Device for compression across fractures

A bone fixation device includes a first element extending from a first head to a first shaft along a first longitudinal axis and having a first channel extending therethrough. The first head rests against a portion of bone adjacent to a first hole through which the first shaft is inserted. A second element includes a second shaft extending along a second longitudinal axis to a second head and having a second channel extending therethrough, the second head resting against a portion of bone adjacent to a second hole through which the second shaft is inserted. The second channel is dimensioned to receive the first shaft therein. A tensioning element is insertable through the first and second channels so that tension applied at a second end thereof imparts a compressive force to the a bone into which the first and second elements are inserted.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
BACKGROUND INFORMATION

Fractures of the pelvis and, more specifically, of the sacroiliac joint are often treated by inserting a fixation device across the fracture site. Present fixation systems and methods are generally directed to the insertion of one or more sacral bars or cancellous screws across the fracture site. The sacral bars are formed as elongated planar rods passed through the pelvis posterior to the sacrum until a free end of the rod extends out of an opposing wall of the pelvis. Threaded nuts are then screwed onto the ends of the sacral bar to create and maintain compression of the pelvis. Cancellous screws can be inserted to span across the pelvis or can be inserted from either side of the pelvis to maintain the stability of the sacroiliac joint. However, these screws rely heavily on an overall strength of the bone and thread purchase to maintain the compression of the pelvis. These devices are therefore susceptible to failure due to loss of bone strength (e.g., due to osteoporosis, etc.), loosening of the threaded bolts and/or a loss of bony purchase (e.g., through rotational and/or longitudinal movement of the sacral bars within the bone).

SUMMARY OF THE INVENTION

The present invention is directed to a bone fixation device comprising a first element extending from a first head at a first end to a first shaft at a second end along a first central longitudinal axis and having a first channel extending therethrough, the first head extending transverse to the first shaft providing a first shoulder which, in an operative configuration, rests against a portion of bone adjacent to a first hole through which the first shaft is inserted to define a maximum extent to which the first element may be inserted into the hole. The bone fixation device also comprises a second element including a second shaft extending along a second central longitudinal axis from a third end to a head at a fourth end thereof and having a second channel extending therethrough, the second head extending transverse to the second shaft providing a second shoulder which, in an operative configuration, rests against a portion of bone adjacent to a second hole through which the second shaft is inserted to define a maximum extent to which the second element may be inserted into the second hole, the second channel being dimensioned to slidably receive the first shaft therein. The bone fixation device also comprises a tensioning element insertable through the first and second channels, the tensioning element including a first end sized to prevent the first end from entering one of the first and second channels so that, tension applied at a second end of the tensioning element imparts a compressive force to the first and second elements and, consequently to a bone into which the first and second elements are inserted.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a first perspective view of a exemplary bone fixation element according to the present invention in a first configuration;

FIG. 2 shows a perspective view of the bone fixation element of FIG. 1 in a second configuration;

FIG. 3 shows a second perspective view of the bone fixation element of FIG. 1;

FIG. 4 shows a perspective view of the bone fixation element of FIG. 1 in an implanted configuration; and

FIG. 5 shows a side view of the bone fixation element of FIG. 1 in an implanted configuration.

DETAILED DESCRIPTION

The present invention may be further understood with reference to the following description and the appended drawings, wherein like elements are referred to with the same reference numerals. The present invention relates generally to devices and methods for the fixation of a fractured or otherwise damaged pelvic bone. Specifically, the present invention relates to methods and devices for inserting a bone fixation element into the bone. The exemplary bone fixation element according to the invention comprises a first elongated element and a second elongated element, each extending along a longitudinal axis. In an operative configuration, the first and second elements are inserted through first and second lateral openings provided on opposing sides of a pelvic bone. In one embodiment, the first and second lateral openings can be two ends of a single hole formed by drilling completely across the pelvis. In another embodiment, two openings may be drilled on opposing walls of the pelvis. A free end of the first element is then inserted into a channel extending through the second element until the first and second elements are securely seated against the pelvic bone. A cable is then inserted through the first and second elements. A first end of the cable comprises a cable stop configured to lockingly engage an opening on a lateral head of the first element. The cable is then locked in position at a lateral end of the second element using a crimp to secure the first and second elements in a desired position relative to one another and compress the fractured bone, as will be described in greater detail later on. It is noted that although the exemplary system and method are discussed with respect to a sacroiliac fixation system and method, the invention may be used in any other bone fixation procedure in any other bone of the body by modifying the dimensions and shape of the apparatus to suit the particular anatomy. The term “medial” as used herein refers to a direction approaching a medial plane of a body in an operative configuration while the term “lateral” refers to a direction extending away from the medial plane in a right and left direction.

