Systems and methods for primary-side regulation in off-line switching-mode flyback power conversion system

Switching-mode power conversion system and method thereof. The system includes a primary winding configured to receive an input voltage, and a secondary winding coupled to the primary winding and configured to, with one or more first components, generate, at an output terminal, an output voltage and an output current. Additionally, the system includes an auxiliary winding coupled to the secondary winding and configured to, with one or more second components, generate, at a first terminal, a detected voltage. Moreover, the system includes an error amplifier configured to receive the detected voltage and a first reference voltage and generate an amplified voltage based on at least information associated with a difference between the detected voltage and the first reference voltage. Also, the system includes a compensation component configured to receive the amplified voltage and generate a second reference voltage based on at least information associated with the amplified voltage.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
1. CROSS-REFERENCES TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 12/502,866, filed Jul. 14, 2009, which claims priority to U.S. Provisional No. 61/084,982, filed Jul. 30, 2008, both applications being commonly assigned and incorporated by reference herein for all purposes.

2. BACKGROUND OF THE INVENTION

The present invention is directed to switching-mode power conversion systems. More particularly, the invention provides systems and methods for primary-side regulation with load compensation. Merely by way of example, the invention has been applied to off-line switching-mode flyback power conversion systems. But it would be recognized that the invention has a much broader range of applicability.

Flyback converters have been used extensively for its simple structure and low cost in low-power power supplies. But in conventional flyback converters, the output-voltage regulation is often performed with secondary-side feedback, using an isolated arrangement of opto-coupler and shunt regulator (e.g., TL431). Such arrangement usually increases the system cost, size, and power consumption.

FIG. 1 is a simplified diagram showing a conventional flyback switching-mode power conversion system with secondary-side control. As shown in FIG. 1, a PWM controller 110 is used to control and drive a power MOSFET, M1, which turns on and off to control the power delivered to the load on the secondary side.

To reduce the system cost and size of the flyback switching-mode power conversion system, the converter that employs the primary-side regulation has become popular for certain applications. In the primary-side regulation, the output voltage is sensed by detecting the voltage of the auxiliary winding that is tightly coupled to the secondary winding. Since the voltage of the auxiliary winding should image the output voltage associated with the secondary winding, the detected voltage can be utilized to regulate the secondary-side output voltage. Hence, the expensive parts of opto-coupler and shunt regulator (e.g., TL431) often are no longer needed in order to save system cost and size.

FIG. 2(A) is a diagram showing a conventional flyback switching-mode power conversion system with primary-side control. The output voltage Vout is mapped to the voltage signal VINV at node INV. The adjustment of VINV often results in the regulation of Vout.

For the primary-side regulation, relationship between VINV and Vout can be expressed as follows.

V INV = n × R 2 R 1 + R 2 ( V out + V D 2 ) - R 2 R 1 + R 2 V D 1 ( 1 )

where n is the turn ratio of the auxiliary winding to the secondary winding. VD1 and VD2 are the forward voltages across diodes D1 and D2.

Setting

k = R 1 + R 2 n × R 2 ,
Vout is therefore given by:

V out = k × V INV + 1 n V D 1 - V D 2 ( 2 )

The output voltage is regulated through the regulation of the voltage of the auxiliary winding. For example, the sensed voltage, VINV, is compared with the predetermined voltage level, VREF. The difference between VINV and VREF, the error signal, is processed by the error amplifier to generate the amplified error signal. Based at least in part on the amplified error signal, the PWM/PFM signal is generated. The PWM/PFM signal controls turning on/off of the power switch thus the power delivered to the secondary side. As a result, the difference between VINV and VREF becomes smaller and smaller, and at the end, VINV should equal to VREF.

Since VINV is the image of the output voltage, Vout, the output voltage is proportional to VINV, thus VREF under certain conditions. Specifically, the output voltage is regulated at a constant level if the forward voltages across diodes D1 and D2 are constant, as shown below.

V out = k × V REF + 1 n V D 1 - V D 2 ( 3 )

However, for a given diode, the forward voltage is current dependent; hence VD2 changes if the load current changes. In contrast, VD1 can remain almost constant because the current that flows through the diode D1 changes little when the output load current changes.

Moreover, the voltage drop across the output cable line is also proportional to the output load current. Therefore, the scheme as described above often has poor load-voltage regulation due to the voltage drops of the diode D2 and the output cable line.

Assuming resistance of the output cable line is r, we have

V out = k × V REF + 1 n V D 1 - V D 2 - I o × r ( 4 )

where Io, is the output load current. Since different magnitudes of the load current result in different voltage drops of the diode D2 and the output cable line, the output voltage Vout is not constant at various output current levels. The output voltage Vout decreases as the output current Io, increases.

FIG. 2(B) is a simplified diagram showing conventional output characteristics of a conventional flyback switching-mode power conversion system with primary-side control. As shown in FIG. 2(B), the output voltage decreases as the output load current increases. Often, the load regulation variation in such scheme is about 10% which usually cannot meet the requirements of most applications.

Therefore, it is highly desirable to improve techniques for output voltage regulation.

3. BRIEF SUMMARY OF THE INVENTION

The present invention is directed to switching-mode power conversion systems. More particularly, the invention provides systems and methods for primary-side regulation with load compensation. Merely by way of example, the invention has been applied to off-line switching-mode flyback power conversion systems. But it would be recognized that the invention has a much broader range of applicability.

According to one embodiment of the present invention, a switching-mode power conversion system includes a primary winding configured to receive an input voltage, and a secondary winding coupled to the primary winding and configured to, with one or more first components, generate, at an output terminal, an output voltage and an output current. Additionally, the system includes an auxiliary winding coupled to the secondary winding and configured to, with one or more second components, generate, at a first terminal, a detected voltage. Moreover, the system includes an error amplifier configured to receive the detected voltage and a first reference voltage and generate an amplified voltage based on at least information associated with a difference between the detected voltage and the first reference voltage. Also, the system includes a compensation component configured to receive the amplified voltage and generate a second reference voltage based on at least information associated with the amplified voltage, and a summation component configured to receive the second reference voltage and a predetermined reference voltage and generate the first reference voltage. Additionally, the system includes a signal generator configured to receive at least the amplified voltage and generate one or more control signals based on at least information associated with the amplified voltage, a gate driver configured to receive the one or more control signals and generate a drive signal based on at least information associated with the one or more control signals, and a switch configured to receive the drive signal and affect a first current flowing through the primary winding. The one or more first components include a first diode, through at least the first diode the secondary winding being coupled to the output terminal. The compensation component is further configured to generate the second reference voltage such that the output voltage is substantially independent of the output current.

