File deduplication using storage tiers
A method and apparatus for removing duplicated data in a file system utilizing the concept of storage tiers. A synthetic namespace is created via file virtualization, and is comprised of one or more file systems. Deduplication is applied at the namespace level and on all of the file systems comprising the synthetic namespace. All files in a file system in a higher storage tier whose contents are identical to at least one other file in the synthetic namespace are moved to a destination file system in a lower storage tier. For each set of duplicated files that are moved from the original servers, a single instance copy of the file is left behind as a mirror copy. Read access to a duplicated file is redirected to its mirror copy. When the first write to a duplicated file is received, the association from the duplicated file stored in the destination server to its mirror copy that is stored in the origin server is discarded. Access to the “modified” duplicated file will then resume normally from the destination server.
Latest F5 Networks, Inc. Patents:
- Methods for managing HTTP requests using extended SYN cookie and devices thereof
- Methods for multipath transmission control protocol (MPTCP) based session migration and devices thereof
- Methods for enforcing access control list based on managed application and devices thereof
- Methods for adding OCSP stapling in conjunction with generated certificates and devices thereof
- Methods and devices for service-discovering reverse-tunnel proxy and tunnel service center
This patent application claims priority from U.S. Provisional Patent Application No. 60/987,181 entitled FILE DEDUPLICATION USING STORAGE TIERS filed on Nov. 12, 2007.
This patent application also may be related to one or more of the following patent applications:
U.S. Provisional Patent Application No. 60/923,765 entitled NETWORK FILE MANAGEMENT SYSTEMS, APPARATUS, AND METHODS filed on Apr. 16, 2007.
U.S. Provisional Patent Application No. 60/940,104 entitled REMOTE FILE VIRTUALIZATION filed on May 25, 2007.
U.S. Provisional Patent Application No. 60/987,161 entitled REMOTE FILE VIRTUALIZATION METADATA MIRRORING filed Nov. 12, 2007.
U.S. Provisional Patent Application No. 60/987,165 entitled REMOTE FILE VIRTUALIZATION DATA MIRRORING filed Nov. 12, 2007.
U.S. Provisional Patent Application No. 60/987,170 entitled REMOTE FILE VIRTUALIZATION WITH NO EDGE SERVERS filed Nov. 12, 2007.
U.S. Provisional Patent Application No. 60/987,174 entitled LOAD SHARING CLUSTER FILE SYSTEM filed Nov. 12, 2007.
U.S. Provisional Patent Application No. 60/987,206 entitled NON-DISRUPTIVE FILE MIGRATION filed Nov. 12, 2007.
U.S. Provisional Patent Application No. 60/987,197 entitled HOTSPOT MITIGATION IN LOAD SHARING CLUSTER FILE SYSTEMS filed Nov. 12, 2007.
U.S. Provisional Patent Application No. 60/987,194 entitled ON DEMAND FILE VIRTUALIZATION FOR SERVER CONFIGURATION MANAGEMENT WITH LIMITED INTERRUPTION filed Nov. 12, 2007.
U.S. patent application Ser. No. 12/104,197 entitled FILE AGGREGATION IN A SWITCHED FILE SYSTEM filed Apr. 16, 2008.
U.S. patent application Ser. No. 12/103,989 entitled FILE AGGREGATION IN A SWITCHED FILE SYSTEM filed Apr. 16, 2008.
U.S. patent application Ser. No. 12/126,129 entitled REMOTE FILE VIRTUALIZATION IN A SWITCHED FILE SYSTEM filed May 23, 2008.
All of the above-referenced patent applications are hereby incorporated herein by reference in their entireties.
FIELD OF THE INVENTIONThis invention relates generally to storage networks with two or more tiers of storage servers, and more specifically, relates to a more efficient way of storing files that have identical contents in a storage network.
BACKGROUNDIn enterprises today, employees tend to keep copies of all of the necessary documents and data that they access often. This is so that they can find the documents and data easily (central locations tend to change at least every so often). Furthermore, employees also tend to forget where certain things were found (in the central location), or never even knew where the document originated (they are sent a copy of the document via email). Finally, multiple employees may each keep a copy of the latest mp3 file, or video file, even if it is against company policy.
This can lead to duplicate copies of the same document or data residing in individually owned locations, so that the individual's themselves can easily find the document. However, this also means a lot of wasted space to store all of these copies of the document or data. And these copies are often stored on more expensive (and higher performance) tiers of storage, since the employees tend not to focus on costs, but rather on performance (they will store data on the location that they can most easily remember that gives them the best performance in retrieving the data).
Deduplication is a technique where files with identical contents are first identified and then only one copy of the identical contents, the single-instance copy, is kept in the physical storage while the storage space for the remaining identical contents is reclaimed and reused. Files whose contents have been deduped because of identical contents are hereafter referred to as deduplicated files. Thus, deduplication achieves what is called “Single-Instance Storage” where only the single-instance copy is stored in the physical storage, resulting in more efficient use of the physical storage space. File deduplication thus creates a domino effect of efficiency, reducing capital, administrative, and facility costs and is considered one of the most important and valuable technologies in storage.
U.S. Pat. Nos. 6,389,433 and 6,477,544 are examples of how a file system provides the single-instance-storage.
While single-instance-storage is conceptually simple, implementing it without sacrificing read/write performance is difficult. Files are deduped without the owners being aware of it. The owners of deduplicated files therefore have the same performance expectation as other files that have no duplicated copies. Since many deduplicated files are sharing one single-instance copy of the contents, it is important to prevent the single-instance copy from being modified. Typically, a file system uses the copy-on-write technique to protect the single-instance copy. When an update is pending on a deduplicated file, the file system creates a partial or full copy of the single-instance copy, and the update is allowed to proceed only after the (partial) copied data has been created and only on the copied data. The delay to wait for the creation of a (partial) copy of the single-instance data before an update can proceed introduces significant performance degradation. In addition, the process to identify and dedupe replicated files also puts a strain on file system resources. Because of the performance degradation, deduplication or single-instance copy is deemed not acceptable for normal use. In reality, deduplication is of no (obvious) benefit to the end-user. Thus, while the feature of deduplication or single-instance storage has been available in a few file systems, it is not commonly used and many file systems do not even offer this feature due to its adverse performance impact.
File system level deduplication offers many advantages for the IT administrators. However, it generally offers no direct benefits to the users of the file system other than performance degradation for those files that have been deduped. Therefore, the success of deduplication in the market place depends on reducing performance degradation to an acceptable level.
Another aspect of the file system level deduplication is that deduplication is usually done on a per file system basis. It is more desirable if deduplication is done together on one or more file systems. For example, the more file systems that are deduped together, the more chances that files with identical contents will be found and more storage space will be reclaimed. For example, if there is only one copy of file A in a file system, file A will not be deduped. On the other hand, if there is a copy of file A in another file system, then together, file A in the two file systems can be deduped. Furthermore, since there is only one single-instance copy for all of the deduplicated files from one or more file systems, the more file systems that are deduped together, the more efficient the deduplication process becomes.
SUMMARYThus, it is desirable to achieve deduplication with acceptable performance. It is even more desirable to be able to dedupe across more file systems to achieve more deduplication efficiency.
In accordance with one aspect of the invention there are provided a method and an apparatus for deduplicating files in a file storage system having a primary storage tier and a secondary storage tier. In such embodiments, file deduplication involves identifying a plurality of files stored in the primary storage tier having identical file contents; copying the plurality of files to the secondary storage tier; storing in the primary storage tier a single copy of the file contents; and storing metadata for each of the plurality of files, the metadata associating each of the file copies in the secondary storage tier with the single copy of the file contents stored in the primary storage tier.
In various alternative embodiments, identifying the plurality of files stored in the primary storage tier having identical file contents may involve computing, for each of the plurality of files, a hash value based on the contents of the file; and identifying the files having identical file contents based on the hash values. Storing the single copy of the file contents in the primary storage tier may involve copying the file contents to a designated mirror server; and deleting the remaining file contents from each of the plurality of files in the primary storage tier. Upon a read access to one of the plurality of files, the read access may be directed to the single copy of the file contents maintained in the primary storage tier. Upon a write access to one of the plurality of files, the association between the file copy in the secondary storage tier and the single copy of the file contents stored in the primary storage tier may be broken the file copy stored in the secondary storage tier may be modified. The modified file copy subsequently may be migrated from the secondary storage tier to the primary storage tier based on a migration policy.
