Method and system to detect actuation of a switch using vibrations or vibration signatures
Described herein are embodiments of methods and systems to detect actuation of a switch using vibrations and vibration signatures. One aspect of the method comprises sending an actuation signal to a switch, receiving a vibration signal associated with the switch, and determining from the vibration signal whether the actuation occurred.
Latest General Electric Patents:
- METHODS AND APPARATUS TO IMPROVE FAN OPERABILITY CONTROL USING SMART MATERIALS
- APPARATUSES, SYSTEMS, AND METHODS FOR THREE-DIMENSIONAL, IN-SITU INSPECTION OF AN ADDITIVELY MANUFACTURED COMPONENT
- RELATING TO THE CONTROL OF POWER CONVERTERS DURING FAULT CONDITIONS IN POWER TRANSMISSION NETWORKS
- POWER SUPPLY SYSTEM FOR A PLURALITY OF ELECTROLYZERS AND ASSOCIATED FACILITY AND METHOD
- Systems and methods for computed tomography
This application is related to U.S. patent application Ser. No. 13/014,746, filed on Jan. 27, 2011, which is fully incorporated herein by reference and made a part hereof.
BACKGROUND OF THE INVENTIONIn many instances, utility providers desire to electronically communicate with the utility service meters for numerous purposes including scheduling disconnection or connection of utility services to the metered loads, automatic meter reading (AMR), load shedding and load control, automatic distribution and smart-grid applications, outage reporting, providing additional services such as Internet, video, and audio, etc. In many of these instances, to perform these functions the meters must be configured to communicate with one or more computing devices through a communications network, which can be wired, wireless or a combination of wired and wireless, as known to one of ordinary skill in the art.
In many instances, such meters are equipped with an electromechanical switch that can be actuated remotely to perform functions such as disconnection or connection of utility services to the metered loads, load shedding and load control, and the like. Generally, determination of switch actuation is accomplished by detecting the presence, or absence, of the utility service on the load side of the meter. For example, if the utility service provided is electricity, then operation of the switch is determined through electronic acknowledgement of switch actuation by means of detection of current flow (or detecting absence of current flow) on the load side meter terminals. Similarly, services such as gas or water can be detected by detecting flow (or absence of flow) on the load side of the meter. However, by using only a single method of feedback i.e. electronic, errors are possible, exposing field technicians and property owners to dangerous situations and meter manufactures to safety liability.
Therefore, systems and methods are desired that provide reliable acknowledgment of switch actuation that overcome challenges present in the art, some of which are described above.
BRIEF DESCRIPTION OF THE INVENTIONDescribed herein are embodiments of methods and systems for detection of actuation of a switch. In general, embodiments of the present invention provide an improvement over current methods of detection of switch actuation by providing a method of determining switch actuation using a vibration signal.
One aspect of the method comprises sending an actuation signal to a switch, receiving a vibration signal, and determining from the vibration signal whether the actuation occurred.
Another aspect of the present invention comprises a system. One embodiment of the system is comprised of a meter. The meter is associated with a switch configured to be actuated remotely. Further comprising the system is an accelerometer. The accelerometer produces a vibration signal that can be analyzed to determine whether an actuation of the switch occurred.
Yet another aspect of the present invention comprises a system comprised of a meter and a computing device. The meter is comprised of a switch configured to be actuated remotely and an accelerometer. The accelerometer produces a vibration signal that can be analyzed to determine whether an actuation of the switch occurred. The computing device is operably connected with the meter. The computing device is configured to send an actuation signal to the switch, receive the vibration signal from the accelerometer associated with the switch, and determine from the vibration signal whether the actuation occurred.
Additional advantages will be set forth in part in the description which follows or may be learned by practice. The advantages will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive, as claimed.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments and together with the description, serve to explain the principles of the methods and systems:
Before the present methods and systems are disclosed and described, it is to be understood that the methods and systems are not limited to specific synthetic methods, specific components, or to particular compositions. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting.
As used in the specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Ranges may be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another embodiment. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint.
“Optional” or “optionally” means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where said event or circumstance occurs and instances where it does not.
Throughout the description and claims of this specification, the word “comprise” and variations of the word, such as “comprising” and “comprises,” means “including but not limited to,” and is not intended to exclude, for example, other additives, components, integers or steps. “Exemplary” means “an example of” and is not intended to convey an indication of a preferred or ideal embodiment. “Such as” is not used in a restrictive sense, but for explanatory purposes.