According to another embodiment of the present invention, a switching-mode power conversion system includes a primary winding configured to receive an input voltage, and a secondary winding coupled to the primary winding and configured to, with one or more first components, generate, at an output terminal, an output voltage and an output current. Additionally, the system includes an auxiliary winding coupled to the secondary winding and configured to, with at least one or more second components, generate, at a first terminal, a detected voltage. Moreover, the system includes an error amplifier configured to receive the detected voltage and a predetermined reference voltage and generate an amplified voltage based on at least information associated with a difference between the detected voltage and the predetermined reference voltage. Also, the system includes a compensation component configured to receive the amplified voltage and generate a compensation current based on at least information associated with the amplified voltage, the compensation current flowing between the first terminal and the compensation component. Additionally, the system includes a signal generator configured to receive at least the amplified voltage and generate one or more control signals based on at least information associated with the amplified voltage, a gate driver configured to receive the one or more control signals and generate a drive signal based on at least information associated with the one or more control signals, and a switch configured to receive the drive signal and affect a first current flowing through the primary winding. The one or more first components include a first diode, through at least the first diode the secondary winding being coupled to the output terminal. The compensation component is further configured to generate the compensation current such that the output voltage is substantially independent of the output current.

According to yet another embodiment of the present invention, a method for regulating an output voltage by a switching-mode power conversion system includes receiving an input voltage by a primary winding. Additionally, the method includes generating, at an output terminal, an output voltage and an output current based on at least information associated with the input voltage, by a secondary winding and one or more first components, the one or more first components including a first diode, through at least the first diode the secondary winding being coupled to the output terminal. Moreover, the method includes generating, at a first terminal, a detected voltage based on at least information associated with the output voltage, by an auxiliary winding and one or more second components. Also, the method includes receiving the detected voltage and a first reference voltage by an error amplifier, generating an amplified voltage based on at least information associated with a difference between the detected voltage and the first reference voltage, and receiving the amplified voltage by a compensation component. Additionally, the method includes generating a second reference voltage based on at least information associated with the amplified voltage, receiving the second reference voltage and a predetermined reference voltage by a summation component, and generating the first reference voltage equal to the second reference voltage and a predetermined reference voltage in magnitude. Moreover, the method includes receiving at least the amplified voltage by a signal generator, generating one or more control signals based on at least information associated with the amplified voltage, receiving the one or more control signals by a gate driver, and generating a drive signal based on at least information associated with the one or more control signals. Also, the method includes receiving the drive signal by a switch, and affecting a first current flowing through the primary winding, based on at least information associated with the drive signal. The process for generating a second reference voltage is performed such that the output voltage is substantially independent of the output current.

According to yet another embodiment of the present invention, a method for regulating an output voltage by a switching-mode power conversion system, the method includes receiving an input voltage by a primary winding. Additionally, the method includes generating, at an output terminal, an output voltage and an output current based on at least information associated with the input voltage, by a secondary winding and one or more first components, the one or more first components including a first diode, through at least the first diode the secondary winding being coupled to the output terminal. Moreover, the method includes generating, at a first terminal, a detected voltage based on at least information associated with the output voltage, by an auxiliary winding and one or more second components. Also, the method includes receiving the detected voltage and a predetermined reference voltage by an error amplifier, generating an amplified voltage based on at least information associated with a difference between the detected voltage and the predetermined reference voltage, and receiving the amplified voltage by a compensation component. Additionally, the method includes generating a compensation current based on at least information associated with the amplified voltage, the compensation current flowing between the first terminal and the compensation component. Moreover, the method includes receiving at least the amplified voltage by a signal generator, generating one or more control signals based on at least information associated with the amplified voltage, receiving the one or more control signals by a gate driver, and generating a drive signal based on at least information associated with the one or more control signals. Also, the method includes receiving the drive signal by a switch, and affecting a first current flowing through the primary winding, based on at least information associated with the drive signal. The process for generating a compensation current is performed such that the output voltage is substantially independent of the output current.

Many benefits are achieved by way of the present invention over conventional techniques. Certain embodiments of the present invention reduce parts count and/or system cost. Some embodiments of the present invention improve reliability and/or efficiency. Certain embodiments of the present invention simplify circuit designs. Some embodiments of the present invention improve load regulation of the flyback power conversion system with pulse-width-modulation (PWM) control and primary-side regulation.

Depending upon embodiment, one or more of these benefits may be achieved. These benefits and various additional objects, features and advantages of the present invention can be fully appreciated with reference to the detailed description and accompanying drawings that follow

4. BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a simplified diagram showing a conventional flyback switching-mode power conversion system with secondary-side control.

FIG. 2(A) is a diagram showing a conventional flyback switching-mode power conversion system with primary-side control.

FIG. 2(B) is a simplified diagram showing conventional output characteristics of a conventional flyback switching-mode power conversion system with primary-side control.

FIG. 3 is a simplified diagram showing a switching-mode power conversion system with primary-side control and load compensation according to one embodiment of the present invention.

FIG. 4 is a simplified diagram showing a switching-mode power conversion system with primary-side control and load compensation according to another embodiment of the present invention.

FIG. 5 is a simplified diagram showing VCMP as a function of Io for the switching-mode power conversion system under the PWM control according to an embodiment of the present invention.

FIG. 6 is a simplified diagram showing VCMP as a function of Io for the switching-mode power conversion system under the PFM control according to an embodiment of the present invention.

FIG. 7 is a simplified diagram showing certain components for load compensation in the switching-mode power conversion system according to an embodiment of the present invention.

