhoite et al.
20060144929 July 6, 2006 McGee
20060220830 October 5, 2006 Bennett et al.
20060239250 October 26, 2006 Elliot et al.
20060240771 October 26, 2006 Graves et al.
20070206729 September 6, 2007 Baum et al.
20070240155 October 11, 2007 Shlomai
Foreign Patent Documents
1536306 June 2005 EP
Other references
  • Notice of Allowance, issued in U.S. Appl. No. 09/759,107, mailed May 11, 2006.
  • Office Action, issued in U.S. Appl. No. 09/759,107, mailed Feb. 10, 2006.
  • Office Action, issued in U.S. Appl. No. 09/759,107, mailed Sep. 22, 2005.
  • Office Action, issued in U.S. Appl. No. 09/759,107, mailed Apr. 4, 2005.
  • Office Action, issued in U.S. Appl. No. 09/759,107, mailed Jun. 8, 2004.
  • Office Action, issued in U.S. Appl. No. 09/759,107, mailed Mar. 24, 2004.
  • Notice of Allowance, issued in U.S. Appl. No. 11/280,497, mailed Oct. 24, 2008.
  • Final Office Action, issued in U.S. Appl. No. 11/280,497, mailed Jul. 11, 2008.
  • Office Action, issued in U.S. Appl. No. 11/280,497, mailed Mar. 6, 2008.
  • Office Action, issued in U.S. Appl. No. 11/182,674, mailed Oct. 17, 2006.
  • Notice of Allowance, issued in U.S. Appl. No. 11/182,674, mailed Oct. 26, 2007.
  • Office Action, issued in U.S. Appl. No. 11/182,674, mailed Sep. 18, 2007.
  • Notice of Allowance, issued in U.S. Appl. No. 11/182,674, mailed Apr. 20, 2007.
  • Office Action, issued in U.S. Appl. No. 11/182,674, mailed Nov. 27, 2006.
  • Notice of Allowance, issued in U.S. Appl. No. 11/123,490, mailed Jun. 4, 2007.
  • Notice of Allowance, issued in U.S. Appl. No. 11/344,750, mailed Aug. 21, 2008.
  • Notice of Allowance, issued in U.S. Appl. No. 11/344,750, mailed Apr. 29, 2008.
  • Office Action, issued in U.S. Appl. No. 11/413,887, mailed Nov. 1, 2006.
  • Final Office Action, issued in U.S. Appl. No. 11/413,887, mailed Nov. 29, 2006.
  • Office Action, issued in U.S. Appl. No. 11/413,887, mailed Jun. 13, 2007.
  • Final Office Action, issued in U.S. Appl. No. 11/413,887, mailed Oct. 4, 2007.
  • Office Action, issued in U.S. Appl. No. 11/413,887, mailed Apr. 2, 2008.
  • Office Action, issued in U.S. Appl. No. 11/413,887, mailed Sep. 10, 2008.
  • Office Action, issued in U.S. Appl. No. 11/413,887, mailed Dec. 18, 2008.
  • Office Action, issued in U.S. Appl. No. 11/413,887, mailed Mar. 31, 2009.
  • Office Action, issued in U.S. Appl. No. 11/413,887, mailed Jun. 2, 2009.
  • Final Office Action, issued in U.S. Appl. No. 11/413,887, mailed Oct. 20, 2009.
  • Advisory Action, issued in U.S. Appl. No. 11/413,887, mailed Feb. 8, 2007.
  • Advisory Action, issued in U.S. Appl. No. 11/413,887, mailed Dec. 23, 2009.
  • Advisory Action, issued in U.S. Appl. No. 11/413,887, mailed Nov. 17, 2008.
  • Notice of Allowance, issued in U.S. Appl. No. 11/413,887, mailed Jan. 28, 2010.
  • Office Action, issued in U.S. Appl. No. 11/413,888, mailed Oct. 30, 2006.
  • Final Office Action, issued in U.S. Appl. No. 11/413,888, mailed Nov. 27, 2006.
  • Notice of Allowance, issued in U.S. Appl. No. 11/413,888, mailed Apr. 19, 2007.
  • Office Action, issued in U.S. Appl. No. 11/413,888, mailed Aug. 30, 2007.