Disclosed are components that can be used to perform the disclosed methods and systems. These and other components are disclosed herein, and it is understood that when combinations, subsets, interactions, groups, etc. of these components are disclosed that while specific reference of each various individual and collective combinations and permutation of these may not be explicitly disclosed, each is specifically contemplated and described herein, for all methods and systems. This applies to all aspects of this application including, but not limited to, steps in disclosed methods. Thus, if there are a variety of additional steps that can be performed it is understood that each of these additional steps can be performed with any specific embodiment or combination of embodiments of the disclosed methods.
The present methods and systems may be understood more readily by reference to the following detailed description of preferred embodiments and the Examples included therein and to the Figures and their previous and following description.
Referring to
Therefore, it is desired that the meters 106 of a system such as that shown in
A remote switch actuation signal is received by the meter electronics 206 over a network 110. The meter electronics 206 cause a control 212 to operate the switch 204 in accordance with the actuation signal. Actuation can comprise a connection or disconnection of a utility service such as the power feed 104 using a switch 204 associated with the meter 106. For example, in one aspect the meter 106 comprises a load control unit (e.g., relays) 212 to control the consumption of the utility service by the load 102. In some instances there can be requirements by various utilities to connect or disconnect the load 102 in a random manner to help avoid imbalances and fluctuations on the utility distribution system.
Further comprising the embodiment of
In one aspect, the system is further comprised of a transmitter and a computing device 108. The transmitter can used to transmit the vibration signal to the computing device 108 and the computing device 108 can be used to analyze the vibration signal to determine whether actuation of the switch 204 occurred, including comparing a vibration signal against known switch actuation signatures to determine whether the switch 204 actuated in accordance with an actuation command or signal. In one aspect, comparing a vibration signal against known switch actuation signatures to determine whether the switch 204 actuated in accordance with an actuation command or signal comprises matching a vibration signal to a given signature by comparing the amplitudes and time deltas between vibration peaks of the vibration signal and the known switch actuation signatures. Alternatively, in one aspect using time-domain analysis, operations such as, but not limited to, cross-correlation and circular cross-correlation, can be used to form a positive match between the vibration signal and the known switch actuation signatures. In one aspect, the vibration signals may or may not be normalized; that is, the signals may be offset such that the average value is 0. This normalization reduces the chance of false positives in some cases.
When using cross-correlation, or circular cross-correlation, the output should be monitored for a value, or “spike”, above a given threshold. The value of the threshold can be determined by experimentation, length of the signal, and amplitude range of the signals in comparison. If there is a value above a threshold when the cross correlation between a signal and a given signature is performed, then a match is said to be made. For example, if a signal is generated at random and cross correlated with another signal that is generated at random then the result of the cross correlation between the two signals will likely resemble the signal of
Referring now to
In one embodiment, the one or more processors 604 are in communication with or include memory 606, such as volatile and/or non-volatile memory that stores content, data or the like. For example, the memory 606 may store content transmitted from, and/or received by, the entity. Also for example, the memory 606 may store software applications, instructions or the like for the one or more processors 604 to perform steps associated with operation of the entity in accordance with embodiments of the present invention. In particular, the one or more processors 604 may be configured to perform the processes discussed in more detail herein for receiving an actuation command for a switch, causing a control associated with the switch to implement the actuation, receiving a vibration signal from an accelerometer associated with the switch, and transmitting the vibration signal to a computing device over a network. For example, according to one embodiment the one or more processors 604 can be configured to intermittently store vibration signals from the accelerometer in the memory 606. In one aspect, the one or more processors 604 can be used to determine whether a vibration signal received from the accelerometer meets or exceeds an amplitude or time duration thresholds and send a signal to the computing device 108 over the network 110 if one or both thresholds are met or exceeded.
In addition to the memory 606, the one or more processors 604 can also be connected to at least one interface or other means for displaying, transmitting and/or receiving data, content or the like. In this regard, the interface(s) can include at least one communication interface 608 or other means for transmitting and/or receiving data, content or the like, as well as at least one user interface that can include a display 610 and/or a user input interface 612. In one aspect, the communication interface 108 can be used to transfer at least a portion of the vibration signals stored in the memory 606 to a remote computing device such as the one described below. For example, in one instance the communication interface 608 can be used to transfer at least a portion of the stored vibration signal to a computing device 108 over a communication network 110 so that the transferred vibration signal can be analyzed to determine whether the switch 204 actuated in accordance with an actuation signal. The user input interface 612, in turn, can comprise any of a number of devices allowing the entity to receive data from a user, such as a keypad, a touch display, a joystick or other input device.