FIG. 8 is a simplified diagram showing certain components for load compensation in the switching-mode power conversion system according to an embodiment of the present invention.

5. DETAILED DESCRIPTION OF THE INVENTION

The present invention is directed to switching-mode power conversion systems. More particularly, the invention provides systems and methods for primary-side regulation with load compensation. Merely by way of example, the invention has been applied to off-line switching-mode flyback power conversion systems. But it would be recognized that the invention has a much broader range of applicability.

FIG. 3 is a simplified diagram showing a switching-mode power conversion system with primary-side control and load compensation according to one embodiment of the present invention. This diagram is merely an example, which should not unduly limit the scope of the claims. One of ordinary skill in the art would recognize many variations, alternatives, and modifications. A switching-mode power conversion system 300 includes an error amplifier 310, resistors 312 and 314, a PWM/PFM generator 320, a logic control component 325, a gate driver 330, a switch 340, a load compensation component 350, a summation component 360, a primary winding 370, a secondary winding 372, an auxiliary winding 374, and diodes 380, 382 and 384. In one embodiment, the components 310, 320, 325, 330, 350, and 360 are located on a chip 390. For example, the chip 390 includes at least terminals 392 and 394.

As shown in FIG. 3, a reference voltage Vref is compensated based on at least the output loading. For example, an output voltage Vout is regulated by adjusting VINV, which is the voltage at the terminal 392 (i.e., the terminal INV). In another example, the output of the error amplifier 310 is represented by VCMP, which is the voltage at the terminal 394 (i.e., the terminal CMP).

The voltage VCMP is received by the PWM/PFM generator 320, which through the logic control component 325 and the gate driver 330 determines the duty cycle of a drive signal 332. The drive signal 332 is received by the switch 340. For example, the switch 340 is an NMOS transistor. In one embodiment, the PWM/PFM generator 320, through the logic control component 325 and the gate driver 330, determines the turn-on time of the switch 340 for the PWM control. In another embodiment, the PWM/PFM generator 320, through the logic control component 325 and the gate driver 330, determines the switching frequency for the pulse-frequency-modulation (PFM) control.

As shown in FIG. 3, higher magnitude of VCMP, for example, results in larger duty cycle of the drive signal 332 and thus higher power delivered to the output of the system 300. According to certain embodiments, VCMP reflects the condition of the output loading for the system 300.

FIG. 4 is a simplified diagram showing a switching-mode power conversion system with primary-side control and load compensation according to another embodiment of the present invention. This diagram is merely an example, which should not unduly limit the scope of the claims. One of ordinary skill in the art would recognize many variations, alternatives, and modifications. A switching-mode power conversion system 400 includes at least an error amplifier 410, resistors 412 and 414, a PWM/PFM generator 420, a logic control component 425, a gate driver 430, a switch 440, a load compensation component 450, a primary winding 470, a secondary winding 472, an auxiliary winding 474, and diodes 480, 482 and 484. In one embodiment, the components 410, 420, 425, 430, and 450 are located on a chip 490. For example, the chip 490 includes at least terminals 492 and 494.

As shown in FIG. 4, a voltage VINV at the terminal 492 (i.e., the terminal INV) is compensated based on at least the output loading. For example, an output voltage Vout is regulated by adjusting VINV. In another example, the output of the error amplifier 410 is represented by VCMP, which is the voltage at the terminal 494 (i.e., the terminal CMP).

The voltage VCMP is received by the PWM/PFM generator 420, which through the logic control component 425 and the gate driver 430 determines the duty cycle of a drive signal 432. The drive signal 432 is received by the switch 440. For example, the switch 440 is an NMOS transistor. In one embodiment, the PWM/PFM generator 420, through the logic control component 425 and the gate driver 430, determines the turn-on time of the switch 440 for the PWM control. In another embodiment, the PWM/PFM generator 420, through the logic control component 425 and the gate driver 430, determines the switching frequency for the PFM control.

As shown in FIG. 4, higher magnitude of VCMP, for example, results in larger duty cycle of the drive signal 432 and thus higher power delivered to the output of the system 400. According to certain embodiments, VCMP reflects the condition of the output loading for the system 400.

In one embodiment, if the system 300 or 400 operates in the discontinuous-conduction-mode (DCM) with PWM control, the energy stored during the switch-on usually is fully delivered to the output, as shown below.
½f0×L×IPK2=Vo×Io  (5)

where f0 is the switching frequency of the signal 332 or 432, and L is the inductance of the primary winding 370 or 470. Additionally, Vo is the output voltage of the system 300 or 400, and Io is the output current of the system 300 or 400. For example, Vo is the same as Vout as shown in FIG. 3 or 4. Also, IPK is the peak current of the primary winding 370 or 470 at, for example, the end of switch-on.
Moreover, IPK=γ×VCMP  (6)

where γ is a constant. If the switching frequency f0 is constant for PWM control, then

V CMP = 1 γ 2 V o f o L I o ( 7 )

As shown in Equation 7, if the output current Io changes, the voltage VCMP generated by the error amplifier 350 or 450 also changes as a result of regulation by the closed loop in FIG. 3 or 4.

FIG. 5 is a simplified diagram showing VCMP as a function of Io for the switching-mode power conversion system 300 or 400 under the PWM control according to an embodiment of the present invention. For example, the curve 500 is consistent with Equation 7.

In another embodiment, if the system 300 or 400 operates in the discontinuous-conduction-mode (DCM) with PFM control, the energy stored during the switch-on usually is fully delivered to the output, as shown below.
½f×L×IPK2=Vo×Io  (8)

where f is the switching frequency of the signal 332 or 432, and L is the inductance of the primary winding 370 or 470. Additionally, Vo is the output voltage of the system 300 or 400, and Io is the output current of the system 300 or 400. For example, Vo is the same as Vout as shown in FIG. 3 or 4. Also, IPK is the peak current of the primary winding 370.
Moreover, f=β×VCMP  (9)

where β is a constant. If the peak current IPK is constant for PFM control, then

V CMP = 2 V o × I o β × L × I PK 2 ( 10 )

As shown in Equation 10, the voltage VCMP generated by the error amplifier 350 or 450 is proportional to the output power of the system 300 or 400, and is proportional to the output current Io if the output voltage Vo is constant.