In other embodiments, deduplicating a selected file in the primary storage tier may involve determining whether the file contents of the selected file match the file contents of a previously deduplicated file having a single copy of file contents stored in the primary storage tier; when the file contents of the selected file match the file contents of a previously deduplicated file, deduplicating the selected file; otherwise determining whether the file contents of the selected file match the file contents of a non-duplicate file in the first storage tier; and when the file contents of the selected file match the file contents of a non-duplicate file, deduplicating both the selected file and the non-duplicate file. Determining whether the file contents of the selected file match the file contents of a previously deduplicated file may involve comparing a hash value associated with the selected file to a distinct hash value associated with each single copy of file contents stored in the primary storage tier. Deduplicating the selected file may involve copying the selected file to the secondary storage tier; deleting the file contents from the selected file; and storing metadata for the selected file, the metadata associating the file copy in the secondary storage tier with the single copy of the file contents for the previously deduplicated file stored in the primary storage tier. Deduplicating both the selected file and the non-duplicate file may involve copying the selected file and the non-duplicate file to the secondary storage tier; storing in the primary storage tier a single copy of the file contents; and storing metadata for each of the first and second selected files, the metadata associating each of the file copies in the secondary storage tier with the single copy of the file contents stored in the primary storage tier. Storing the single copy of the file contents for deduplicating both the selected file and the non-duplicate file may involve copying the file contents to the designated mirror server; and deleting the remaining file contents from the selected file and the non-duplicate file. Determining whether the file contents of the selected file match the file contents of a non-duplicate file in the primary storage tier may involve maintaining a list of non-duplicate files in the primary storage tier, the list including a distinct hash value for each non-duplicate file; and comparing a hash value associated with the selected file to the hash values associated with the non-duplicate files in the list, and when the file contents of the selected file do not match the file contents of any non-duplicate file, may involve adding the selected file to the list of non-duplicate files (e.g., by storing a pathname and a hash value associated with the selected file). Deduplicating both the selected file and the non-duplicate file may further involve removing the non-duplicate file from the list of non-duplicate files.
Deduplication may be implemented in a file switch or other device that manages file storage.
The foregoing features of the invention will be more readily understood by reference to the following detailed description, taken with reference to the accompanying drawings, in which:
This patent application relates generally to a method for performing deduplication on a global namespace using file virtualization when the global namespace is constructed from one or more storage servers, and to enable deduplication as a storage placement policy in a tiered storage environment.
A traditional file system manages the storage space by providing a hierarchical namespace. The hierarchical namespace starts from the root directory, which contains files and subdirectories. Each directory may also contain files and subdirectories identifying other files or subdirectories. Data is stored in files. Every file and directory is identified by a name. The full name of a file or directory is constructed by concatenating the name of the root directory and the names of each subdirectory that finally leads to the subdirectory containing the identified file or directory, together with the name of the file or the directory.
The full name of a file thus carries with it two pieces of information: (1) the identification of the file and (2) the physical storage location where the file is stored. If the physical storage location of a file is changed (for example, moved from one partition mounted on a system to another), the identification of the file changes as well.
For ease of management, as well as for a variety of other reasons, the administrator would like to control the physical storage location of a file. For example, important files might be stored on expensive, high-performance file servers, while less important files could be stored on less expensive and less capable file servers.
Unfortunately, moving files from one server to another usually changes the full name of the files and thus, their identification, as well. This is usually a very disruptive process, since after the move users may not be able to remember the new location of their files. Thus, it is desirable to separate the physical storage location of a file from its identification. With this separation, IT and system administrators will be able to control the physical storage location of a file while preserving what the user perceives as the location of the file (and thus its identity).
File virtualization is a technology that separates the full name of a file from its physical storage location. File virtualization is usually implemented as a hardware appliance that is located in the data path between users and the file servers. For users, a file virtualization appliance appears as a file server that exports the namespace of a file system. From the file servers' perspective, the file virtualization appliance appears as just a normal user. Attune System's Maestro File Manager (MFM) is an example of a file virtualization appliance.
As a result of separating the full name of a file from the file's physical storage location, file virtualization provides the following capabilities:
1) Creation of a Synthetic Namespace
-
- Once a file is virtualized, the full filename does not provide any information about where the file is actually stored. This leads to the creation of synthetic directories where the files in a single synthetic directory may be stored on different file servers. A synthetic namespace can also be created where the directories in the synthetic namespace may contain files or directories from a number of different file servers. Thus, file virtualization allows the creation of a single global namespace from a number of cooperating file servers. The synthetic namespace is not restricted to be from one file server, or one file system.
2) Allows Having Many Full Filenames to Refer to a Single File
-
- As a consequence of separating a file's name from the file's storage location, file virtualization also allows multiple full filenames to refer to a single file. This is important as it allows existing users to use the old filename while allowing new users to use a new name to access the same file.
3) Allows Having One Full Name to Refer to Many Files
-
- Another consequence of separating a file's name from the file's storage location is that one filename may refer to many files. Files that are identified by a single filename need not contain identical contents. If the files do contain identical contents, then one file is usually designated as the authoritative copy, while the other copies are called the mirror copies. Mirror copies increase the availability of the authoritative copy, since even if the file server containing the authoritative copy of a file is down, one of the mirror copies may be designated as a new authoritative copy and normal file access can then resumed. On the other hand, the contents of a file identified by a single name may change according to the identity of the user who wants to access the file.
Deduplication is of no obvious benefit to the end users of a file system. Instead of using deduplication as a management policy to reduce storage space and subsequently cause inconvenience to the end users of the deduplicated files, this invention uses deduplication as a storage placement policy to intelligently managed the storage assets of an enterprise, with relatively little inconvenience to the end users.
In embodiments of the present invention, a set of file servers is designated as tier 1 where data stored in these file servers is considered more important to the enterprise. Another (typically non-overlapping) set of file servers is designated as tier 2 storage where data stored in these file servers is considered less important to the business. By using these two storage tiers to identify data important to the business, the system administrators can spend more time and resources to provide faster access and more frequent backup on the data stored on the tier 1 file servers.
Deduplication typically is treated as one of the storage placement policies that decides where data should be stored, e.g., on a tier 1 or tier 2 file server.
In embodiments of the present invention, duplicated data is automatically moved from tier 1 to tier 2. The total storage space used by the deduplicated data on tier 1 and tier 2 remains the same (or perhaps even increases slightly). However, there is more storage space available on tier 1 file servers as a result of deduplication, since all the duplicated data is now stored on tier 2.
There may be performance differences between tier 1 and tier 2 file servers. However, these differences tend to be small since the relatively inexpensive file servers are still very capable. To maintain the same level of performance when accessing the deduplicated files, as each set of duplicated files is moved from the tier 1 file servers, a single instance copy of the file is left behind as a mirror copy. One of the tier 1 file servers is designated as a mirror server where all of the mirror copies are stored. Read access to a deduplicated file is redirected to the deduplicated file's mirror copy. When the first write to a deduplicated file is received, the association from the deduplicated file stored in a tier 2 server to its mirror copy that is stored in a tier 1 server is discarded. Accesses to the “modified” duplicated file will then resume normally from the tier 2 file server. At a certain time, the “modified” deduplicated file is then migrated back to tier 1 storage.
Extending file virtualization to support deduplication is relatively straight forward. First, a set of tier-1 servers is identified as a target for deduplication, and a set of tier 2 servers is identified for receiving deduplicated data. One of the tier 1 file servers is chosen as the mirror server. The mirror server is used to store the mirror copy of each set of deduplicated files with identical contents.
A background deduplication process typically is run periodically within the file virtualization appliance to perform the deduplication. Exemplary embodiments use a sha1 digest computed from the contents of a file to identify files that have identical contents. A sha1 digest value is a 160-bit globally unique value for any given set of data (contents) of a file. Therefore, if two files are identical in contents (but not necessarily name or location), they should always have the same sha1 digest values. And conversely, if two files are different in contents, they should always have different sha1 digest values.
An exemplary deduplication process for the namespace is as follows:
-
- 1) Each file stored in the tier 1 file servers that is idle is inspected. If the file has already been deduped, it is skipped.
- 2) If the file does not have a sha1 digest value, it is computed and saved in the metadata for the file.
- 3) A check is made if there is a mirror copy stored in the mirror server. If there is, the file is deduped, and this algorithm loops around again with the next file on the tier 1 file servers.
- 4) The sha1 digest value and the path name of the file are then added to an internal list. If there is no existing entry in the internal list with an identical sha1 digest value, the entry is added and this algorithm loops around again with the next file on the tier 1 file servers.
- 5) If there is already an entry in the list with the identical sha1 digest value, the current file, as well as the other file with the same sha1 digest value listed in the internal list, will both be individually deduped and the entry in the internal list is removed. This algorithm then loops around with the next file on the tier 1 file servers.
- 6) The deduplicated process will continue until all the files in the tier 1 storage are processed.
It is possible that the sha1 digest value for a file marked for deduplication may have changed before it is actually deduped. This case should occur relatively infrequently. If it does occur, essentially the worst that can happen is that a file that really has no duplicate files in tier 1 gets deduplicated and migrated to tier 2. However, the deduplicated file eventually should be migrated back to the tier 1 storage tier.
An exemplary process to dedupe a single file (called from the deduplication process for the namespace) is as follows:
-
- 1) A check is made to see if there is a mirror copy with an identical sha1 digest.
- 2) If there is no mirror copy in the mirror server, a new mirror is made with the sha1 digest and the associated file's contents.
- 3) If there already is a mirror copy, the file is migrated to a tier 2 file server according to the storage placement policy. The migrated file is marked as deduplicated, and a mirror association is created between the migrated file and its mirror copy.
When a non-deduplicated file that has a sha1 digest is opened for update, its sha1 digest is immediately cleared.
When a deduplicated file is opened for update, its sha1 digest is immediately cleared. The mirror association between the deduplicated copy and the mirror copy is immediately broken. The file is no longer a deduplicated file (its deduplicated flag is cleared), and an entry is added to a to-do list to migrate this file back to tier 1 storage in the future.
