Device for compression across fractures
A bone fixation device includes a first element extending from a first head to a first shaft along a first longitudinal axis and having a first channel extending therethrough. The first head rests against a portion of bone adjacent to a first hole through which the first shaft is inserted. A second element includes a second shaft extending along a second longitudinal axis to a second head and having a second channel extending therethrough, the second head resting against a portion of bone adjacent to a second hole through which the second shaft is inserted. The second channel is dimensioned to receive the first shaft therein. A tensioning element is insertable through the first and second channels so that tension applied at a second end thereof imparts a compressive force to the a bone into which the first and second elements are inserted.
Latest Depuy Synthes Products, Inc. Patents:
- Technologies for determining the accuracy of three-dimensional models for use in an orthopedic surgical procedure
- Strut flow diverter for cerebral aneurysms and methods for preventing strut entanglement
- Method of normalizing implant strain readings to assess bone healing
- Electric motor driven tool for orthopedic impacting
- Delivery of embolic braid
Fractures of the pelvis and, more specifically, of the sacroiliac joint are often treated by inserting a fixation device across the fracture site. Present fixation systems and methods are generally directed to the insertion of one or more sacral bars or cancellous screws across the fracture site. The sacral bars are formed as elongated planar rods passed through the pelvis posterior to the sacrum until a free end of the rod extends out of an opposing wall of the pelvis. Threaded nuts are then screwed onto the ends of the sacral bar to create and maintain compression of the pelvis. Cancellous screws can be inserted to span across the pelvis or can be inserted from either side of the pelvis to maintain the stability of the sacroiliac joint. However, these screws rely heavily on an overall strength of the bone and thread purchase to maintain the compression of the pelvis. These devices are therefore susceptible to failure due to loss of bone strength (e.g., due to osteoporosis, etc.), loosening of the threaded bolts and/or a loss of bony purchase (e.g., through rotational and/or longitudinal movement of the sacral bars within the bone).
SUMMARY OF THE INVENTIONThe present invention is directed to a bone fixation device comprising a first element extending from a first head at a first end to a first shaft at a second end along a first central longitudinal axis and having a first channel extending therethrough, the first head extending transverse to the first shaft providing a first shoulder which, in an operative configuration, rests against a portion of bone adjacent to a first hole through which the first shaft is inserted to define a maximum extent to which the first element may be inserted into the hole. The bone fixation device also comprises a second element including a second shaft extending along a second central longitudinal axis from a third end to a head at a fourth end thereof and having a second channel extending therethrough, the second head extending transverse to the second shaft providing a second shoulder which, in an operative configuration, rests against a portion of bone adjacent to a second hole through which the second shaft is inserted to define a maximum extent to which the second element may be inserted into the second hole, the second channel being dimensioned to slidably receive the first shaft therein. The bone fixation device also comprises a tensioning element insertable through the first and second channels, the tensioning element including a first end sized to prevent the first end from entering one of the first and second channels so that, tension applied at a second end of the tensioning element imparts a compressive force to the first and second elements and, consequently to a bone into which the first and second elements are inserted.
The present invention may be further understood with reference to the following description and the appended drawings, wherein like elements are referred to with the same reference numerals. The present invention relates generally to devices and methods for the fixation of a fractured or otherwise damaged pelvic bone. Specifically, the present invention relates to methods and devices for inserting a bone fixation element into the bone. The exemplary bone fixation element according to the invention comprises a first elongated element and a second elongated element, each extending along a longitudinal axis. In an operative configuration, the first and second elements are inserted through first and second lateral openings provided on opposing sides of a pelvic bone. In one embodiment, the first and second lateral openings can be two ends of a single hole formed by drilling completely across the pelvis. In another embodiment, two openings may be drilled on opposing walls of the pelvis. A free end of the first element is then inserted into a channel extending through the second element until the first and second elements are securely seated against the pelvic bone. A cable is then inserted through the first and second elements. A first end of the cable comprises a cable stop configured to lockingly engage an opening on a lateral head of the first element. The cable is then locked in position at a lateral end of the second element using a crimp to secure the first and second elements in a desired position relative to one another and compress the fractured bone, as will be described in greater detail later on. It is noted that although the exemplary system and method are discussed with respect to a sacroiliac fixation system and method, the invention may be used in any other bone fixation procedure in any other bone of the body by modifying the dimensions and shape of the apparatus to suit the particular anatomy. The term “medial” as used herein refers to a direction approaching a medial plane of a body in an operative configuration while the term “lateral” refers to a direction extending away from the medial plane in a right and left direction.