FIG. 6 is a simplified diagram showing VCMP as a function of Io for the switching-mode power conversion system 300 or 400 under the PFM control according to an embodiment of the present invention. For example, the curve 600 is consistent with Equation 10.

As shown in FIGS. 5 and 6, VCMP is a monotonic function of the output current Io and thus can be used to generate compensation signals 352 and 452, represented by ΔVref in FIG. 3 and ΔILC in FIG. 4, respectively, according to certain embodiments of the present invention.

Returning to FIG. 3, for example, the compensation signal 352 is used to compensate for the voltage drops of the diode 380 (i.e., the diode D2) and the output cable line, at different output loading conditions. Thus, the output voltage Vout can be obtained as follows.

V out = k × ( V ref + Δ V ref ) + 1 n V D 1 - V D 2 - I o × r ( 11 )

where Vout and Io are the output voltage and the output current of the system 300 respectively. Additionally, n is the turn ratio of the auxiliary winding 374 to the secondary winding 372. VD1 and VD2 are the forward voltages across the diodes 384 and 380 respectively. Moreover, r is the resistance of the output cable line, Vref is the voltage level of a reference signal 362, and ΔVref represents the compensation signal 352. As shown in FIG. 3, the compensation signal 352 depends on output loading conditions. Also,

k = R 1 + R 2 n × R 2 ( 12 )

where R1 and R2 are the resistance of the resistors 312 and 314, respectively.

If V D 2 = V D 2 ( 0 ) + Δ V D 2 ( I 0 ) ( 13 ) then V out = k × V ref + 1 n V D 1 - V D 2 ( 0 ) - Δ V D 2 ( I 0 ) - I o × r + k × Δ V ref ( 14 )

where VD2(0) denotes the forward voltage of the diode 380 with zero current that flows through the diode 380.

If k × Δ V ref = Δ V D 2 ( I o ) + I o × r ( 15 ) then V out = k × V ref + 1 n V D 1 - V D 2 ( 0 ) ( 16 )

As shown in Equation 16, the output voltage Vout is independent of the output current Io, if Equation 15 is satisfied according to certain embodiments of the present invention.

FIG. 7 is a simplified diagram showing certain components for load compensation in the switching-mode power conversion system 300 according to an embodiment of the present invention. This diagram is merely an example, which should not unduly limit the scope of the claims. One of ordinary skill in the art would recognize many variations, alternatives, and modifications.

As shown in FIGS. 3 and 7, VCMP is generated by the error amplifier 310 and received by the load compensation component 350. For example, the load compensation component 350 includes a gain component 750, such as an amplifier. In one embodiment, the gain component 750 converts VCMP to ΔVref, which is the voltage level of the compensation signal 352, as follows.
ΔVREF=αVCMP  (17)

where α is the gain of the gain component 750. According to certain embodiments, α is predetermined in order to approximately satisfy Equation 15, so that Vout can be approximated by Equation 16 and substantially independent of the output current Io.

For example, ΔVREF increases as the output current increases. In another example, ΔVref is used to modulate the reference voltage Vref in order to compensate for the voltage loss due to the output current.

According to another embodiment of the present invention, a switching-mode power conversion system includes a primary winding configured to receive an input voltage, and a secondary winding coupled to the primary winding and configured to, with one or more first components, generate, at an output terminal, an output voltage and an output current. Additionally, the system includes an auxiliary winding coupled to the secondary winding and configured to, with one or more second components, generate, at a first terminal, a detected voltage. Moreover, the system includes an error amplifier configured to receive the detected voltage and a first reference voltage and generate an amplified voltage based on at least information associated with a difference between the detected voltage and the first reference voltage. Also, the system includes a compensation component configured to receive the amplified voltage and generate a second reference voltage based on at least information associated with the amplified voltage, and a summation component configured to receive the second reference voltage and a predetermined reference voltage and generate the first reference voltage. Additionally, the system includes a signal generator configured to receive at least the amplified voltage and generate one or more control signals based on at least information associated with the amplified voltage, a gate driver configured to receive the one or more control signals and generate a drive signal based on at least information associated with the one or more control signals, and a switch configured to receive the drive signal and affect a first current flowing through the primary winding. The one or more first components include a first diode, through at least the first diode the secondary winding being coupled to the output terminal. The compensation component is further configured to generate the second reference voltage such that the output voltage is substantially independent of the output current. For example, the switching-mode power conversion system is implemented according to at least FIG. 3. In another example, the switching-mode power conversion system is implemented according to at least FIGS. 3 and 7.

In another example, the compensation component includes a gain component associated with a predetermined gain, and the second reference voltage is equal to the amplified voltage multiplied by the predetermined gain in magnitude. In yet another example, the signal generator is configured for pulse-width modulation and/or pulse-frequency modulation. In yet another example, the amplified voltage increases with the output current in magnitude. In yet another example, the one or more first components further include a cable line, through at least the first diode and the cable line, the secondary winding being coupled to the output terminal. In yet another example, the one or more second components include a second diode, a first resistor, and a second resistor, the first resistor and the second resistor both coupled to the first terminal. In yet another example, the error amplifier, the compensation component, the summation component, the signal generator, and the gate driver are located on a chip. In yet another example, the chip includes the first terminal and a second terminal, the second terminal being coupled to the error amplifier, the compensation component, and the signal generator. In yet another example, the signal generator includes the PWM/PFM generator 320 and the logic control component 325.