When a deduplicated file is open for read, a check is made to see if there is a mirror copy stored in the mirror server. If there is, subsequent read requests on the deduplicated file will be switched to the mirror server for processing. Otherwise, the read request is switched to the tier 2 file server containing the actual data of the deduplicated file.
It should be noted that file deduplication as discussed herein may be implemented using a file switches of the types described above and in the provisional patent application Ser. No. 60/923,765. It should also be noted that embodiments of the present invention may incorporate, utilize, supplement, or be combined with various features described in one or more of the other referenced patent applications.
It should be noted that terms such as “client,” “server,” “switch,” and “node” may be used herein to describe devices that may be used in certain embodiments of the present invention and should not be construed to limit the present invention to any particular device type unless the context otherwise requires. Thus, a device may include, without limitation, a bridge, router, bridge-router (brouter), switch, node, server, computer, appliance, or other type of device. Such devices typically include one or more network interfaces for communicating over a communication network and a processor (e.g., a microprocessor with memory and other peripherals and/or application-specific hardware) configured accordingly to perform device functions. Communication networks generally may include public and/or private networks; may include local-area, wide-area, metropolitan-area, storage, and/or other types of networks; and may employ communication technologies including, but in no way limited to, analog technologies, digital technologies, optical technologies, wireless technologies (e.g., Bluetooth), networking technologies, and internetworking technologies.
It should also be noted that devices may use communication protocols and messages (e.g., messages created, transmitted, received, stored, and/or processed by the device), and such messages may be conveyed by a communication network or medium. Unless the context otherwise requires, the present invention should not be construed as being limited to any particular communication message type, communication message format, or communication protocol. Thus, a communication message generally may include, without limitation, a frame, packet, datagram, user datagram, cell, or other type of communication message.
It should also be noted that logic flows may be described herein to demonstrate various aspects of the invention, and should not be construed to limit the present invention to any particular logic flow or logic implementation. The described logic may be partitioned into different logic blocks (e.g., programs, modules, functions, or subroutines) without changing the overall results or otherwise departing from the true scope of the invention. Often times, logic elements may be added, modified, omitted, performed in a different order, or implemented using different logic constructs (e.g., logic gates, looping primitives, conditional logic, and other logic constructs) without changing the overall results or otherwise departing from the true scope of the invention.
The present invention may be embodied in many different forms, including, but in no way limited to, computer program logic for use with a processor (e.g., a microprocessor, microcontroller, digital signal processor, or general purpose computer), programmable logic for use with a programmable logic device (e.g., a Field Programmable Gate Array (FPGA) or other PLD), discrete components, integrated circuitry (e.g., an Application Specific Integrated Circuit (ASIC)), or any other means including any combination thereof. In a typical embodiment of the present invention, predominantly all of the described logic is implemented as a set of computer program instructions that is converted into a computer executable form, stored as such in a computer readable medium, and executed by a microprocessor under the control of an operating system.
Computer program logic implementing all or part of the functionality previously described herein may be embodied in various forms, including, but in no way limited to, a source code form, a computer executable form, and various intermediate forms (e.g., forms generated by an assembler, compiler, linker, or locator). Source code may include a series of computer program instructions implemented in any of various programming languages (e.g., an object code, an assembly language, or a high-level language such as Fortran, C, C++, JAVA, or HTML) for use with various operating systems or operating environments. The source code may define and use various data structures and communication messages. The source code may be in a computer executable form (e.g., via an interpreter), or the source code may be converted (e.g., via a translator, assembler, or compiler) into a computer executable form.
The computer program may be fixed in any form (e.g., source code form, computer executable form, or an intermediate form) either permanently or transitorily in a tangible storage medium, such as a semiconductor memory device (e.g., a RAM, ROM, PROM, EEPROM, or Flash-Programmable RAM), a magnetic memory device (e.g., a diskette or fixed disk), an optical memory device (e.g., a CD-ROM), a PC card (e.g., PCMCIA card), or other memory device. The computer program may be fixed in any form in a signal that is transmittable to a computer using any of various communication technologies, including, but in no way limited to, analog technologies, digital technologies, optical technologies, wireless technologies (e.g., Bluetooth), networking technologies, and internetworking technologies. The computer program may be distributed in any form as a removable storage medium with accompanying printed or electronic documentation (e.g., shrink wrapped software), preloaded with a computer system (e.g., on system ROM or fixed disk), or distributed from a server or electronic bulletin board over the communication system (e.g., the Internet or World Wide Web).
Hardware logic (including programmable logic for use with a programmable logic device) implementing all or part of the functionality previously described herein may be designed using traditional manual methods, or may be designed, captured, simulated, or documented electronically using various tools, such as Computer Aided Design (CAD), a hardware description language (e.g., VHDL or AHDL), or a PLD programming language (e.g., PALASM, ABEL, or CUPL).
Programmable logic may be fixed either permanently or transitorily in a tangible storage medium, such as a semiconductor memory device (e.g., a RAM, ROM, PROM, EEPROM, or Flash-Programmable RAM), a magnetic memory device (e.g., a diskette or fixed disk), an optical memory device (e.g., a CD-ROM), or other memory device. The programmable logic may be fixed in a signal that is transmittable to a computer using any of various communication technologies, including, but in no way limited to, analog technologies, digital technologies, optical technologies, wireless technologies (e.g., Bluetooth), networking technologies, and internetworking technologies. The programmable logic may be distributed as a removable storage medium with accompanying printed or electronic documentation (e.g., shrink wrapped software), preloaded with a computer system (e.g., on system ROM or fixed disk), or distributed from a server or electronic bulletin board over the communication system (e.g., the Internet or World Wide Web).
The present invention may be embodied in other specific forms without departing from the true scope of the invention. Any references to the “invention” are intended to refer to exemplary embodiments of the invention and should not be construed to refer to all embodiments of the invention unless the context otherwise requires. The described embodiments are to be considered in all respects only as illustrative and not restrictive.
Claims
1. A method of deduplicating files, the method comprising:
- accessing, with a file virtualization device, a virtualized environment including one or more primary storage servers operating as a primary storage tier and storing a first plurality of files and one or more secondary storage servers operating as a secondary storage tier and storing a second plurality of files comprising at least a plurality of files not included in the first plurality of files, wherein a global namespace is associated with the first and second pluralities of files stored in the one or more primary and secondary storage servers;
- identifying, with the file virtualization device, a subset of the first plurality of files that are stored in the primary storage tier and have identical file contents and storing a copy of only the subset of files in the secondary storage tier;
- storing, with the file virtualization device, a single copy of the contents of each of the subset of files in the primary storage tier and deleting all other files having identical file contents from the primary storage tier; and
- storing, with the file virtualization device, metadata associating each of the copies of the subset of files stored in the secondary storage tier with a corresponding one of the single copies stored in the primary storage tier.
2. A method according to claim 1, wherein identifying the subset of files that are stored in the primary storage tier and have identical file contents comprises:
- computing, for each of the plurality of files, a hash value based on contents of the file; and
- identifying files having identical file contents based on a comparison of the hash values.
3. A method according to claim 1, wherein storing the single copy of the contents comprises copying the file contents to a designated mirror server of the primary storage tier.
4. A method according to claim 1, further comprising:
- upon a read access to one of the plurality of files, directing, with the file virtualization device, the read access to the single copy of the contents stored in the primary storage tier.
5. A method according to claim 1, further comprising, upon a write access to one of the plurality of files:
- breaking, with the file virtualization device, the association between the copy in the secondary storage tier and the corresponding single copy of the contents stored in the primary storage tier;
- modifying, with the file virtualization device, the copy stored in the secondary storage tier; and
- migrating, with the file virtualization device, the modified copy from the secondary storage tier to the primary storage tier based on a migration policy.
6. A method according to claim 1, further comprising deduplicating, with the file virtualization device, a selected file in the primary storage tier comprising:
- determining whether contents of the selected file match contents of a previously deduplicated file having a corresponding single copy stored in the primary storage tier;
- when the contents of the selected file match the contents of a previously deduplicated file, deduplicating the selected file;
- otherwise determining whether the contents of the selected file match the contents of a non-duplicate file in the primary storage tier; and
- when the contents of the selected file match the contents of a non-duplicate file, deduplicating both the selected file and the non-duplicate file.
7. A method according to claim 6, wherein determining whether the contents of the selected file match the contents of a non-duplicate file in the primary storage tier comprises:
- maintaining a list of non-duplicate files in the primary storage tier, the list including a distinct hash value for each non-duplicate file;
- comparing a hash value associated with the selected file to the hash values associated with the non-duplicate files in the list; and
- when the contents of the selected file do not match the contents of any non-duplicate file, adding the selected file to the list of non-duplicate files.
8. A virtualization apparatus for deduplicating files, the apparatus comprising:
- at least one communication interface for communicating with one or more primary and secondary storage servers; and
- at least one of configurable hardware logic configured to be capable of implementing or a processor configured to execute program instructions stored in a memory comprising: accessing a virtualized environment including the one or more primary storage servers operating as a primary storage tier and storing a first plurality of files and the one or more secondary storage servers operating as a secondary storage tier and storing a second plurality of files comprising at least a plurality of files not included in the first plurality of files, wherein a global namespace is associated with the first and second pluralities of files stored in the one or more primary and secondary storage servers; identifying a subset of the accessed files that are stored in the primary storage tier and have identical file contents and storing a copy of only the subset of files in the secondary storage tier; storing a single copy of the contents of each of the subset of files in the primary storage tier and deleting all other files having identical file contents from the primary storage tier; and storing metadata associating each of the copies of the subset of files stored in the secondary storage tier with a corresponding one of the single copies stored in the primary storage tier.