Referring now to
The above system has been described above as comprised of units. One skilled in the art will appreciate that this is a functional description and that software, hardware, or a combination of software and hardware can perform the respective functions. A unit, such as a smart appliance, a smart meter, a smart grid, a utility computing device, a vendor or manufacturer's computing device, etc., can be software, hardware, or a combination of software and hardware. The units can comprise the signature analysis software 806 as illustrated in
The present methods and systems can be operational with numerous other general purpose or special purpose computing system environments or configurations. Examples of well known computing systems, environments, and/or configurations that can be suitable for use with the systems and methods comprise, but are not limited to, personal computers, server computers, laptop devices, and multiprocessor systems. Additional examples comprise set top boxes, programmable consumer electronics, network PCs, minicomputers, mainframe computers, smart meters, smart-grid components, distributed computing environments that comprise any of the above systems or devices, and the like.
The processing of the disclosed methods and systems can be performed by software components. The disclosed systems and methods can be described in the general context of computer-executable instructions, such as program modules, being executed by one or more computers or other devices. Generally, program modules comprise computer code, routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types. The disclosed methods can also be practiced in grid-based and distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules can be located in both local and remote computer storage media including memory storage devices.
Further, one skilled in the art will appreciate that the systems and methods disclosed herein can be implemented via a general-purpose computing device in the form of a computing device 108. The components of the computing device 108 can comprise, but are not limited to, one or more processors or processing units 803, a system memory 812, and a system bus 813 that couples various system components including the processor 803 to the system memory 812. In the case of multiple processing units 803, the system can utilize parallel computing. In one aspect, the processor 803 is configured to send an actuation signal to the switch, receive the vibration signal from the switch, and determine from the vibration signal whether the actuation occurred.
The system bus 813 represents one or more of several possible types of bus structures, including a memory bus or memory controller, a peripheral bus, an accelerated graphics port, and a processor or local bus using any of a variety of bus architectures. By way of example, such architectures can comprise an Industry Standard Architecture (ISA) bus, a Micro Channel Architecture (MCA) bus, an Enhanced ISA (EISA) bus, a Video Electronics Standards Association (VESA) local bus, an Accelerated Graphics Port (AGP) bus, and a Peripheral Component Interconnects (PCI), a PCI-Express bus, a Personal Computer Memory Card Industry Association (PCMCIA), Universal Serial Bus (USB) and the like. The bus 813, and all buses specified in this description can also be implemented over a wired or wireless network connection and each of the subsystems, including the processor 803, a mass storage device 804, an operating system 805, signature analysis software 806, vibration signature data 807, a network adapter 808, system memory 812, an Input/Output Interface 810, a display adapter 809, a display device 811, and a human machine interface 802, can be contained within one or more remote computing devices or clients 814a,b,c at physically separate locations, connected through buses of this form, in effect implementing a fully distributed system or distributed architecture.
The computing device 108 typically comprises a variety of computer readable media. Exemplary readable media can be any available media that is non-transitory and accessible by the computing device 108 and comprises, for example and not meant to be limiting, both volatile and non-volatile media, removable and non-removable media. The system memory 812 comprises computer readable media in the form of volatile memory, such as random access memory (RAM), and/or non-volatile memory, such as read only memory (ROM). The system memory 812 typically contains data such as vibration signature data 807 and/or program modules such as operating system 805 and signature analysis software 806 that are immediately accessible to and/or are presently operated on by the processing unit 803.
In another aspect, the computing device 108 can also comprise other non-transitory, removable/non-removable, volatile/non-volatile computer storage media. By way of example,
Optionally, any number of program modules can be stored on the mass storage device 604, including by way of example, an operating system 805 and signature analysis software 806. Each of the operating system 805 and signature analysis software 806 (or some combination thereof) can comprise elements of the programming and the signature analysis software 806. Vibration signature data 807 can also be stored on the mass storage device 804. Vibration signature data 807 can be stored in any of one or more databases known in the art. Examples of such databases comprise, DB2® (IBM Corporation, Armonk, N.Y.), Microsoft® Access, Microsoft® SQL Server, Oracle® (Microsoft Corporation, Bellevue, Wash.), mySQL, PostgreSQL, and the like. The databases can be centralized or distributed across multiple systems.