As shown in FIGS. 1-5, a bone fixation device 100 according to an exemplary embodiment of the invention comprises a first element 102 and a second element 104. The first element 102 extends from a lateral end 106 to a medial end 108 along a central longitudinal axis 110. The first element 102 according to this embodiment is substantially cylindrical and comprises a lateral body portion 112 having a first outer diameter and a medial body portion 114 having a second outer diameter, the second outer diameter being smaller than the first outer diameter. An elongated first channel 116 extends through the first element 102 from the lateral end 106 to the medial end 108. The first channel 116 is in longitudinal alignment with the longitudinal axis 110 and is configured and dimensioned to receive a cable 200 therethrough, as will be described in greater detail later on. The lateral end 106 comprises an increased diameter head 118 having an oblong cross-sectional shape. It is noted, however, that any other cross-sectional shape (e.g., oval, circular, rectangular, etc.) may be used without deviating from the scope of the invention. The head 118 also comprises an opening 120 extending therethrough, a hole axis of the opening 120 extending substantially parallel to the longitudinal axis 110. In another exemplary embodiment, the hole axis of the opening 120 may extend at any other angle relative to the axis 110. The opening 120 is positioned adjacent to the channel 116. As shown in FIGS. 4-5, the head 118 may also comprise a countersunk portion 121 configured to aid in manipulation of the cable 200, as will also be described in greater detail below.

The second element 104 extends from a lateral end 122 to a medial end 124 along the central longitudinal axis 110. The second element 104 according to this embodiment is substantially cylindrical in shape and comprises a substantially uniform outer diameter which is substantially equivalent to the first outer diameter of the lateral body portion 112. However, those skilled in the art will understand that the first and second elements 102, 104, respectively, may take any desired shape so long as the medial body portion 114 is slidably receivable within an elongated second channel 126 extending through the second element 104. The second channel 126 extends from the lateral end 122 to the medial end 124 in longitudinal alignment with the longitudinal axis 110 and is configured and dimensioned to permit insertion of the medial body portion 114 thereinto. In one exemplary embodiment, the channel 126 has a substantially uniform diameter substantially equivalent to the outer diameter of the medial body portion 114 with a slight clearance to permit the medial body portion 114 to slide therein. In another exemplary embodiment, as shown in FIG. 3, the channel 126 comprises a medial channel portion 128 and a lateral channel portion 130. The medial channel portion 128 has a diameter substantially equivalent to or greater than second outer diameter of the medial body portion 114 and smaller than the first outer diameter of the lateral body portion 112. This configuration permits the insertion of the medial body portion 114 into the channel 126 while preventing the lateral body portion 112 from being inserted therein. In an exemplary embodiment, the first and second portions 102, 104 are dimensioned so that, when inserted to an operative configuration, the medial body portion 114 is seated within the medial channel portion 128 with enough overlap to maintain stability. Varying a length of the overlap allows adjustment of the length of the device 100 to account for variations in anatomy in different patients. In another embodiment, the device 100 may be provided in a variety of lengths so that a physician may select a device having a length range conforming to the requirements of a particular procedure. In a preferred embodiment, the device 100 may be configured to prevent the medial body portion 114 from being fully seated in the medial channel portion 128. That is, by having the medial body portion 114 only partially seated in the medial channel portion 128, a greater amount of compression may be applied via the cable 200, as will be described in greater detail later on. The lateral channel portion 130 has substantially the same diameter as the first channel 116 so that the cable 200 inserted through the device 100 follows a smooth, substantially unobstructed path. The lateral end 122 comprises an increased diameter head 132 having an oblong cross-sectional shape similar to the shape of the head 118. It is noted, however, that the head 132 may comprise any other shape without deviating from the scope of the invention. The head 132 comprises an opening 134 extending therethrough, a hole axis of the opening 134 extending substantially parallel to the longitudinal axis 110. As with the opening 120, the hole axis of the opening 134 may also extend at any angle relative to the axis 110.