9. An apparatus according to claim 8, wherein identifying the subset of files that are stored in the primary storage tier and have identical file contents further comprises:
- computing, for each of the plurality of files, a hash value based on contents of the file; and
- identifying files having identical contents based on a comparison of the hash values.
10. Apparatus according to claim 8, wherein storing the single copy of the contents further comprises copying the file contents to a designated mirror server of the primary storage tier.
11. An apparatus according to claim 8, wherein at least one of configurable hardware logic further configured to be capable of implementing or the processor is further configured to execute program instructions stored in a memory further comprising upon a read access to one of the plurality of files, directing the read access to the single copy of the contents stored in the primary storage tier.
12. An apparatus according to claim 8, wherein at least one of configurable hardware logic further configured to be capable of implementing or the processor is further configured to execute program instructions stored in a memory further comprising upon a write access to one of the plurality of files:
- breaking the association between the copy in the secondary storage tier and the corresponding single copy of the contents stored in the primary storage tier;
- modifying the copy stored in the secondary storage tier; and
- migrating the modified copy from the secondary storage tier to the primary storage tier based on a migration policy.
13. An apparatus according to claim 8, wherein at least one of configurable hardware logic further configured to be capable of implementing or the processor is further configured to execute program instructions stored in a memory further comprising deduplicating a selected file in the primary storage tier comprising:
- determining whether contents of the selected file match contents of a previously deduplicated file having a corresponding single copy stored in the primary storage tier;
- when the contents of the selected file match the contents of a previously deduplicated file, deduplicating the selected file;
- otherwise determining whether the contents of the selected file match the contents of a non-duplicate file in the primary storage tier; and
- when the contents of the selected file match the contents of a non-duplicate file, deduplicating both the selected file and the non-duplicate file.
14. An apparatus according to claim 13, wherein determining whether the contents of the accessed file match the contents of a non-duplicate file in the primary storage tier further comprises:
- maintaining a list of non-duplicate files in the primary storage tier, the list including a distinct hash value for each non-duplicate file;
- comparing a hash value associated with the selected file to the hash values associated with the non-duplicate files in the list; and
- when the contents of the selected file do not match the contents of any non-duplicate file, adding the selected file to the list of non-duplicate files.
15. A system that deduplicates files, the system comprising:
- one or more primary storage servers operating as a primary storage tier and storing a first plurality of files and one or more secondary storage servers operating as a primary storage tier and storing a second plurality of files comprising at least a plurality of files not included in the first plurality of files, the storage servers storing the first and second pluralities of files in a virtualized environment, wherein a global namespace is associated with the first and second pluralities of files stored in the one or more primary and secondary storage servers;
- a file virtualization device including at least one of configurable hardware logic configured to be capable of implementing or a processor configured to execute program instructions stored in a memory comprising: identifying a subset of the plurality of files that are stored in the primary storage tier and have identical file contents and storing a copy of only the subset of files in the secondary storage tier; storing a single copy of the contents of each of the subset of files in the primary storage tier and deleting all other files having identical file contents from the primary storage tier; and storing metadata associating each of the copies of the subset of files stored in the secondary storage tier with a corresponding one of the single copies stored in the primary storage tier.
16. A system according to claim 15, wherein identifying the subset of files that are stored in the primary storage tier and have identical file contents further comprises:
- computing, for each of the plurality of files, a hash value based on contents of the file; and
- identifying files having identical contents based on a comparison of the hash values.
17. A system according to claim 15, wherein storing the single copy of the contents further comprises copying the file contents to a designated mirror server of the primary storage tier.
18. A system according to claim 15, wherein at least one of configurable hardware logic further configured to be capable of implementing or the processor is further configured to execute program instructions stored in a memory further comprising upon a read access to one of the plurality of files, directing the read access to the single copy of the contents stored in the primary storage tier.
19. A system according to claim 15, wherein at least one of configurable hardware logic further configured to be capable of implementing or the processor is further configured to execute program instructions stored in a memory further comprising upon a write access to one of the plurality of files:
- breaking the association between the copy in the secondary storage tier and the corresponding single copy of the contents stored in the primary storage tier;
- modifying the copy stored in the secondary storage tier; and
- migrating the modified copy from the secondary storage tier to the primary storage tier based on a migration policy.
20. A system according to claim 15, wherein at least one of configurable hardware logic further configured to be capable of implementing or the processor is further configured to execute program instructions stored in a memory further comprising deduplicating a selected file in the primary storage tier comprising:
- determining whether contents of the selected file match contents of a previously deduplicated file having a corresponding single copy stored in the primary storage tier;
- when the contents of the selected file match the contents of a previously deduplicated file, deduplicating the selected file;
- otherwise determining whether the contents of the selected file match the contents of a non-duplicate file in the primary storage tier; and
- when the contents of the selected file match the contents of a non-duplicate file, deduplicating both the selected file and the non-duplicate file.
21. A system according to claim 20, wherein determining whether the contents of the accessed file match the contents of a non-duplicate file in the primary storage tier further comprises:
- maintaining a list of non-duplicate files in the primary storage tier, the list including a distinct hash value for each non-duplicate file;
- comparing a hash value associated with the selected file to the hash values associated with the non-duplicate files in the list; and
- when the contents of the selected file do not match the contents of any non-duplicate file, adding the selected file to the list of non-duplicate files.
22. A non-transitory computer readable medium having stored thereon instructions for deduplicating files comprising machine executable code which when executed by at least one processor, causes the processor to perform steps comprising:
- accessing a plurality of files stored in a virtualized environment including one or more primary storage servers operating as a primary storage tier and storing a first plurality of files and one or more secondary storage servers operating as a secondary storage tier and storing a second plurality of files comprising at least a plurality of files not included in the first plurality of files, wherein a global namespace is associated with the first and second pluralities of files stored in the one or more primary and secondary storage servers;
- identifying a subset of the accessed files that are stored in the primary storage tier and have identical file contents and storing a copy of only the subset of files in the secondary storage tier;
- storing a single copy of the contents of each of the subset of files in the primary storage tier and deleting all other files having identical file contents from the primary storage tier; and
- storing metadata associating each of the copies of the subset of files stored in the secondary storage tier with a corresponding one of the single copies stored in the primary storage tier.
23. A non-transitory computer readable medium according to claim 22, wherein identifying the subset of files that are stored in the primary storage tier and have identical file contents further comprises:
- computing, for each of the plurality of files, a hash value based on contents of the file; and
- identifying files having identical contents based on a comparison of the hash values.
24. A non-transitory computer readable medium according to claim 22, wherein storing the single copy of the contents further comprises copying the file contents to a designated mirror server of the primary storage tier.
25. A non-transitory computer readable medium according to claim 22, further having stored thereon instructions that when executed by the at least one processor cause the processor to perform steps further comprising upon a read access to one of the plurality of files, directing the read access to the single copy of the contents stored in the primary storage tier.
26. A non-transitory computer readable medium according to claim 22, further having stored thereon instructions that when executed by the at least one processor cause the processor to perform steps further comprising:
- breaking the association between the copy in the secondary storage tier and the corresponding single copy of the contents stored in the primary storage tier;
- modifying the copy stored in the secondary storage tier; and
- migrating the modified copy from the secondary storage tier to the primary storage tier based on a migration policy.
27. A non-transitory computer readable medium according to claim 22, further having stored thereon instructions that when executed by the at least one processor cause the processor to perform steps further comprising deduplicating a selected file in the primary storage tier comprising:
- determining whether contents of the selected file match contents of a previously deduplicated file having a corresponding single copy stored in the primary storage tier;
- when the contents of the selected file match the contents of a previously deduplicated file, deduplicating the selected file;
- otherwise determining whether the contents of the selected file match the contents of a non-duplicate file in the primary storage tier; and
- when the contents of the selected file match the contents of a non-duplicate file, deduplicating both the selected file and the non-duplicate file.
28. A non-transitory computer readable medium according to claim 27, wherein determining whether the contents of the accessed file match the contents of a non-duplicate file in the primary storage tier further comprises:
- maintaining a list of non-duplicate files in the primary storage tier, the list including a distinct hash value for each non-duplicate file;
- comparing a hash value associated with the selected file to the hash values associated with the non-duplicate files in the list; and
- when the contents of the selected file do not match the contents of any non-duplicate file, adding the selected file to the list of non-duplicate files.