According to yet another embodiment of the present invention, a method for regulating an output voltage by a switching-mode power conversion system includes receiving an input voltage by a primary winding. Additionally, the method includes generating, at an output terminal, an output voltage and an output current based on at least information associated with the input voltage, by a secondary winding and one or more first components, the one or more first components including a first diode, through at least the first diode the secondary winding being coupled to the output terminal. Moreover, the method includes generating, at a first terminal, a detected voltage based on at least information associated with the output voltage, by an auxiliary winding and one or more second components. Also, the method includes receiving the detected voltage and a first reference voltage by an error amplifier, generating an amplified voltage based on at least information associated with a difference between the detected voltage and the first reference voltage, and receiving the amplified voltage by a compensation component. Additionally, the method includes generating a second reference voltage based on at least information associated with the amplified voltage, receiving the second reference voltage and a predetermined reference voltage by a summation component, and generating the first reference voltage equal to the second reference voltage and a predetermined reference voltage in magnitude. Moreover, the method includes receiving at least the amplified voltage by a signal generator, generating one or more control signals based on at least information associated with the amplified voltage, receiving the one or more control signals by a gate driver, and generating a drive signal based on at least information associated with the one or more control signals. Also, the method includes receiving the drive signal by a switch, and affecting a first current flowing through the primary winding, based on at least information associated with the drive signal. The process for generating a second reference voltage is performed such that the output voltage is substantially independent of the output current. For example, the method for regulating an output voltage is implemented according to at least FIG. 3. In another example, the switching-mode power conversion system is implemented according to at least FIGS. 3 and 7. In yet another example, the second reference voltage is equal to the amplified voltage multiplied by a predetermined gain in magnitude. In yet another example, the signal generator includes the PWM/PFM generator 320 and the logic control component 325.

Returning to FIG. 4, for example, the compensation signal 452 is used to compensate for the voltage drops of the diode 480 (i.e., the diode D2) and the output cable line, at different output loading conditions. Thus, the output voltage Vout can be obtained as follows.

V out = k × V ref + 1 n V D 1 - V D 2 ( I o ) - I o × r + k R 1 × R 2 R 1 + R 2 Δ I LC ( 18 )

where Vout and Io are the output voltage and the output current of the system 400 respectively. Additionally, n is the turn ratio of the auxiliary winding 474 to the secondary winding 472. VD1 and VD2 are the forward voltages across the diodes 484 and 480 respectively. Moreover, r is the resistance of the output cable line, Vref is the voltage level of a reference signal 462, and ΔILC represents the compensation signal 452. As shown in FIG. 4, the compensation signal 452 depends on output loading conditions. Also,

k = R 1 + R 2 n × R 2 ( 19 )

where R1 and R2 are the resistance of the resistors 412 and 414, respectively.

If V D 2 = V D 2 ( 0 ) + Δ V D 2 ( I 0 ) ( 20 ) then V out = k × V ref + 1 n V D 1 - V D 2 ( 0 ) - Δ V D 2 ( I o ) - I o × r + k R 1 × R 2 R 1 + R 2 Δ I LC ( 21 )

where VD2 (0) denotes the forward voltage of the diode 480 with zero current that flows through the diode 480.

If k R 1 × R 2 R 1 + R 2 Δ I LC = Δ V D 2 ( I o ) + I o × r ( 22 ) then V out = k × V ref + 1 n V D 1 - V D 2 ( 0 ) ( 23 )

As shown in Equation 23, the output voltage Vout is independent of the output current Io, if Equation 22 is satisfied according to certain embodiments of the present invention. For example, changing R1 and R2 while keeping their ratio the same would change ΔILC that is required to satisfy Equation 22. In another example, ΔILC, with at least resistors R1 and R2, generates an offset voltage at the terminal 492 in order to compensate for the voltage drops across the diode 480 and the output cable line.

FIG. 8 is a simplified diagram showing certain components for load compensation in the switching-mode power conversion system 400 according to an embodiment of the present invention. This diagram is merely an example, which should not unduly limit the scope of the claims. One of ordinary skill in the art would recognize many variations, alternatives, and modifications.

As shown in FIGS. 4 and 8, VCMP is generated by the error amplifier 410 and received by the load compensation component 450. For example, the load compensation component 450 includes a transistor 850, an amplifier 860, and a resistor 870. In another example, the amplifier 860 receives VCMP and a voltage signal 862 from a node 872, determines a difference between VCMP and the voltage signal 862, and generate an amplified voltage 864. The amplified voltage 864 is received by the gate of the transistor 850. As shown in FIG. 8, the source of the transistor 850 is connected to the resistor 870 at the node 872, and the drain of the transistor 850 generates the current ΔILC that flows between the terminal 492 and the drain of the transistor 850.

In one embodiment, VCMP is converted to ΔILC by the transistor 850, the amplifier 860, and the resistor 870, as follows.

Δ I LC = V CMP R L ( 24 ) or Δ L L C = G m × V CMP ( 25 )

where RL is the resistance of the resistor 870, and Gm is the corresponding conductance. According to certain embodiments, RL is predetermined in order to approximately satisfy Equation 22, so that Vout can be approximated by Equation 23 and substantially independent of the output current Io.

According to another embodiment of the present invention, a switching-mode power conversion system includes a primary winding configured to receive an input voltage, and a secondary winding coupled to the primary winding and configured to, with one or more first components, generate, at an output terminal, an output voltage and an output current. Additionally, the system includes an auxiliary winding coupled to the secondary winding and configured to, with at least one or more second components, generate, at a first terminal, a detected voltage. Moreover, the system includes an error amplifier configured to receive the detected voltage and a predetermined reference voltage and generate an amplified voltage based on at least information associated with a difference between the detected voltage and the predetermined reference voltage. Also, the system includes a compensation component configured to receive the amplified voltage and generate a compensation current based on at least information associated with the amplified voltage, the compensation current flowing between the first terminal and the compensation component. Additionally, the system includes a signal generator configured to receive at least the amplified voltage and generate one or more control signals based on at least information associated with the amplified voltage, a gate driver configured to receive the one or more control signals and generate a drive signal based on at least information associated with the one or more control signals, and a switch configured to receive the drive signal and affect a first current flowing through the primary winding. The one or more first components include a first diode, through at least the first diode the secondary winding being coupled to the output terminal. The compensation component is further configured to generate the compensation current such that the output voltage is substantially independent of the output current. For example, the switching-mode power conversion system is implemented according to at least FIG. 4. In another example, the switching-mode power conversion system is implemented according to at least FIGS. 4 and 8.