As shown in
The second element 104 extends from a lateral end 122 to a medial end 124 along the central longitudinal axis 110. The second element 104 according to this embodiment is substantially cylindrical in shape and comprises a substantially uniform outer diameter which is substantially equivalent to the first outer diameter of the lateral body portion 112. However, those skilled in the art will understand that the first and second elements 102, 104, respectively, may take any desired shape so long as the medial body portion 114 is slidably receivable within an elongated second channel 126 extending through the second element 104. The second channel 126 extends from the lateral end 122 to the medial end 124 in longitudinal alignment with the longitudinal axis 110 and is configured and dimensioned to permit insertion of the medial body portion 114 thereinto. In one exemplary embodiment, the channel 126 has a substantially uniform diameter substantially equivalent to the outer diameter of the medial body portion 114 with a slight clearance to permit the medial body portion 114 to slide therein. In another exemplary embodiment, as shown in
In accordance with an exemplary method according to the invention, a physician or other user makes incisions open to the right and left lateral walls of a pelvis. The fracture is then reduced and provisionally stabilized using, for example, Kirschner wires, as those skilled in the art will understand. A drill may then be used to form at least one longitudinal hole through the pelvis. A guide wire may first be inserted in the desired portion of the bone in a target insertion orientation. A cannulated drill may then be guided over the guide wire to open the bone to a desired diameter selected to accommodate the device 100, as those skilled in the art will understand. In an exemplary embodiment, two holes may be drilled through the pelvis across the fracture to receive two devices 100, although any number of holes may be drilled to conform to the requirements of the particular procedure, as those skilled in the art will understand. The cable 200 having the cable stop 202 on a first end thereof is then inserted into the opening 120 of the first element 102. The cable stop 202 may be an enlarged end portion of the cable 200 having a diameter greater than a diameter of the opening 120. In an exemplary embodiment, the cable stop 202 is inserted into the opening 120 from a medial direction so that when the first element 102 is positioned in the bone, the cable stop 202 is positioned toward the bone. As those skilled in the art will understand, this configuration minimizes stresses applied to the cable stop 202 in an operative configuration and helps to prevent loosening of the cable 200 relative to the bone. The first and second elements 102, 104 may then be inserted into the drilled hole from the left and right walls of the pelvis, respectively, until the medial body portion 114 is seated within the medial channel portion 128, as described in greater detail earlier. In this configuration, the heads 118, 132 are in contact with the pelvis and the cable stop 202 is positioned adjacent the bone, as shown in
A physician may decide to remove the device 100 from the body after a predetermined amount of time has elapsed (e.g., once the bone has healed, etc.). To remove the device, a cable cutting mechanism may be used to cut the loop 204, thereby removing the compressive force applied on the bone by the device 100. The device 100 and cable 200 may then be removed from the body.
It will be apparent to those skilled in the art that various other modifications and variations may be made in the structure and the methodology of the present invention, without departing from the spirit or scope of the invention. For example, the exemplary system and method disclosed herein may be used for the treatment of any bone fracture wherein compression is required and opposing ends of the fractured bone are accessible to the physician. For example, the exemplary system and method may be used for the fixation of fractures of a patella, condyle, etc., wherein the compression may be aided by any number of additional bone fixation devices (e.g., intramedullary nail) without deviating from the scope of the invention. Thus, it is intended that the present invention cover modifications and variations of the invention provided that they come within the scope of the appended claims and their equivalents.
Claims
1. A bone fixation device, comprising:
- a first element extending from a first head at a first end to a first shaft at a second end along a first central longitudinal axis and having a first channel extending therethrough, the first head extending transverse to the first shaft providing a first shoulder which, in an operative configuration, rests against a portion of bone adjacent to a first hole through which the first shaft is inserted to define a maximum extent to which the first element may be inserted into the first hole;
- a second element including a second shaft extending along a second central longitudinal axis from a third end to a second head at a fourth end thereof and having a second channel extending therethrough, the second head extending transverse to the second shaft providing a second shoulder which, in an operative configuration, rests against a portion of bone adjacent to a second hole through which the second shaft is inserted to define a maximum extent to which the second element may be inserted into the second hole, the second channel being dimensioned to slidably receive the first shaft therein; and
- a tensioning element insertable through the first and second channels, the tensioning element including a first end sized to prevent the first end from entering one of the first and second channels so that, tension applied at a second end of the tensioning element imparts a compressive force to the first and second elements and, consequently to a bone into which the first and second elements are inserted.
2. The bone fixation device of claim 1, wherein the first head comprises a first opening positioned adjacent to the first channel, the first opening being configured and dimensioned to receive a second end of the tensioning member therethrough and prevent movement of the first end of the tensioning member therepast.