4993030 | February 12, 1991 | Krakauer et al. |
5218695 | June 8, 1993 | Noveck et al. |
5303368 | April 12, 1994 | Kotaki |
5473362 | December 5, 1995 | Fitzgerald et al. |
5511177 | April 23, 1996 | Kagimasa et al. |
5537585 | July 16, 1996 | Blickenstaff et al. |
5548724 | August 20, 1996 | Akizawa et al. |
5550965 | August 27, 1996 | Gabbe et al. |
5583995 | December 10, 1996 | Gardner et al. |
5586260 | December 17, 1996 | Hu |
5590320 | December 31, 1996 | Maxey |
5623490 | April 22, 1997 | Richter et al. |
5649194 | July 15, 1997 | Miller et al. |
5649200 | July 15, 1997 | Leblang et al. |
5668943 | September 16, 1997 | Attanasio et al. |
5692180 | November 25, 1997 | Lee |
5721779 | February 24, 1998 | Funk |
5724512 | March 3, 1998 | Winterbottom |
5806061 | September 8, 1998 | Chaudhuri et al. |
5832496 | November 3, 1998 | Anand et al. |
5832522 | November 3, 1998 | Blickenstaff et al. |
5838970 | November 17, 1998 | Thomas |
5862325 | January 19, 1999 | Reed et al. |
5884303 | March 16, 1999 | Brown |
5893086 | April 6, 1999 | Schmuck et al. |
5897638 | April 27, 1999 | Lasser et al. |
5905990 | May 18, 1999 | Inglett |
5917998 | June 29, 1999 | Cabrera et al. |
5920873 | July 6, 1999 | Van Huben et al. |
5926816 | July 20, 1999 | Bauer et al. |
5937406 | August 10, 1999 | Balabine et al. |
5991302 | November 23, 1999 | Berl et al. |
5995491 | November 30, 1999 | Richter et al. |
5999664 | December 7, 1999 | Mahoney et al. |
6012083 | January 4, 2000 | Savitzky et al. |
6029168 | February 22, 2000 | Frey |
6044367 | March 28, 2000 | Wolff |
6047129 | April 4, 2000 | Frye |
6072942 | June 6, 2000 | Stockwell et al. |
6078929 | June 20, 2000 | Rao |
6085234 | July 4, 2000 | Pitts et al. |
6088694 | July 11, 2000 | Burns et al. |
6104706 | August 15, 2000 | Richter et al. |
6128627 | October 3, 2000 | Mattis et al. |
6128717 | October 3, 2000 | Harrison et al. |
6161145 | December 12, 2000 | Bainbridge et al. |
6161185 | December 12, 2000 | Guthrie et al. |
6181336 | January 30, 2001 | Chiu et al. |
6202156 | March 13, 2001 | Kalajan |
6223206 | April 24, 2001 | Dan et al. |
6233648 | May 15, 2001 | Tomita |
6237008 | May 22, 2001 | Beal et al. |
6256031 | July 3, 2001 | Meijer et al. |
6282610 | August 28, 2001 | Bergsten |
6289345 | September 11, 2001 | Yasue |
6308162 | October 23, 2001 | Ouimet et al. |
6324581 | November 27, 2001 | Xu et al. |
6329985 | December 11, 2001 | Tamer et al. |
6339785 | January 15, 2002 | Feigenbaum |
6349343 | February 19, 2002 | Foody et al. |
6374263 | April 16, 2002 | Bunger et al. |
6389433 | May 14, 2002 | Bolosky et al. |
6393581 | May 21, 2002 | Friedman et al. |
6397246 | May 28, 2002 | Wolfe |
6412004 | June 25, 2002 | Chen et al. |
6438595 | August 20, 2002 | Blumenau et al. |
6466580 | October 15, 2002 | Leung |
6469983 | October 22, 2002 | Narayana et al. |
6477544 | November 5, 2002 | Bolosky et al. |
6487561 | November 26, 2002 | Ofek et al. |
6493804 | December 10, 2002 | Soltis et al. |
6516350 | February 4, 2003 | Lumelsky et al. |
6516351 | February 4, 2003 | Borr |
6542909 | April 1, 2003 | Tamer et al. |
6549916 | April 15, 2003 | Sedlar |
6553352 | April 22, 2003 | Delurgio et al. |
6556997 | April 29, 2003 | Levy |
6556998 | April 29, 2003 | Mukherjee et al. |
6560230 | May 6, 2003 | Li et al. |
6601101 | July 29, 2003 | Lee et al. |
6606663 | August 12, 2003 | Liao et al. |
6612490 | September 2, 2003 | Herrendoerfer et al. |
6654346 | November 25, 2003 | Mahalingaiah et al. |
6721794 | April 13, 2004 | Taylor et al. |
6728265 | April 27, 2004 | Yavatkar et al. |
6738357 | May 18, 2004 | Richter et al. |
6738790 | May 18, 2004 | Klein et al. |
6742035 | May 25, 2004 | Zayas et al. |
6744776 | June 1, 2004 | Kalkunte et al. |
6748420 | June 8, 2004 | Quatrano et al. |
6754215 | June 22, 2004 | Arikawa et al. |
6757706 | June 29, 2004 | Dong et al. |
6775672 | August 10, 2004 | Mahalingam et al. |
6775673 | August 10, 2004 | Mahalingam et al. |
6775679 | August 10, 2004 | Gupta |
6782450 | August 24, 2004 | Arnott et al. |
6801960 | October 5, 2004 | Ericson et al. |
6826613 | November 30, 2004 | Wang et al. |
6839761 | January 4, 2005 | Kadyk et al. |
6847959 | January 25, 2005 | Arrouye et al. |
6847970 | January 25, 2005 | Kar et al. |
6850997 | February 1, 2005 | Rooney et al. |
6871245 | March 22, 2005 | Bradley |
6880017 | April 12, 2005 | Marce et al. |
6889249 | May 3, 2005 | Miloushev et al. |
6914881 | July 5, 2005 | Mansfield et al. |
6922688 | July 26, 2005 | Frey, Jr. |
6934706 | August 23, 2005 | Mancuso et al. |
6938039 | August 30, 2005 | Bober et al. |
6938059 | August 30, 2005 | Tamer et al. |
6959373 | October 25, 2005 | Testardi |
6961815 | November 1, 2005 | Kistler et al. |
6973455 | December 6, 2005 | Vahalia et al. |
6973549 | December 6, 2005 | Testardi |
6975592 | December 13, 2005 | Seddigh et al. |
6985936 | January 10, 2006 | Agarwalla et al. |
6985956 | January 10, 2006 | Luke et al. |
6986015 | January 10, 2006 | Testardi |
6990114 | January 24, 2006 | Erimli et al. |
6990547 | January 24, 2006 | Ulrich et al. |
6990667 | January 24, 2006 | Ulrich et al. |
6996841 | February 7, 2006 | Kadyk et al. |
7010553 | March 7, 2006 | Chen et al. |
7013379 | March 14, 2006 | Testardi |
7039061 | May 2, 2006 | Connor et al. |
7051112 | May 23, 2006 | Dawson |
7072917 | July 4, 2006 | Wong et al. |
7075924 | July 11, 2006 | Richter et al. |
7089286 | August 8, 2006 | Malik |
7111115 | September 19, 2006 | Peters et al. |
7113962 | September 26, 2006 | Kee et al. |
7120746 | October 10, 2006 | Campbell et al. |
7127556 | October 24, 2006 | Blumenau et al. |
7133967 | November 7, 2006 | Fujie et al. |
7146524 | December 5, 2006 | Patel et al. |
7152184 | December 19, 2006 | Maeda et al. |
7155466 | December 26, 2006 | Rodriguez et al. |
7165095 | January 16, 2007 | Sim |
7167821 | January 23, 2007 | Hardwick et al. |
7173929 | February 6, 2007 | Testardi |
7194579 | March 20, 2007 | Robinson et al. |
7234074 | June 19, 2007 | Cohn et al. |
7236491 | June 26, 2007 | Tsao et al. |
7280536 | October 9, 2007 | Testardi |
7284150 | October 16, 2007 | Ma et al. |
7293097 | November 6, 2007 | Borr |
7293099 | November 6, 2007 | Kalajan |
7293133 | November 6, 2007 | Colgrove et al. |
7343398 | March 11, 2008 | Lownsbrough |
7346664 | March 18, 2008 | Wong et al. |
7383288 | June 3, 2008 | Miloushev et al. |
7401220 | July 15, 2008 | Bolosky et al. |
7406484 | July 29, 2008 | Srinivasan et al. |
7415488 | August 19, 2008 | Muth et al. |
7415608 | August 19, 2008 | Bolosky et al. |
7440982 | October 21, 2008 | Lu et al. |
7475241 | January 6, 2009 | Patel et al. |
7477796 | January 13, 2009 | Sasaki et al. |
7509322 | March 24, 2009 | Miloushev et al. |
7512673 | March 31, 2009 | Miloushev et al. |
7519813 | April 14, 2009 | Cox et al. |
7562110 | July 14, 2009 | Miloushev et al. |
7571168 | August 4, 2009 | Bahar et al. |
7574433 | August 11, 2009 | Engel |
7599941 | October 6, 2009 | Bahar et al. |
7610307 | October 27, 2009 | Havewala et al. |
7624109 | November 24, 2009 | Testardi |
7639883 | December 29, 2009 | Gill |
7653699 | January 26, 2010 | Colgrove et al. |
7685177 | March 23, 2010 | Hagerstrom et al. |
7734603 | June 8, 2010 | McManis |
7788335 | August 31, 2010 | Miloushev et al. |
7809691 | October 5, 2010 | Karmarkar et al. |
7818299 | October 19, 2010 | Federwisch et al. |
7822939 | October 26, 2010 | Veprinsky et al. |
7831639 | November 9, 2010 | Panchbudhe et al. |
7870154 | January 11, 2011 | Shitomi et al. |
7877511 | January 25, 2011 | Berger et al. |
7885970 | February 8, 2011 | Lacapra |
7904466 | March 8, 2011 | Valencia et al. |
7913053 | March 22, 2011 | Newland |
7953701 | May 31, 2011 | Okitsu et al. |
7958347 | June 7, 2011 | Ferguson |
8005953 | August 23, 2011 | Miloushev et al. |
8046547 | October 25, 2011 | Chatterjee et al. |
8103622 | January 24, 2012 | Karinta |
8112392 | February 7, 2012 | Bunnell et al. |
8271751 | September 18, 2012 | Hinrichs, Jr. |
8326798 | December 4, 2012 | Driscoll et al. |
8351600 | January 8, 2013 | Resch |
20010007560 | July 12, 2001 | Masuda et al. |
20010014891 | August 16, 2001 | Hoffert et al. |
20010047293 | November 29, 2001 | Waller et al. |
20010051955 | December 13, 2001 | Wong |
20020035537 | March 21, 2002 | Waller et al. |
20020059263 | May 16, 2002 | Shima et al. |
20020065810 | May 30, 2002 | Bradley |
20020073105 | June 13, 2002 | Noguchi et al. |
20020083118 | June 27, 2002 | Sim |
20020087887 | July 4, 2002 | Busam et al. |