In yet another example, the compensation component includes a compensation transistor, a compensation amplifier, and a compensation resistor, the compensation resistor being associated with a compensation resistance, the compensation amplifier is configured to receive at least the amplified voltage and coupled to both the compensation transistor and the compensation resistor, the compensation transistor is coupled to at least the compensation resistor and configured to generate the compensation current, and the compensation current is equal to the amplified voltage divided by the compensation resistance in magnitude.

In yet another example, the signal generator is configured for pulse-width modulation and/or pulse-frequency modulation. In yet another example, the amplified voltage increases with the output current in magnitude. In yet another example, the one or more first components further include a cable line, through at least the first diode and the cable line, the secondary winding being coupled to the output terminal. In yet another example, the one or more second components include a second diode, a first resistor, and a second resistor, the first resistor and the second resistor both coupled to the first terminal. In yet another example, the error amplifier, the compensation component, the signal generator, and the gate driver are located on a chip. In yet another example, the chip includes the first terminal and a second terminal, the second terminal being coupled to the error amplifier, the compensation component, and the signal generator. In yet another example, the signal generator includes the PWM/PFM generator 420 and the logic control component 425.

According to yet another embodiment of the present invention, a method for regulating an output voltage by a switching-mode power conversion system, the method includes receiving an input voltage by a primary winding. Additionally, the method includes generating, at an output terminal, an output voltage and an output current based on at least information associated with the input voltage, by a secondary winding and one or more first components, the one or more first components including a first diode, through at least the first diode the secondary winding being coupled to the output terminal. Moreover, the method includes generating, at a first terminal, a detected voltage based on at least information associated with the output voltage, by an auxiliary winding and one or more second components. Also, the method includes receiving the detected voltage and a predetermined reference voltage by an error amplifier, generating an amplified voltage based on at least information associated with a difference between the detected voltage and the predetermined reference voltage, and receiving the amplified voltage by a compensation component. Additionally, the method includes generating a compensation current based on at least information associated with the amplified voltage, the compensation current flowing between the first terminal and the compensation component. Moreover, the method includes receiving at least the amplified voltage by a signal generator, generating one or more control signals based on at least information associated with the amplified voltage, receiving the one or more control signals by a gate driver, and generating a drive signal based on at least information associated with the one or more control signals. Also, the method includes receiving the drive signal by a switch, and affecting a first current flowing through the primary winding, based on at least information associated with the drive signal. The process for generating a compensation current is performed such that the output voltage is substantially independent of the output current. For example, the method for regulating an output voltage is implemented according to at least FIG. 4. In another example, the switching-mode power conversion system is implemented according to at least FIGS. 4 and 8.

In yet another example, the compensation current is equal to the amplified voltage divided by a compensation resistance in magnitude, the compensation resistance being associated with a compensation resistor, the compensation resistor being at least a part of the compensation component. In yet another example, the compensation current is equal to the amplified voltage multiplied by a compensation conductance in magnitude, the compensation conductance being associated with a conductance component, the conductance component being at least a part of the compensation component. In yet another example, the signal generator includes the PWM/PFM generator 420 and the logic control component 425.

Many benefits are achieved by way of the present invention over conventional techniques. Certain embodiments of the present invention reduce parts count and/or system cost. Some embodiments of the present invention improve reliability and/or efficiency. Certain embodiments of the present invention simplify circuit designs. Some embodiments of the present invention improve load regulation of the flyback power conversion system with pulse-width-modulation (PWM) control and primary-side regulation.

Although specific embodiments of the present invention have been described, it will be understood by those of skill in the art that there are other embodiments that are equivalent to the described embodiments. Accordingly, it is to be understood that the invention is not to be limited by the specific illustrated embodiments, but only by the scope of the appended claims.

Claims

1. A system controller for regulating a power conversion system, the system controller comprising:

an error amplifier configured to receive an input signal and a first reference signal and generate an amplified signal based on at least information associated with a difference between the input signal and the first reference signal;
a compensation component configured to receive the amplified signal and generate a second reference signal based on at least information associated with the amplified signal;
a summation component configured to receive the second reference signal and a predetermined reference signal and generate the first reference signal, the first reference signal being equal to a sum of the second reference signal and the predetermined reference signal, the first reference signal being different from the second reference signal;
a signal generator configured to receive at least the amplified signal and generate one or more control signals based on at least information associated with the amplified signal; and
a driving component configured to receive the one or more control signals, generate a drive signal based on at least information associated with the one or more control signals, and output the drive signal to a switch to affect a first current flowing through a primary winding of a power conversion system.

2. The system controller of claim 1 wherein the compensation component includes a gain component associated with a predetermined gain and is further configured to generate the second reference signal equal to the amplified signal multiplied by the predetermined gain in magnitude.

3. The system controller of claim 2 wherein the signal generator is configured for pulse-width modulation or pulse-frequency modulation.

4. The system controller of claim 2 wherein the signal generator is configured for pulse-width modulation and pulse-frequency modulation.

5. The system controller of claim 1 wherein the error amplifier is further configured to generate the amplified signal increasing with an output current in magnitude.

6. The system controller of claim 1 wherein the error amplifier, the compensation component, the summation component, the signal generator, and the driving component are located on a chip.

7. The system controller of claim 6 wherein the chip includes a terminal coupled to the error amplifier, the compensation component, and the signal generator.

8. The system controller of claim 1 wherein:

the power conversion system further includes a secondary winding associated with an output voltage and an output current; and
the compensation component is further configured to generate the second reference signal such that the output voltage is substantially independent of the output current.

9. The system controller of claim 1 wherein the compensation component is further configured to increase the second reference signal with an output current.

10. A system controller for regulating a power conversion system, the system controller comprising:

an error amplifier configured to receive an input signal and a predetermined reference signal and generate an amplified signal based on at least information associated with a difference between the input signal and the predetermined reference signal;
a compensation component configured to receive the amplified signal and generate a compensation current based on at least information associated with the amplified signal;
a signal generator configured to receive at least the amplified signal and generate one or more control signals based on at least information associated with the amplified signal; and
a driving component configured to receive the one or more control signals, generate a drive signal based on at least information associated with the one or more control signals, and output the drive signal to a switch to affect a first current flowing through a primary winding of a power conversion system;
wherein the compensation component is further configured to generate, with one or more resistors, an offset voltage based on at least information associated with the compensation current to change the input signal by the offset voltage;
wherein the compensation component includes a compensation transistor configured to generate the compensation current based on at least information associated with the amplified signal.