In another aspect, the user can enter commands and information into the computing device 108 via an input device (not shown). Examples of such input devices comprise, but are not limited to, a keyboard, pointing device (e.g., a “mouse”), a microphone, a joystick, a scanner, tactile input devices such as gloves, and other body coverings, and the like These and other input devices can be connected to the processing unit 803 via a human machine interface 802 that is coupled to the system bus 813, but can be connected by other interface and bus structures, such as a parallel port, game port, an IEEE 1394 Port (also known as a Firewire port), a serial port, or a universal serial bus (USB).
In yet another aspect, a display device 811 can also be connected to the system bus 813 via an interface, such as a display adapter 809. It is contemplated that the computing device 108 can have more than one display adapter 809 and the computing device 108 can have more than one display device 811. For example, a display device can be a monitor, an LCD (Liquid Crystal Display), or a projector. In addition to the display device 811, other output peripheral devices can comprise components such as speakers (not shown) and a printer (not shown), which can be connected to the computer 801 via Input/Output Interface 810. Any step and/or result of the methods can be output in any form to an output device. Such output can be any form of visual representation, including, but not limited to, textual, graphical, animation, audio, tactile, and the like.
The computing device 108 can operate in a networked environment using logical connections to one or more remote computing devices or clients 814a,b,c. By way of example, a remote computing device 814 can be a personal computer, portable computer, a server, a router, a network computer, a smart meter, a vendor or manufacture's computing device, smart grid components, a peer device or other common network node, and so on. Logical connections between the computing device 108 and a remote computing device or client 814a,b,c can be made via a local area network (LAN) and a general wide area network (WAN). Such network connections can be through a network adapter 608. A network adapter 808 can be implemented in both wired and wireless environments. Such networking environments are conventional and commonplace in offices, enterprise-wide computer networks, intranets, and other networks 815 such as the Internet.
For purposes of illustration, application programs and other executable program components such as the operating system 805 are illustrated herein as discrete blocks, although it is recognized that such programs and components reside at various times in different storage components of the computing device 801, and are executed by the data processor(s) of the computer. An implementation of signature analysis software 806 can be stored on or transmitted across some form of computer readable media. Any of the disclosed methods can be performed by computer readable instructions embodied on computer readable media. Computer readable media can be any available media that can be accessed by a computer. By way of example and not meant to be limiting, computer readable media can comprise “computer storage media” and “communications media.” “Computer storage media” comprise volatile and non-volatile, removable and non-removable media implemented in any methods or technology for storage of information such as computer readable instructions, data structures, program modules, or other data. Exemplary computer storage media comprises, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by a computer.
The methods and systems can employ Artificial Intelligence techniques such as machine learning and iterative learning. Examples of such techniques include, but are not limited to, expert systems, case based reasoning, Bayesian networks, behavior based AI, neural networks, fuzzy systems, evolutionary computation (e.g. genetic algorithms), swarm intelligence (e.g. ant algorithms), and hybrid intelligent systems (e.g. Expert inference rules generated through a neural network or production rules from statistical learning).
As described above and as will be appreciated by one skilled in the art, embodiments of the present invention may be configured as a system, method, or computer program product. Accordingly, embodiments of the present invention may be comprised of various means including entirely of hardware, entirely of software, or any combination of software and hardware. Furthermore, embodiments of the present invention may take the form of a computer program product on a computer-readable storage medium having computer-readable program instructions (e.g., computer software) embodied in the storage medium. Any suitable non-transitory computer-readable storage medium may be utilized including hard disks, CD-ROMs, optical storage devices, or magnetic storage devices.
Embodiments of the present invention have been described above with reference to block diagrams and flowchart illustrations of methods, apparatuses (i.e., systems) and computer program products. It will be understood that each block of the block diagrams and flowchart illustrations, and combinations of blocks in the block diagrams and flowchart illustrations, respectively, can be implemented by various means including computer program instructions. These computer program instructions may be loaded onto a general purpose computer, special purpose computer, or other programmable data processing apparatus, such as the one or more processors 803 discussed above with reference to
These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing apparatus (e.g., one or more processors 803 of
Accordingly, blocks of the block diagrams and flowchart illustrations support combinations of means for performing the specified functions, combinations of steps for performing the specified functions and program instruction means for performing the specified functions. It will also be understood that each block of the block diagrams and flowchart illustrations, and combinations of blocks in the block diagrams and flowchart illustrations, can be implemented by special purpose hardware-based computer systems that perform the specified functions or steps, or combinations of special purpose hardware and computer instructions.