  • Final Office Action, issued in U.S. Appl. No. 11/413,888, mailed Dec. 13, 2007.
  • Notice of Allowance, issued in U.S. Appl. No. 11/413,888, mailed Mar. 19, 2008.
  • Office Action, issued in U.S. Appl. No. 11/413,888, mailed Jun. 24, 2008.
  • Final Office Action, issued in U.S. Appl. No. 11/413,888, mailed Aug. 25, 2008.
  • Notice of Allowance, issued in U.S. Appl. No. 11/413,888, mailed Dec. 10, 2008.
  • Office Action, issued in U.S. Appl. No. 09/265,656, mailed Mar. 29, 2002.
  • Notice of Allowance, issued in U.S. Appl. No. 09/265,656, mailed Aug. 26, 2002.
  • Office Action, issued in U.S. Appl. No. 08/963,373, mailed Oct. 6, 1999.
  • Final Office Action, issued in U.S. Appl. No. 08/963,373, mailed May 23, 2000.
  • Notice of Allowance, issued in U.S. Appl. No. 08/963,373, mailed Aug. 11, 2000.
  • Office Action, issued in U.S. Appl. No. 11/280,506, mailed Jun. 25, 2009.
  • Final Office Action, issued in U.S. Appl. No. 11/280,506, mailed Jan. 19, 2010.
  • Advisory Action, issued in U.S. Appl. No. 11/280,506, mailed Mar. 23, 2010.
  • Office Action, issued in U.S. Appl. No. 11/280,506, mailed Jun. 8, 2010.
  • Final Office Action, issued in U.S. Appl. No. 11/280,506, mailed Nov. 22, 2010.
  • Notice of Allowance, issued in U.S. Appl. No. 11/517,663, mailed Nov. 17, 2009.
  • Office Action, issued in U.S. Appl. No. 11/517,663, mailed Jun. 15, 2009.
  • Final Office Action, issued in U.S. Appl. No. 11/517,663, mailed Mar. 30, 2009.
  • Office Action, issued in U.S. Appl. No. 11/517,663, mailed Dec. 16, 2008.
  • Office Action, issued in U.S. Appl. No. 11/517,663, mailed Dec. 15, 2008.
  • Final Office Action, issued in U.S. Appl. No. 11/517,663, mailed Jul. 2, 2008.
  • Office Action, issued in U.S. Appl. No. 11/517,663, mailed Dec. 10, 2007.
  • Harrill, R., “A watch that's smarter than you?,” University of Washington Public Release, Oct. 6, 2004, 2 pages.
  • Kramer, M., “They're Here: Portable Email and Voicemail,” PC Week, Feb. 12, 1990, p. 55.
  • Suresafe Technology, Inc., Pen Type Item Locator Product Description, Nov. 19, 2002, http://web.archive.org/web/20021119115342/http://www.suresafe.com.tw/07-sh-056pm.html?Frame=off, 2 pages.
  • Suresafe Technology, Inc., Luggage Locator Product Description, Jan. 24, 2003, http://web.archive.org/web/20030124123720/http://www.suresafe.com.tw/09-sh-056mx.html?Frame=off, 2 pages.
  • TracklT Corp., “Mobile Security Goes High Tech,” TracklT Product Description, 1997, 2 pages.
  • Advisory Action, issued in U.S. Appl. No. 11/280,506, mailed Feb. 3, 2011.
  • Office Action, issued in U.S. Appl. No. 11/280,506, mailed Apr. 25, 2011, 8 pages.
Patent History
Patent number: 7986770
Type: Grant
Filed: Feb 15, 2008
Date of Patent: Jul 26, 2011
Patent Publication Number: 20080137822
Assignee: Intellectual Ventures Fund 30 LLC (Las Vegas, NV)
Inventors: Elliott D. Light (Rockville, MD), Jon L. Roberts (Great Falls, VA)
Primary Examiner: Olisa Anwah
Attorney: Schwabe, Williamson & Wyatt, P.C.
Application Number: 12/031,989
Classifications
Current U.S. Class: Subscriber Line (379/32.04); Line Or Loop Condition (379/207.04)
International Classification: H04M 1/24 (20060101);