20020106263 | August 8, 2002 | Winker |
20020120763 | August 29, 2002 | Miloushev et al. |
20020133330 | September 19, 2002 | Loisey et al. |
20020133491 | September 19, 2002 | Sim et al. |
20020138502 | September 26, 2002 | Gupta |
20020143909 | October 3, 2002 | Botz et al. |
20020147630 | October 10, 2002 | Rose et al. |
20020150253 | October 17, 2002 | Brezak et al. |
20020156905 | October 24, 2002 | Weissman |
20020161911 | October 31, 2002 | Pinckney, III et al. |
20020188667 | December 12, 2002 | Kirnos |
20020194342 | December 19, 2002 | Lu et al. |
20030009429 | January 9, 2003 | Jameson |
20030012382 | January 16, 2003 | Ferchichi et al. |
20030028514 | February 6, 2003 | Lord et al. |
20030033308 | February 13, 2003 | Patel et al. |
20030033535 | February 13, 2003 | Fisher et al. |
20030061240 | March 27, 2003 | McCann et al. |
20030065956 | April 3, 2003 | Belapurkar et al. |
20030115218 | June 19, 2003 | Bobbitt et al. |
20030115439 | June 19, 2003 | Mahalingam et al. |
20030128708 | July 10, 2003 | Inoue et al. |
20030135514 | July 17, 2003 | Patel et al. |
20030149781 | August 7, 2003 | Yared et al. |
20030156586 | August 21, 2003 | Lee et al. |
20030159072 | August 21, 2003 | Bellinger et al. |
20030171978 | September 11, 2003 | Jenkins et al. |
20030177364 | September 18, 2003 | Walsh et al. |
20030177388 | September 18, 2003 | Botz et al. |
20030179755 | September 25, 2003 | Fraser |
20030200207 | October 23, 2003 | Dickinson |
20030204635 | October 30, 2003 | Ko et al. |
20040003266 | January 1, 2004 | Moshir et al. |
20040006575 | January 8, 2004 | Visharam et al. |
20040010654 | January 15, 2004 | Yasuda et al. |
20040017825 | January 29, 2004 | Stanwood et al. |
20040025013 | February 5, 2004 | Parker et al. |
20040028043 | February 12, 2004 | Maveli et al. |
20040028063 | February 12, 2004 | Roy et al. |
20040030857 | February 12, 2004 | Krakirian et al. |
20040044705 | March 4, 2004 | Stager et al. |
20040054748 | March 18, 2004 | Ackaouy et al. |
20040054777 | March 18, 2004 | Ackaouy et al. |
20040093474 | May 13, 2004 | Lin et al. |
20040098383 | May 20, 2004 | Tabellion et al. |
20040098595 | May 20, 2004 | Aupperle et al. |
20040133573 | July 8, 2004 | Miloushev et al. |
20040133577 | July 8, 2004 | Miloushev et al. |
20040133606 | July 8, 2004 | Miloushev et al. |
20040133607 | July 8, 2004 | Miloushev et al. |
20040133650 | July 8, 2004 | Miloushev et al. |
20040139355 | July 15, 2004 | Axel et al. |
20040148380 | July 29, 2004 | Meyer et al. |
20040153479 | August 5, 2004 | Mikesell et al. |
20040181605 | September 16, 2004 | Nakatani et al. |
20040199547 | October 7, 2004 | Winter et al. |
20040213156 | October 28, 2004 | Smallwood et al. |
20040236798 | November 25, 2004 | Srinivasan et al. |
20040267830 | December 30, 2004 | Wong et al. |
20050021615 | January 27, 2005 | Arnott et al. |
20050050107 | March 3, 2005 | Mane et al. |
20050091214 | April 28, 2005 | Probert et al. |
20050108575 | May 19, 2005 | Yung |
20050114291 | May 26, 2005 | Becker-Szendy et al. |
20050114701 | May 26, 2005 | Atkins et al. |
20050117589 | June 2, 2005 | Douady et al. |
20050160161 | July 21, 2005 | Barrett et al. |
20050175013 | August 11, 2005 | Le Pennec et al. |
20050187866 | August 25, 2005 | Lee |
20050198501 | September 8, 2005 | Andreev et al. |
20050213587 | September 29, 2005 | Cho et al. |
20050246393 | November 3, 2005 | Coates et al. |
20050289109 | December 29, 2005 | Arrouye et al. |
20050289111 | December 29, 2005 | Tribble et al. |
20060010502 | January 12, 2006 | Mimatsu et al. |
20060045096 | March 2, 2006 | Farmer et al. |
20060074922 | April 6, 2006 | Nishimura |
20060075475 | April 6, 2006 | Boulos et al. |
20060080353 | April 13, 2006 | Miloushev et al. |
20060106882 | May 18, 2006 | Douceur et al. |
20060112151 | May 25, 2006 | Manley et al. |
20060123062 | June 8, 2006 | Bobbitt et al. |
20060140193 | June 29, 2006 | Kakani et al. |
20060153201 | July 13, 2006 | Hepper et al. |
20060161518 | July 20, 2006 | Lacapra |
20060167838 | July 27, 2006 | Lacapra |
20060179261 | August 10, 2006 | Rajan |
20060184589 | August 17, 2006 | Lees et al. |
20060190496 | August 24, 2006 | Tsunoda |
20060200470 | September 7, 2006 | Lacapra et al. |
20060206547 | September 14, 2006 | Kulkarni et al. |
20060212746 | September 21, 2006 | Amegadzie et al. |
20060218135 | September 28, 2006 | Bisson et al. |
20060224636 | October 5, 2006 | Kathuria et al. |
20060224687 | October 5, 2006 | Popkin et al. |
20060230265 | October 12, 2006 | Krishna |
20060242179 | October 26, 2006 | Chen et al. |
20060259949 | November 16, 2006 | Schaefer et al. |
20060268692 | November 30, 2006 | Wright et al. |
20060271598 | November 30, 2006 | Wong et al. |
20060277225 | December 7, 2006 | Mark et al. |
20060282461 | December 14, 2006 | Marinescu |
20060282471 | December 14, 2006 | Mark et al. |
20070022121 | January 25, 2007 | Bahar et al. |
20070024919 | February 1, 2007 | Wong et al. |
20070027929 | February 1, 2007 | Whelan |
20070027935 | February 1, 2007 | Haselton et al. |
20070028068 | February 1, 2007 | Golding et al. |
20070088702 | April 19, 2007 | Fridella et al. |
20070098284 | May 3, 2007 | Sasaki et al. |
20070136308 | June 14, 2007 | Tsirigotis et al. |
20070139227 | June 21, 2007 | Speirs, II et al. |
20070180314 | August 2, 2007 | Kawashima et al. |
20070208748 | September 6, 2007 | Li |
20070209075 | September 6, 2007 | Coffman |
20070226331 | September 27, 2007 | Srinivasan et al. |
20080046432 | February 21, 2008 | Anderson et al. |
20080070575 | March 20, 2008 | Claussen et al. |
20080104443 | May 1, 2008 | Akutsu et al. |
20080114718 | May 15, 2008 | Anderson et al. |
20080189468 | August 7, 2008 | Schmidt et al. |
20080200207 | August 21, 2008 | Donahue et al. |
20080209073 | August 28, 2008 | Tang |
20080215836 | September 4, 2008 | Sutoh et al. |
20080222223 | September 11, 2008 | Srinivasan et al. |
20080243769 | October 2, 2008 | Arbour et al. |
20080282047 | November 13, 2008 | Arakawa et al. |
20080294446 | November 27, 2008 | Guo et al. |
20090007162 | January 1, 2009 | Sheehan |
20090013138 | January 8, 2009 | Sudhakar |
20090037975 | February 5, 2009 | Ishikawa et al. |
20090041230 | February 12, 2009 | Williams |
20090055507 | February 26, 2009 | Oeda |
20090055607 | February 26, 2009 | Schack et al. |
20090077097 | March 19, 2009 | Lacapra et al. |
20090089344 | April 2, 2009 | Brown et al. |
20090094252 | April 9, 2009 | Wong et al. |
20090106255 | April 23, 2009 | Lacapra et al. |
20090106263 | April 23, 2009 | Khalid et al. |
20090132616 | May 21, 2009 | Winter et al. |
20090204649 | August 13, 2009 | Wong et al. |
20090204650 | August 13, 2009 | Wong et al. |
20090204705 | August 13, 2009 | Marinov et al. |
20090210431 | August 20, 2009 | Marinkovic et al. |
20090210875 | August 20, 2009 | Bolles et al. |
20090240705 | September 24, 2009 | Miloushev et al. |
20090240899 | September 24, 2009 | Akagawa et al. |
20090254592 | October 8, 2009 | Marinov et al. |
20090265396 | October 22, 2009 | Ram et al. |
20100017643 | January 21, 2010 | Baba et al. |
20100077294 | March 25, 2010 | Watson |
20100082542 | April 1, 2010 | Feng et al. |
20100205206 | August 12, 2010 | Rabines et al. |
20100211547 | August 19, 2010 | Kamei et al. |
20100325634 | December 23, 2010 | Ichikawa et al. |
20110083185 | April 7, 2011 | Sheleheda et al. |
20110087696 | April 14, 2011 | Lacapra |
20110093471 | April 21, 2011 | Brockway et al. |
20110107112 | May 5, 2011 | Resch |
20110119234 | May 19, 2011 | Schack et al. |
20110320882 | December 29, 2011 | Beaty et al. |
20120144229 | June 7, 2012 | Nadolski |
20120150699 | June 14, 2012 | Trapp et al. |
2003300350 | July 2004 | AU |
2080530 | April 1994 | CA |
2512312 | July 2004 | CA |
0605088 | February 1996 | EP |
0 738 970 | October 1996 | EP |
63010250 | January 1988 | JP |
6205006 | July 1994 | JP |
06-332782 | December 1994 | JP |
8021924 | March 1996 | JP |
08-328760 | December 1996 | JP |
08-339355 | December 1996 | JP |
9016510 | January 1997 | JP |
11282741 | October 1999 | JP |
2000-183935 | June 2000 | JP |
566291 | December 2008 | NZ |
02/39696 | May 2002 | WO |
WO 02/056181 | July 2002 | WO |
WO 2004/061605 | July 2004 | WO |
2006091040 | August 2006 | WO |
WO 2008/130983 | October 2008 | WO |
WO 2008/147973 | December 2008 | WO |
- “The AFS File System in Distributed Computing Environment”, www.transarc.ibm.com/Library/whitepapers/AFS/afsoverview.html, last accessed on Dec. 20, 2002.