In accordance with an exemplary method according to the invention, a physician or other user makes incisions open to the right and left lateral walls of a pelvis. The fracture is then reduced and provisionally stabilized using, for example, Kirschner wires, as those skilled in the art will understand. A drill may then be used to form at least one longitudinal hole through the pelvis. A guide wire may first be inserted in the desired portion of the bone in a target insertion orientation. A cannulated drill may then be guided over the guide wire to open the bone to a desired diameter selected to accommodate the device 100, as those skilled in the art will understand. In an exemplary embodiment, two holes may be drilled through the pelvis across the fracture to receive two devices 100, although any number of holes may be drilled to conform to the requirements of the particular procedure, as those skilled in the art will understand. The cable 200 having the cable stop 202 on a first end thereof is then inserted into the opening 120 of the first element 102. The cable stop 202 may be an enlarged end portion of the cable 200 having a diameter greater than a diameter of the opening 120. In an exemplary embodiment, the cable stop 202 is inserted into the opening 120 from a medial direction so that when the first element 102 is positioned in the bone, the cable stop 202 is positioned toward the bone. As those skilled in the art will understand, this configuration minimizes stresses applied to the cable stop 202 in an operative configuration and helps to prevent loosening of the cable 200 relative to the bone. The first and second elements 102, 104 may then be inserted into the drilled hole from the left and right walls of the pelvis, respectively, until the medial body portion 114 is seated within the medial channel portion 128, as described in greater detail earlier. In this configuration, the heads 118, 132 are in contact with the pelvis and the cable stop 202 is positioned adjacent the bone, as shown in FIG. 3. The cable stop 202 is seated within the concave portion of the head 118 so the head 118 is in direct contact with the bone without interference from the cable stop 202. The free end of the cable 200 (not shown) is then inserted into the channel 116 from the lateral end 106, forming a loop 204 adjacent the head 118. As those skilled in the art will understand, the cable 200 may be configured and dimensioned to minimize a protrusion of the loop 204 out of the head 118 therefore minimizing a profile of the implanted device 100. The loop 204 aids in removal of the device 100 from the body, as will be described in greater detail later on. The cable 200 is guided through the channel 116 and channel 126 until the free end exits the lateral end 122. The free end of the cable 200 is then inserted into the opening 134 from the lateral end. A crimp is then advanced over the free end of the cable 200 and advanced until it contacts the head 132 of the second element 104. The crimp may be any crimp known in the art. A tensioning mechanism threaded over the free end of the cable 200 is then operated as would be understood by those skilled in the art to apply a desired tension to the cable consequently applying a desired compressive force to the bone. The crimp is then crushed in a known manner to maintain the desired tension on the cable and the free portion of the cable 200 extending away from the crimp is trimmed. As would be understood by those skilled in the art, the countersunk portion 121 provides a space for into which the cable cutter may be advanced to allow a cable cutting device to snip the cable close in minimizing the protrusion of the free end of the cable 200.

A physician may decide to remove the device 100 from the body after a predetermined amount of time has elapsed (e.g., once the bone has healed, etc.). To remove the device, a cable cutting mechanism may be used to cut the loop 204, thereby removing the compressive force applied on the bone by the device 100. The device 100 and cable 200 may then be removed from the body.

It will be apparent to those skilled in the art that various other modifications and variations may be made in the structure and the methodology of the present invention, without departing from the spirit or scope of the invention. For example, the exemplary system and method disclosed herein may be used for the treatment of any bone fracture wherein compression is required and opposing ends of the fractured bone are accessible to the physician. For example, the exemplary system and method may be used for the fixation of fractures of a patella, condyle, etc., wherein the compression may be aided by any number of additional bone fixation devices (e.g., intramedullary nail) without deviating from the scope of the invention. Thus, it is intended that the present invention cover modifications and variations of the invention provided that they come within the scope of the appended claims and their equivalents.

Claims

1. A bone fixation device, comprising:

a first element extending from a first head at a first end to a first shaft at a second end along a first central longitudinal axis and having a first channel extending therethrough, the first head extending transverse to the first shaft providing a first shoulder which, in an operative configuration, rests against a portion of bone adjacent to a first hole through which the first shaft is inserted to define a maximum extent to which the first element may be inserted into the first hole;
a second element including a second shaft extending along a second central longitudinal axis from a third end to a second head at a fourth end thereof and having a second channel extending therethrough, the second head extending transverse to the second shaft providing a second shoulder which, in an operative configuration, rests against a portion of bone adjacent to a second hole through which the second shaft is inserted to define a maximum extent to which the second element may be inserted into the second hole, the second channel being dimensioned to slidably receive the first shaft therein; and
a tensioning element insertable through the first and second channels, the tensioning element including a first end sized to prevent the first end from entering one of the first and second channels so that, tension applied at a second end of the tensioning element imparts a compressive force to the first and second elements and, consequently to a bone into which the first and second elements are inserted.