Unless otherwise expressly stated, it is in no way intended that any method set forth herein be construed as requiring that its steps be performed in a specific order. Accordingly, where a method claim does not actually recite an order to be followed by its steps or it is not otherwise specifically stated in the claims or descriptions that the steps are to be limited to a specific order, it is no way intended that an order be inferred, in any respect. This holds for any possible non-express basis for interpretation, including: matters of logic with respect to arrangement of steps or operational flow; plain meaning derived from grammatical organization or punctuation; the number or type of embodiments described in the specification.
Throughout this application, various publications may be referenced. The disclosures of these publications in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art to which the methods and systems pertain.
Many modifications and other embodiments of the inventions set forth herein will come to mind to one skilled in the art to which these embodiments of the invention pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the embodiments of the invention are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Moreover, although the foregoing descriptions and the associated drawings describe exemplary embodiments in the context of certain exemplary combinations of elements and/or functions, it should be appreciated that different combinations of elements and/or functions may be provided by alternative embodiments without departing from the scope of the appended claims. In this regard, for example, different combinations of elements and/or functions than those explicitly described above are also contemplated as may be set forth in some of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
Claims
1. A method, comprising:
- sending an actuation command via a computing device to a switch associated with a utility service meter;
- receiving a vibration signal associated with the switch via the computing device after sending the actuation command, wherein the vibration signal is representative of a switch actuation event; and
- determining from the vibration signal via the computing device whether the actuation occurred, comprising: verifying whether the switch actuation event corresponds to the actuation command by comparing the vibration signal to one or more known switch actuation signatures associated with the actuation command.
2. The method of claim 1, wherein the utility service meter is one of an electric meter, a gas meter or a water meter.
3. The method of claim 1, wherein sending an actuation command to the switch comprises sending one of an open or a close signal to the switch.
4. The method of claim 1, wherein receiving a vibration signal associated with the switch comprises receiving the vibration signal from an accelerometer associated with the switch.
5. The method of claim 4, wherein the accelerometer is a MEMS accelerometer.
6. The method of claim 4, wherein receiving a vibration signal associated with the switch comprises receiving the vibration signal when vibrations associated with the switch have an amplitude that meets or exceeds a threshold or met or exceed a specified time duration.
7. The method of claim 1, wherein determining from the vibration signal whether the actuation occurred comprises analyzing the vibration signal using time-domain analysis to determine whether the actuation occurred.
8. The method of claim 7, wherein analyzing the vibration signal using time-domain analysis to determine whether the actuation occurred further comprises filtering the vibration signal prior to analyzing the vibration signal using time-domain analysis.
9. The method of claim 7, wherein analyzing the vibration signal using time-domain analysis comprises using one of cross-correlation or circular cross-correlation to compare the vibration signal with known switch actuation signatures.
10. The method of claim 1, wherein determining from the vibration signal whether the actuation occurred comprises analyzing the vibration signal using frequency-domain analysis to determine whether the actuation occurred.
11. The method of claim 10, wherein analyzing the vibration signal using frequency-domain analysis to determine whether the actuation occurred further comprises filtering the vibration signal prior to analyzing the vibration signal using frequency-domain analysis.
12. A system, comprising:
- a meter, wherein said meter is associated with a switch configured to be actuated remotely via an actuation command; and
- an accelerometer operatively coupled to the meter and configured to detect vibration signals, wherein the vibration signals are detected after the meter receives the actuation command; and
- verification hardware configured to determine whether an actuation of the switch occurred based at least on a comparison of the vibration signals to one or more known switch actuation signatures associated with the actuation command.
13. The system of claim 12, further comprising a transmitter and a computing device, wherein the transmitter is used to transmit the vibration signal to the computing device and the computing device is used to compare the vibration signal with known switch actuation signatures to determine whether actuation of the switch occurred.
14. The system of claim 13, wherein the computing device is configure to actuate the switch remotely by sending one of an open or a close signal to the meter and the meter sends the signal to the switch.
15. The system of claim 14, wherein the computing device configured to receive a vibration signal associated with the switch comprises the computing device configured to receive the vibration signal when vibrations associated with the switch have an amplitude that meets or exceeds a threshold or met or exceed a specified time duration.
16. The system of claim 12, wherein the accelerometer is a MEMS accelerometer.
17. The system of claim 12, wherein the meter is one of an electric meter, a gas meter or a water meter.
18. The system of claim 12, wherein the vibration signal is analyzed using frequency-domain analysis to determine whether the actuation occurred.