11. The system controller of claim 10 wherein the error amplifier, the compensation component, the signal generator, and the driving component are located on a chip.

12. The system controller of claim 11 wherein the chip includes a terminal coupled to the error amplifier, the compensation component, and the signal generator.

13. The system controller of claim 10 wherein:

the compensation component includes a compensation resistor associated with a compensation resistance; and
the compensation component is further configured to generate the compensation current equal to the amplified signal divided by the compensation resistance in magnitude.

14. The system controller of claim 10 wherein the compensation component is further configured to increase the compensation current with an output current.

15. The system controller of claim 10 wherein:

the power conversion system further includes a secondary winding associated with an output voltage and an output current; and
the compensation component is further configured to generate the compensation current such that the output voltage is substantially independent of the output current.

16. A system controller for regulating a power conversion system, the system controller comprising:

an error amplifier configured to receive an input signal and a predetermined reference signal and generate an amplified signal based on at least information associated with a difference between the input signal and the predetermined reference signal;
a compensation component configured to receive the amplified signal and generate a compensation current based on at least information associated with the amplified signal;
a signal generator configured to receive at least the amplified signal and generate one or more control signals based on at least information associated with the amplified signal; and
a driving component configured to receive the one or more control signals, generate a drive signal based on at least information associated with the one or more control signals, and output the drive signal to a switch to affect a first current flowing through a primary winding of a power conversion system;
wherein the compensation component is further configured to generate, with one or more resistors, an offset voltage based on at least information associated with the compensation current to change the input signal by the offset voltage;
wherein the compensation component includes a compensation amplifier configured to receive the amplified signal and output a first voltage based on at least information associated with the amplified signal for generating the compensation current.

17. The system controller of claim 16 wherein the error amplifier, the compensation component, the signal generator, and the driving component are located on a chip.

18. The system controller of claim 17 wherein the chip includes a terminal coupled to the error amplifier, the compensation component, and the signal generator.

19. The system controller of claim 16 wherein:

the compensation component includes a compensation resistor associated with a compensation resistance; and
the compensation component is further configured to generate the compensation current equal to the amplified signal divided by the compensation resistance in magnitude.

20. The system controller of claim 16 wherein the compensation component is further configured to increase the compensation current with an output current.

21. The system controller of claim 16 wherein:

the power conversion system further includes a secondary winding associated with an output voltage and an output current; and
the compensation component is further configured to generate the compensation current such that the output voltage is substantially independent of the output current.

22. A method for regulating a power conversion system, the method comprising:

receiving an input signal and a first reference signal;
processing information associated with the input signal and the first reference signal;
generating an amplified signal based on at least information associated with a difference between the input signal and the first reference signal;
receiving the amplified signal;
processing information associated with the amplified signal;
generating a second reference signal based on at least information associated with the amplified signal;
receiving the second reference signal and a predetermined reference signal;
processing information associated with the second reference signal and the predetermined reference signal;
generating the first reference signal equal to a sum of the second reference signal and the predetermined reference signal, the first reference signal being different from the second reference signal;
receiving at least the amplified signal;
processing information associated with the amplified signal;
generating one or more control signals based on at least information associated with the amplified signal;
receiving the one or more control signals;
processing information associated with the one or more control signals;
generating a drive signal based on at least information associated with the one or more control signals; and
outputting the drive signal to a switch to affect a first current flowing through a primary winding of a power conversion system, the power conversion system further including a secondary winding associated with an output voltage and an output current.

23. The method of claim 22 wherein the second reference signal is equal to the amplified signal multiplied by a predetermined gain in magnitude.