- Aguilera, Marcos K. et al., “Improving recoverability in multi-tier storage systems”, International Conference on Dependable Systems and Networks (DSN-2007), Edinburgh, Scotland, Jun. 2007, 10 pages.
- Anderson, Darrell C. et al., “Interposed Request Routing for Scalable Network Storage”, ACM Transactions on Computer Systems 20(1): (Feb. 2002), pp. 1-24.
- Anderson et al., “Serverless Network File System”, in the 15th Symposium on Operating Systems Principles, Dec. 1995, Association for Computing Machinery, Inc.
- Anonymous, “How DFS Works: Remote File Systems”, Distributed File System (DFS) Technical Reference, retrieved from the Internet on Feb. 13, 2009: URL<:http://technetmicrosoft.com/en-us/library/cc782417W5.10,printer).aspx> (Mar. 2003).
- Apple, Inc., “Mac OS X Tiger Keynote Intro. Part 2”, Jun. 2004, www.youtube.com <http://www.youtube.com/watch?v=zSBJwEmR.JbY>, p. 1.
- Apple, Inc., “Tiger Developer Overview Series: Working with Spotlight”, Nov. 23, 2004, www.apple.com using www.archive.org <http ://web.archive.org/web/20041123005335/developer.apple.com/macosx/tiger/sp otlight.html>, pp. 1-6.
- “Auspex Storage Architecture Guide”, Second Edition, 2001, Auspex Systems, Inc., www.auspex.com, last accessed on Dec. 30, 2002.
- Cabrera et al., “Swift: Storage Architecture for Large Objects”, in Proceedings of the-Eleventh IEEE Symposium on Mass Storage Systems, pp. 123-128, Oct. 1991.
- Cabrera et al., “Swift: Using Distributed Disk Striping to Provide High I/O Data Rates”, Computing Systems 4, 4 (Fall 1991), pp. 405-436.
- Cabrera et al., “Using Data Striping in a Local Area Network”, 1992, technical report No. UCSC-CRL-92-09 of the Computer & Information Sciences Department of University of California at Santa Cruz.
- Callaghan et al., “NFS Version 3 Protocol Specifications” (RFC 1813), Jun. 1995, The Internet Engineering Task Force (IETN), www.ietf.org, last accessed on Dec. 30, 2002.
- Carns et al., “PVFS: A Parallel File System for Linux Clusters”, in Proceedings of the Extreme Linux Track: 4th Annual Linux Showcase and Conference, pp. 317-327, Atlanta, Georgia, Oct. 2000, USENIX Association.
- Cavale, M. R., “Introducing Microsoft Cluster Service (MSCS) in the Windows Server 2003”, Microsoft Corporation, Nov. 2002.
- “CSA Persistent File System Technology”, Colorado Software Architecture, Inc.: A White Paper, Jan. 1, 1999, p. 1-3, <http://www.cosoa.com/white—papers/pfs.php>.
- “Distributed File System: Logical View of Physical Storage: White Paper”, 1999, Microsoft Corp., www.microsoft.com, <http://www.eu.microsoft.com/TechNet/prodtechnol/windows2000serv/maintain/DFSnt95>, pp. 1-26, last accessed on Dec. 20, 2002.
- English Language Abstract of JP 08-328760 from Patent Abstracts of Japan.
- English Language Abstract of JP 08-339355 from Patent Abstracts of Japan.
- English Translation of paragraphs 17, 32, and 40-52 of JP 08-328760.
- English Translation of Notification of Reason(s) for Refusal for JP 2002-556371 (Dispatch Date: Jan. 22, 2007).
- Fan et al., “Summary Cache: A Scalable Wide-Area Protocol”, Computer Communications Review, Association Machinery, New York, USA, Oct. 1998, vol. 28, Web Cache Sharing for Computing No. 4, pp. 254-265.
- Farley, M., “Building Storage Networks”, Jan. 2000, McGraw Hill, ISBN 0072120509.
- Gibson et al., “File Server Scaling with Network-Attached Secure Disks”, in Proceedings of the ACM International Conference on Measurement and Modeling of Computer Systems (Sigmetrics '97), Jun. 15-18, 1997, Association for Computing Machinery, Inc.
- Gibson et al., “NASD Scalable Storage Systems”, Jun. 1999, USENIX99, Extreme Linux Workshop, Monterey, California.
- Harrison, C., May 19, 2008 response to Communication pursuant to Article 96(2) EPC dated Nov. 9, 2007 in corresponding European patent application No. 02718824.2.
- Hartman, J., “The Zebra Striped Network File System”, 1994, Ph.D. dissertation submitted in the Graduate Division of the University of California at Berkeley.
- Haskin et al., “The Tiger Shark File System”, 1996, in proceedings of IEEE, Spring COMPCON, Santa Clara, CA, www.research.ibm.com, last accessed on Dec. 30, 2002.
- Hu, J., Final Office action dated Sep. 21, 2007 for related U.S. Appl. No. 10/336,784.
- Hu, J., Office action dated Feb. 6, 2007 for related U.S. Appl. No. 10/336,784.
- Hwang et al., “Designing SSI Clusters with Hierarchical Checkpointing and Single 1/0 Space”, IEEE Concurrency, pp. 60-69, Jan.-Mar. 1999.
- International Search Report for International Patent Application No. PCT/US2008/083117 (Jun. 23, 2009).
- International Search Report for International Patent Application No. PCT/US2008/060449 (Apr. 9, 2008).
- International Search Report for International Patent Application No. PCT/US2008/064677 (Sep. 6, 2009).
- International Search Report for International Patent Application No. PCT/US02/00720, Jul. 8, 2004.
- International Search Report from International Application No. PCT/US03/41202, mailed Sep. 15, 2005.
- Karamanolis, C. et al., “An Architecture for Scalable and Manageable File Services”, HPL-2001-173, Jul. 26, 2001. p. 1-114.
- Katsurashima, W. et al., “NAS Switch: A Novel CIFS Server Virtualization, Proceedings”, 20th IEEE/11th NASA Goddard Conference on Mass Storage Systems and Technologies, 2003 (MSST 2003), Apr. 2003.
- Kimball, C.E. et al., “Automated Client-Side Integration of Distributed Application Servers”, 13Th LISA Conf., 1999, pp. 275-282 of the Proceedings.
- Klayman, J., Nov. 13, 2008 e-mail to Japanese associate including instructions for response to office action dated May 26, 2008 in corresponding Japanese patent application No. 2002-556371.
- Klayman, J., Response filed by Japanese associate to office action dated Jan. 22, 2007 in corresponding Japanese patent application No. 2002-556371.
- Klayman, J., Jul. 18, 2007 e-mail to Japanese associate including instructions for response to office action dated Jan. 22, 2007 in corresponding Japanese patent application No. 2002-556371.