2. The bone fixation device of claim 1, wherein the first head comprises a first opening positioned adjacent to the first channel, the first opening being configured and dimensioned to receive a second end of the tensioning member therethrough and prevent movement of the first end of the tensioning member therepast.

3. The bone fixation device of claim 2, wherein the second head comprises a second opening positioned adjacent to the second channel, the second opening being configured and dimensioned to receive the second end of the tensioning member therethrough.

4. The bone fixation device of claim 2, wherein the first opening is angled at an angle smaller than 90° relative to the first central longitudinal axis.

5. The bone fixation device of claim 3, wherein the second opening is angled at an angle smaller than 90° relative to the second central longitudinal axis.

6. The bone fixation device of claim 1, further comprising a first countersunk portion on the first shoulder.

7. The bone fixation device of claim 6, further comprising a second countersunk portion on the second shoulder.

8. A bone fixation device, comprising:

a first element extending from a first head at a first end to a first shaft at a second end along a first central longitudinal axis and having a first channel extending therethrough, the first head extending transverse to the first shaft providing a first shoulder which, in an operative configuration, rests against a portion of bone adjacent to a first hole through which the first shaft is inserted to define a maximum extent to which the first element may be inserted into the first hole; and
a second element including a second shaft extending along a second central longitudinal axis from a third end to a second head at a fourth end thereof and having a second channel extending therethrough, the second head extending transverse to the second shaft providing a second shoulder which, in an operative configuration, rests against a portion of bone adjacent to a second hole through which the second shaft is inserted to define a maximum extent to which the second element may be inserted into the second hole, the second channel being dimensioned to slidably receive the first shaft therein, the first and second elements being configured to apply a compressible force to a bone into which the first and second elements are inserted.

9. The bone fixation device of claim 8, wherein the first and second channels are configured and dimensioned to receive a tensioning element therethrough, the tensioning element including a first end sized to prevent the first end from entering one of the first and second channels so that tension applied at a second end of the tensioning element imparts the compressive force to the first and second elements and, consequently to the bone.

10. The bone fixation device of claim 9, wherein the first head comprises a first opening positioned adjacent to the first channel, the first opening being configured and dimensioned to receive a second end of the tensioning member therethrough and prevent movement of the first end of the tensioning member therepast.

11. The bone fixation device of claim 10, wherein the second head comprises a second opening positioned adjacent to the second channel, the second opening being configured and dimensioned to receive the second end of the tensioning member therethrough.

12. The bone fixation device of claim 10, wherein the first opening is angled at an angle smaller than 90° relative to the first central longitudinal axis.

13. The bone fixation device of claim 11, wherein the second opening is angled at an angle smaller than 90° relative to the second central longitudinal axis.

14. The bone fixation device of claim 8, further comprising a first countersunk portion on the first shoulder.

15. The bone fixation device of claim 14, further comprising a second countersunk portion on the second shoulder.

16. A method for bone fixation, comprising the steps of:

inserting a first shaft of a first element into a first hole in a bone, the first element extending from a first head at a first end to the first shaft at a second end along a first central longitudinal axis and having a first channel extending therethrough, the first head extending transverse to the first shaft providing a first shoulder which, in an operative configuration, rests against a portion of bone adjacent to the first hole through to define a maximum extent to which the first element may be inserted into the first hole;
inserting a second shaft of a second element into a second hole in the bone so that a portion of the first shaft is received within a second channel extending through the second element, the second element extending along a second central longitudinal axis from a third end to a second head at a fourth end thereof, the second head extending transverse to the second shaft providing a second shoulder which, in an operative configuration, rests against a portion of bone adjacent to the second hole to define a maximum extent to which the second element may be inserted into the second hole;
inserting a second end of a tensioning element through the first and second channels, the tensioning element including a first end sized to prevent the first end from entering one of the first and second channels
applying a tension to the second end of the tensioning element to impart a compressive force to the first and second elements and, consequently to the bone; and
permanently securing the tensioning element to the bone to maintain the compressible force on the bone.