Referenced Cited
U.S. Patent Documents
3912340 October 1975 Bertolasi
5247241 September 21, 1993 Ueda
5568044 October 22, 1996 Bittner
5729448 March 17, 1998 Haynie et al.
6134060 October 17, 2000 Ryat
6292376 September 18, 2001 Kato
6366070 April 2, 2002 Cooke et al.
6381151 April 30, 2002 Jang
6545513 April 8, 2003 Tsuchida et al.
6556478 April 29, 2003 Willis et al.
6713995 March 30, 2004 Chen
6798086 September 28, 2004 Utsunomiya
6947298 September 20, 2005 Uchida
6954056 October 11, 2005 Hoshino et al.
6972528 December 6, 2005 Shao
6972548 December 6, 2005 Tzeng et al.
6977824 December 20, 2005 Yang et al.
7035119 April 25, 2006 Koike
7054169 May 30, 2006 Huh et al.
7116089 October 3, 2006 Nguyen et al.
7173404 February 6, 2007 Wu
7262587 August 28, 2007 Takimoto et al.
7265999 September 4, 2007 Murata et al.
7345895 March 18, 2008 Zhu et al.
7394634 July 1, 2008 Fang et al.
7414865 August 19, 2008 Yang
7456623 November 25, 2008 Hasegawa et al.
7492619 February 17, 2009 Ye et al.
7522431 April 21, 2009 Huynh et al.
7605576 October 20, 2009 Kanakubo
7609039 October 27, 2009 Hasegawa
7684220 March 23, 2010 Fang et al.
7684462 March 23, 2010 Ye et al.
7826237 November 2, 2010 Zhang et al.
7852055 December 14, 2010 Michishita
7898825 March 1, 2011 Mulligan et al.
7990202 August 2, 2011 Fang et al.
8085027 December 27, 2011 Lin et al.
8213203 July 3, 2012 Fei et al.
8305776 November 6, 2012 Fang
8331112 December 11, 2012 Huang et al.
8339814 December 25, 2012 Zhang et al.
8391028 March 5, 2013 Yeh
8488342 July 16, 2013 Zhang et al.
8526203 September 3, 2013 Huang et al.
20020080631 June 27, 2002 Kanouda et al.
20040075600 April 22, 2004 Vera et al.
20050057238 March 17, 2005 Yoshida
20050116697 June 2, 2005 Matsuo et al.
20050222646 October 6, 2005 Kroll et al.
20060043953 March 2, 2006 Xu
20060050539 March 9, 2006 Yang et al.
20060273772 December 7, 2006 Groom
20070115696 May 24, 2007 Berghegger
20070171687 July 26, 2007 Kogel et al.
20070241733 October 18, 2007 Chen et al.
20070273345 November 29, 2007 Chen et al.
20080061754 March 13, 2008 Hibi
20080112193 May 15, 2008 Yan et al.
20080157742 July 3, 2008 Martin et al.
20080225563 September 18, 2008 Seo
20080252345 October 16, 2008 Deschamp et al.
20090051336 February 26, 2009 Hartlieb et al.
20090058387 March 5, 2009 Huynh et al.
20090073727 March 19, 2009 Huynh et al.
20090121697 May 14, 2009 Aiura et al.
20090206814 August 20, 2009 Zhang et al.
20090302817 December 10, 2009 Nagai
20100061126 March 11, 2010 Huynh et al.
20100128501 May 27, 2010 Huang et al.
20100141178 June 10, 2010 Negrete et al.
20100225293 September 9, 2010 Wang et al.
20110044076 February 24, 2011 Zhang et al.
20110149614 June 23, 2011 Stracquadaini
20110182089 July 28, 2011 genannt Berghegger
20110248770 October 13, 2011 Fang et al.
20120075891 March 29, 2012 Zhang et al.
20120139435 June 7, 2012 Storm
20120147630 June 14, 2012 Cao et al.
20120195076 August 2, 2012 Zhang et al.
20120257423 October 11, 2012 Fang
20120300508 November 29, 2012 Fang
20130033905 February 7, 2013 Lin et al.
20130051090 February 28, 2013 Xie et al.
20130182476 July 18, 2013 Yang et al.
20130223107 August 29, 2013 Zhang et al.
20130272033 October 17, 2013 Zhang et al.
20130308350 November 21, 2013 Huang et al.
20140078790 March 20, 2014 Lin et al.
20140160809 June 12, 2014 Lin et al.
Foreign Patent Documents
1841893 October 2006 CN
1917322 February 2007 CN
1929274 March 2007 CN
1988347 June 2007 CN
101034851 September 2007 CN
101039077 September 2007 CN
101079576 November 2007 CN
101127495 February 2008 CN
101247083 August 2008 CN
101295872 October 2008 CN
101515756 August 2009 CN
101552560 October 2009 CN
101577488 November 2009 CN
101826796 September 2010 CN
101515756 November 2011 CN
102332826 January 2012 CN
102474964 May 2012 CN
102624237 August 2012 CN
102651613 August 2012 CN
102709880 October 2012 CN
102723945 October 2012 CN
200840174 October 2008 TW
200937157 September 2009 TW
I 437808 May 2014 TW
I 448060 August 2014 TW
Other references
  • United States Patent and Trademark Office, Notice of Allowance mailed Nov. 25, 2013, in U.S. Appl. No. 13/164,608.
  • United States Patent and Trademark Office, Office Action mailed Dec. 5, 2012, in U.S. Appl. No. 12/859,138.
  • United States Patent and Trademark Office, Office Action mailed Jul. 31, 2013, in U.S. Appl. No. 12/859,138.
  • United States Patent and Trademark Office, Notice of Allowance mailed Jan. 16, 2014, in U.S. Appl. No. 13/215,028.
  • United States Patent and Trademark Office, Office Action mailed Feb. 15, 2013, in U.S. Appl. No. 13/052,869.
  • United States Patent and Trademark Office, Office Action mailed Oct. 1, 2013, in U.S. Appl. No. 13/052,869.
  • Chinese Patent Office, Office Action mailed Nov. 14, 2013, in Application No. 201110224933.5.
  • Chinese Patent Office, Office Action mailed Nov. 12, 2013, in Application No. 201110051423.2.
  • Chinese Patent Office, Office Action mailed Nov. 7, 2013, in Application No. 201210342097.5.
  • Chinese Patent Office, Office Action mailed Nov. 5, 2013, in Application No. 201210529679.4.
  • Chinese Patent Office, Office Action mailed Nov. 5, 2013, in Application No. 201310078547.9.
  • United States Patent and Trademark Office, Notice of Allowance mailed Jul. 30, 2014, in U.S. Appl. No. 12/859,138.
  • United States Patent and Trademark Office, Notice of Allowance mailed Sep. 18, 2014, in U.S. Appl. No. 13/946,917.
  • United States Patent and Trademark Office, Notice of Allowance mailed Jul. 7, 2014, in U.S. Appl. No. 13/164,608.
  • United States Patent and Trademark Office, Notice of Allowance mailed Jun. 25, 2014, in U.S. Appl. No. 13/215,028.
  • United States Patent and Trademark Office, Notice of Allowance mailed Mar. 18, 2014, in U.S. Appl. No. 13/215,028.
  • United States Patent and Trademark Office, Notice of Allowance mailed Mar. 7, 2014, in U.S. Appl. No. 13/164,608.
  • United States Patent and Trademark Office, Office Action mailed Apr. 1, 2014, in U.S. Appl. No. 13/052,869.
  • Chinese Patent Office, Office Action mailed Dec. 8, 2014, in Application No. 201110034669.9.
  • Taiwan Patent Office, Office Action mailed Oct. 6, 2014, in Application No. 102115002.
  • Taiwan Patent Office, Office Action mailed Oct. 1, 2014, in Application No. 102116551.
  • United States Patent and Trademark Office, Office Action mailed Nov. 5, 2014, in U.S. Appl. No. 13/052,869.
Patent History
Patent number: 8982585
Type: Grant
Filed: Oct 5, 2012
Date of Patent: Mar 17, 2015
Patent Publication Number: 20130027989
Assignee: On-Bright Electronics (Shanghai) Co., Ltd. (Shanghai)
Inventor: Lieyi Fang (Shanghai)
Primary Examiner: Harry Behm
Assistant Examiner: Matthew Grubb
Application Number: 13/646,239
Classifications