- Kohl et al., “The Kerberos Network Authentication Service (V5)”, RFC 1510, Sep. 1993. (http://www.ietf.org/ rfc/rfc1510.txt?number=1510).
- Korkuzas, V., Communication pursuant to Article 96(2) EPC dated Sep. 11, 2007 in corresponding European patent application No. 02718824.2-2201.
- Lelil, S., “Storage Technology News: AutoVirt adds tool to help data migration projects”, Feb. 25, 2011, last accessed Mar. 17, 2011, <http://searchstorage.techtarget.com/news/article/0,289142, sid5—gci1527986,00. html>.
- Long et al., “Swift/RAID: A distributed RAID System”, Computing Systems, vol. 7, pp. 333-359, Summer 1994.
- “NERSC Tutorials: I/O on the Cray T3E, 'Chapter 8, Disk Striping'”, National Energy Research Scientific Computing Center (NERSC), http://hpcfnersc.gov, last accessed on Dec. 27, 2002.
- Noghani et al., “A Novel Approach to Reduce Latency on the Internet: 'Component-Based Download”', Proceedings of the Computing, Las Vegas, NV, Jun. 2000, pp. 1-6 on the Internet: Intl Conf on Internet.
- Norton et al., “CIFS Protocol Version CIFS-Spec 0.9”, 2001, Storage Networking Industry Association (SNIA), www.snia.org, last accessed on Mar. 26, 2001.
- Patterson et al., “A case for redundant arrays of inexpensive disks (RAID)”, Chicago, Illinois, Jun. 1-3, 1998, in Proceedings of ACM SIGMOND conference on the Management of Data, pp. 109-116, Association for Computing Machinery, Inc., www.acm.org, last accessed on Dec. 20, 2002.
- Pearson, P.K., “Fast Hashing of Variable-Length Text Strings”, Comm. of the ACM, vol. 33, No. 6, Jun. 1990.
- Peterson, M., “Introducing Storage Area Networks”, Feb 1998, InfoStor, www.infostor.com, last accessed on Dec. 20, 2002.
- Preslan et al., “Scalability and Failure Recovery in a Linux Cluster File System”, in Proceedings of the 4th Annual Linux Showcase & Conference, Atlanta, Georgia, Oct. 10-14,2000, pp. 169-180 of the Proceedings, www.usenix.org, last accessed on Dec. 20, 2002.
- Response filed Jul. 6, 2007 to Office action dated Feb. 6, 2007 for related U.S. Appl. No. 10/336,784.
- Response filed Mar. 20, 2008 to Final Office action dated Sep. 21,2007 for related U.S. Appl. No. 10/336,784.
- Rodriguez et al., “Parallel-access for mirror sites in the Internet”, InfoCom 2000. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE Tel Aviv, Israel Mar. 26-30, 2000, Piscataway, NJ, USA, IEEE, US, pp. 864-873, XP010376176 ISBN: 0/7803-5880—5 p. 867, col. 2, last paragraph—p. 868, col. 1, paragraph 1.
- Rsync, “Welcome to the RSYNC Web Pages”, Retrieved from the Internet URL: http://samba.anu.edu.ut.rsync/. (Retrieved on Dec. 18, 2009).
- Savage, et al., “AFRAID—A Frequently Redundant Array of Independent Disks”, 1996 USENIX Technical Conf., San Diego, California, Jan. 22-26, 1996.
- “Scaling Next Generation Web Infrastructure with Content-Intelligent Switching: White Paper”, Apr. 2000, p. 1-9 Alteon Web Systems, Inc.
- Soltis et al., “The Design and Performance of a Shared Disk File System for IRIX”, in Sixth NASA Goddard Space Flight Center Conference on Mass Storage and Technologies in cooperation with the Fifteenth IEEE Symposium on Mass Storage Systems, Mar. 23-26, 1998.
- Soltis, et al., “The Global File System”, in Proceedings of the Fifth NASA Goddard Space Flight Center Conference on Mass Storage Systems and Technologies, Sep. 17-19, 1996, College Park, Maryland.
- Sorenson, K.M., “Installation and Administration: Kimberlite Cluster Version 1.1.0, Rev. Dec. 2000”, Mission Critical Linux, http://oss.missioncriticallinux.corn/kimberlite/kimberlite.pdf.
- Stakutis, C., “Benefits of SAN-based file system sharing”, Jul. 2000, InfoStor, www.infostor.com, last accessed on Dec. 30, 2002.
- Thekkath et al., “Frangipani: A Scalable Distributed File System”, in Proceedings of the 16th ACM Symposium on Operating Systems Principles, Oct. 1997, Association for Computing Machinery, Inc.
- Uesugi, H., Nov. 26, 2008 amendment filed by Japanese associate in response to office action dated May 26, 2008 in corresponding Japanese patent application No. 2002556371.
- Uesugi, H., English translation of office action dated May 26, 2008 in corresponding Japanese patent application No. 2002-556371.
- Uesugi, H., Jul. 15, 2008 letter from Japanese associate reporting office action dated May 26, 2008 in corresponding Japanese patent application No. 2002-556371.
- “VERITAS SANPoint Foundation Suite(tm) and SANPoint Foundation Suite(tm) HA: New VERITAS vol. Management and File System Technology for Cluster Environments”, Sep. 2001, VERITAS Software Corp.
- Wilkes, J., et al., “The HP AutoRAID Hierarchical Storage System”, ACM Transactions on Computer Systems, vol. 14, No. 1, Feb. 1996.
- “Windows Clustering Technologies—An Overview”, Nov. 2001, Microsoft Corp., www.microsoft.com, last accessed on Dec. 30, 2002.
- Zayas, E., “AFS-3 Programmer's Reference: Architectural Overview”, Transarc Corp., version 1.0 of Sep. 2, 1991, doc. No. FS-00-D160.
- Basney, Jim et al., “Credential Wallets: A Classification of Credential Repositories Highlighting MyProxy,” TPRC 2003, Sep. 19-21, 2003.
- Botzum, Keys, “Single Sign On—A Contrarian View,” Open Group Website, <http://www.opengroup.org/security/topics.htm>, Aug. 6, 2001, pp. 1-8.
- Novotny, Jason et al., “An Online Credential Repository for the Grid: MyProxy,” 2001, pp. 1-8.
- Pashalidis, Andreas et al., “A Taxonomy of Single Sign-On Systems,” 2003, pp. 1-16, Royal Holloway, University of London, Egham Surray, TW20, 0EX, United Kingdom.
- Pashalidis, Andreas et al., “Impostor: a single sign-on system for use from untrusted devices,” Global Telecommunications Conference, 2004, GLOBECOM '04, IEEE, Issue Date: Nov. 29-Dec. 3, 2004.Royal Holloway, University of London.
- Tulloch, Mitch, “Microsoft Encyclopedia of Security,” pp. 218, 300-301, Microsoft Press, 2003, Redmond, Washington.
- Gupta et al., “Algorithms for Packet Classification”, Computer Systems Laboratory, Stanford University, CA, Mar./Apr. 2001, pp. 1-29.
- Heinz Il G., “Priorities in Stream Transmission Control Protocol (SCTP) Multistreaming”, Thesis submitted to the Faculty of the University of Delaware, Spring 2003, pp. 1-35.
- Internet Protocol,“Darpa Internet Program Protocol Specification”, (RFC:791), Information Sciences Institute, University of Southern California, Sep. 1981, pp. 1-49.
- Ilvesmaki M., et al., “On the capabilities of application level traffic measurements to differentiate and classify Internet traffic”, Presented in SPIE's International Symposium ITcom, Aug. 19-21, 2001, pp. 1-11, Denver, Colorado.
- Modiano E., “Scheduling Algorithms for Message Transmission Over a Satellite Broadcast System,” MIT Lincoln Laboratory Advanced Network Group, Nov. 1997, pp. 1-7.
- Ott D., et al., “A Mechanism for TCP-Friendly Transport-level Protocol Coordination”, USENIX Annual Technical Conference, 2002, University of North Carolina at Chapel Hill, pp. 1-12.
- Padmanabhan V., et al., “Using Predictive Prefetching to Improve World Wide Web Latency”, SIGCOM, 1996, pp. 1-15.
- Rosen E., et al., “MPLS Label Stack Encoding”, (RFC:3032) Network Working Group, Jan. 2001, pp. 1-22, (http://www.ietrorg/rfc/rfc3032.txt).
- Wang B., “Priority and Realtime Data Transfer Over the Best-Effort Internet”, Dissertation Abstract, Sep. 2005, ScholarWorks©UMASS.
- Woo T.Y.C., “A Modular Approach to Packet Classification: Algorithms and Results”, Nineteenth Annual Conference of the IEEE Computer and Communications Societies 3(3):1213-22, Mar. 26-30, 2000, abstract only, (http://ieeexplore.ieee.org/xpl/freeabs—all.jsp?arnumber=832499).
Type: Grant
Filed: Nov 11, 2008
Date of Patent: Oct 1, 2013
Patent Publication Number: 20090204649
Assignee: F5 Networks, Inc. (Seattle, WA)
Inventors: Thomas K. Wong (Pleasanton, CA), Ron S. Vogel (San Jose, CA)
Primary Examiner: Vincent F Boccio
Application Number: 12/268,573
International Classification: G06F 7/00 (20060101); G06F 17/00 (20060101);