17. The method of claim 16, further comprising the step of looping the tensioning member through a first opening provided on the first head, the first opening being configured and dimensioned to receive a second end of the tensioning member therethrough and prevent movement of the first end of the tensioning member therepast.

18. The method of claim 17, further comprising the step of looping the tensioning member through a second opening provided on the second head, the second opening being configured and dimensioned to receive the second end of the tensioning member therethrough.

19. The method of claim 16, further comprising the step of advancing a crimp over the second end of the tensioning member and crushing the crimp adjacent the second head.

20. The method of claim 16, further comprising the step of cutting a free portion of the tensioning member.

Referenced Cited
U.S. Patent Documents
4047523 September 13, 1977 Hall
4409974 October 18, 1983 Freedland
4530114 July 23, 1985 Tepic
4569338 February 11, 1986 Edwards
4590928 May 27, 1986 Hunt et al.
4930499 June 5, 1990 Rowe
5000165 March 19, 1991 Watanabe
5108397 April 28, 1992 White
5127912 July 7, 1992 Ray et al.
5129904 July 14, 1992 Illi
5152794 October 6, 1992 Davidson
5300073 April 5, 1994 Ray et al.
5306275 April 26, 1994 Bryan
5382257 January 17, 1995 Lewis et al.
5458599 October 17, 1995 Adobbati
5515562 May 14, 1996 Miller et al.
5797915 August 25, 1998 Pierson, III et al.
5800544 September 1, 1998 Demopulos et al.
5885294 March 23, 1999 Pedlick et al.
5899901 May 4, 1999 Middleton
5989252 November 23, 1999 Fumex
6010505 January 4, 2000 Asche et al.
6041485 March 28, 2000 Pedlick et al.
6080192 June 27, 2000 Demopulos et al.
6106556 August 22, 2000 Demopulos et al.
6126660 October 3, 2000 Dietz
6197028 March 6, 2001 Ray et al.
6197065 March 6, 2001 Martin et al.
6214004 April 10, 2001 Coker
6302887 October 16, 2001 Spranza et al.
6348053 February 19, 2002 Cachia
6368326 April 9, 2002 Dakin et al.
6508841 January 21, 2003 Martin et al.
6520990 February 18, 2003 Ray
6544267 April 8, 2003 Cole et al.
6558387 May 6, 2003 Errico et al.
6565568 May 20, 2003 Rogozinski
6602214 August 5, 2003 Heinz et al.
6613059 September 2, 2003 Schaller et al.
6626916 September 30, 2003 Yeung et al.
6648890 November 18, 2003 Culbert et al.
6648903 November 18, 2003 Pierson, III
6712855 March 30, 2004 Martin et al.
6730092 May 4, 2004 Songer
6761722 July 13, 2004 Cole et al.
7037308 May 2, 2006 Medoff
7153305 December 26, 2006 Johnson et al.
7326222 February 5, 2008 Dreyfuss et al.
7410489 August 12, 2008 Dakin et al.
7651528 January 26, 2010 Montgomery et al.
7704252 April 27, 2010 Albertson et al.
7722643 May 25, 2010 Schaller et al.
7749255 July 6, 2010 Johnson et al.
7771426 August 10, 2010 Burch et al.
7780707 August 24, 2010 Johnson et al.
7789895 September 7, 2010 Heinz
7799057 September 21, 2010 Hudgins et al.
7892255 February 22, 2011 Schaller et al.
7938832 May 10, 2011 Culbert et al.
7947064 May 24, 2011 Bergeron et al.
20030236555 December 25, 2003 Thornes
20040260297 December 23, 2004 Padget et al.
20080177306 July 24, 2008 Lamborne et al.
20090228049 September 10, 2009 Park
20100036440 February 11, 2010 Morris et al.
20110137356 June 9, 2011 Kollmer
Foreign Patent Documents
20 2007 017 159 June 2008 DE
0 260 222 March 1988 EP
Patent History
Patent number: 9011501
Type: Grant
Filed: Dec 4, 2012
Date of Patent: Apr 21, 2015
Patent Publication Number: 20130158609
Assignee: Depuy Synthes Products, Inc. (Raynham, MA)
Inventors: George Mikhail (West Chester, PA), Glen Pierson (West Chester, PA)
Primary Examiner: Christopher Beccia
Application Number: 13/693,603
Classifications
Current U.S. Class: Head Structure (606/305)
International Classification: A61B 17/86 (20060101); A61B 17/68 (20060101); A61B 17/84 (20060101); A61B 17/88 (20060101);