19. The system of claim 18, wherein the system further comprises a filter and analyzing the vibration signal using frequency-domain analysis to determine whether the actuation occurred further comprises filtering the vibration signal using the filter prior to analyzing the vibration signal using frequency-domain analysis.
20. The system of claim 12, wherein the vibration signal is analyzed using time-domain analysis to determine whether the actuation occurred.
21. The system of claim 20, wherein the system further comprises a filter and analyzing the vibration signal using time-domain analysis to determine whether the actuation occurred further comprises filtering the vibration signal using the filter prior to analyzing the vibration signal using time-domain analysis.
22. The system of claim 20, wherein analyzing the vibration signal using time-domain analysis comprises using one of cross-correlation or circular cross-correlation to compare the vibration signal with known switch actuation signatures.
23. A system, comprising:
- a non-transitory computer readable medium storing computer executable instructions which, when executed by a computer, perform a process comprising: sending an actuation command to remotely actuate a switch; determining one or more switch actuation signatures associated with the actuation command; receiving a vibration signal produced by an accelerometer in proximity to the switch, wherein the vibration signal is associated with the actuation of the switch; and verifying based at least on a comparison of the vibration signal and the one or more switch actuation signatures associated with the actuation command whether the actuation occurred.
24. The system of claim 23, wherein the accelerometer is a MEMS accelerometer.
25. The system of claim 23, wherein the meter is one of an electric meter, a gas meter or a water meter.
26. The system of claim 23, wherein sending an actuation command to remotely actuate a switch comprises sending one of an open or a close signal to the switch.
27. The system of claim 23, wherein verifying based at least on the vibration signal and the one or more switch actuation signatures whether the actuation occurred comprises analyzing the vibration signal using time-domain analysis to determine whether the actuation occurred.
28. The system of claim 27, wherein the system further comprises a filter and analyzing the vibration signal using time-domain analysis to verify whether the actuation occurred further comprises filtering the vibration signal using the filter prior to analyzing the vibration signal using time-domain analysis.
29. The system of claim 27, wherein analyzing the vibration signal using time-domain analysis comprises using one of cross-correlation or circular cross-correlation to compare the vibration signal with the one or more switch actuation signatures.
30. The system of claim 23, wherein verifying based at least on the vibration signal and the one or more switch actuation signatures whether the actuation occurred comprises analyzing the vibration signal using frequency-domain analysis to determine whether the actuation occurred.
31. The system of claim 30, wherein the system further comprises a filter and analyzing the vibration signal using frequency-domain analysis to verify whether the actuation occurred further comprises filtering the vibration signal using the filter prior to analyzing the vibration signal using frequency-domain analysis.
4956999 | September 18, 1990 | Bohannan et al. |
4980844 | December 25, 1990 | Demjanenko et al. |
5251151 | October 5, 1993 | Demjanenko et al. |
6089092 | July 18, 2000 | Shinohara et al. |
6265979 | July 24, 2001 | Chen et al. |
20030079774 | May 1, 2003 | Reyman |
20040141420 | July 22, 2004 | Hardage et al. |
20050168891 | August 4, 2005 | Nilman-Johnsson et al. |
20110000772 | January 6, 2011 | Hanai et al. |
20110170377 | July 14, 2011 | Legaspi |
10 2005 047 740.2 | April 2007 | DE |
0 22 671 | January 1981 | EP |
2 267 739 | December 2010 | EP |
2 405 454 | January 2012 | EP |
97/43729 | November 1997 | WO |
2010/081982 | July 2010 | WO |
2007/036540 | January 2013 | WO |
- A.A. Polycarou, Event Timing and Shape Analysis of Vibration Bursts From Power Circuit Breaker, 1996, IEEE, vol. 11.
- B. Judd, Using Accelerometers in a Data Acquisition System, 2007, United Electronics Industries.
- Search Report issued in Connection with EP Application No. 12152341.9, Jan. 28, 2013.
- U.S. Appl. No. 13/014,746, filed Jan. 27, 2011, Ryan Marc LaFrance.
Type: Grant
Filed: Jan 27, 2011
Date of Patent: Dec 30, 2014
Patent Publication Number: 20120197556
Assignee: General Electric Company (Schenectady, NY)
Inventors: Lane Leslie Manoosingh (Marietta, GA), Ryan Marc LaFrance (Marietta, GA)
Primary Examiner: John Breene
Assistant Examiner: Yaritza H Perez Bermudez
Application Number: 13/014,742
International Classification: G01H 17/00 (20060101); G06F 19/00 (20110101); H01H 9/16 (20060101);