3. The bone fixation device of claim 2, wherein the second head comprises a second opening positioned adjacent to the second channel, the second opening being configured and dimensioned to receive the second end of the tensioning member therethrough.
4. The bone fixation device of claim 2, wherein the first opening is angled at an angle smaller than 90° relative to the first central longitudinal axis.
5. The bone fixation device of claim 3, wherein the second opening is angled at an angle smaller than 90° relative to the second central longitudinal axis.
6. The bone fixation device of claim 1, further comprising a first countersunk portion on the first shoulder.
7. The bone fixation device of claim 6, further comprising a second countersunk portion on the second shoulder.
8. A bone fixation device, comprising:
- a first element extending from a first head at a first end to a first shaft at a second end along a first central longitudinal axis and having a first channel extending therethrough, the first head extending transverse to the first shaft providing a first shoulder which, in an operative configuration, rests against a portion of bone adjacent to a first hole through which the first shaft is inserted to define a maximum extent to which the first element may be inserted into the first hole; and
- a second element including a second shaft extending along a second central longitudinal axis from a third end to a second head at a fourth end thereof and having a second channel extending therethrough, the second head extending transverse to the second shaft providing a second shoulder which, in an operative configuration, rests against a portion of bone adjacent to a second hole through which the second shaft is inserted to define a maximum extent to which the second element may be inserted into the second hole, the second channel being dimensioned to slidably receive the first shaft therein, the first and second elements being configured to apply a compressible force to a bone into which the first and second elements are inserted.
9. The bone fixation device of claim 8, wherein the first and second channels are configured and dimensioned to receive a tensioning element therethrough, the tensioning element including a first end sized to prevent the first end from entering one of the first and second channels so that tension applied at a second end of the tensioning element imparts the compressive force to the first and second elements and, consequently to the bone.
10. The bone fixation device of claim 9, wherein the first head comprises a first opening positioned adjacent to the first channel, the first opening being configured and dimensioned to receive a second end of the tensioning member therethrough and prevent movement of the first end of the tensioning member therepast.
11. The bone fixation device of claim 10, wherein the second head comprises a second opening positioned adjacent to the second channel, the second opening being configured and dimensioned to receive the second end of the tensioning member therethrough.
12. The bone fixation device of claim 10, wherein the first opening is angled at an angle smaller than 90° relative to the first central longitudinal axis.
13. The bone fixation device of claim 11, wherein the second opening is angled at an angle smaller than 90° relative to the second central longitudinal axis.
14. The bone fixation device of claim 8, further comprising a first countersunk portion on the first shoulder.
15. The bone fixation device of claim 14, further comprising a second countersunk portion on the second shoulder.
16. A method for bone fixation, comprising the steps of:
- inserting a first shaft of a first element into a first hole in a bone, the first element extending from a first head at a first end to the first shaft at a second end along a first central longitudinal axis and having a first channel extending therethrough, the first head extending transverse to the first shaft providing a first shoulder which, in an operative configuration, rests against a portion of bone adjacent to the first hole through to define a maximum extent to which the first element may be inserted into the first hole;
- inserting a second shaft of a second element into a second hole in the bone so that a portion of the first shaft is received within a second channel extending through the second element, the second element extending along a second central longitudinal axis from a third end to a second head at a fourth end thereof, the second head extending transverse to the second shaft providing a second shoulder which, in an operative configuration, rests against a portion of bone adjacent to the second hole to define a maximum extent to which the second element may be inserted into the second hole;
- inserting a second end of a tensioning element through the first and second channels, the tensioning element including a first end sized to prevent the first end from entering one of the first and second channels
- applying a tension to the second end of the tensioning element to impart a compressive force to the first and second elements and, consequently to the bone; and
- permanently securing the tensioning element to the bone to maintain the compressible force on the bone.
17. The method of claim 16, further comprising the step of looping the tensioning member through a first opening provided on the first head, the first opening being configured and dimensioned to receive a second end of the tensioning member therethrough and prevent movement of the first end of the tensioning member therepast.
18. The method of claim 17, further comprising the step of looping the tensioning member through a second opening provided on the second head, the second opening being configured and dimensioned to receive the second end of the tensioning member therethrough.
19. The method of claim 16, further comprising the step of advancing a crimp over the second end of the tensioning member and crushing the crimp adjacent the second head.
20. The method of claim 16, further comprising the step of cutting a free portion of the tensioning member.
4047523 | September 13, 1977 | Hall |
4409974 | October 18, 1983 | Freedland |
4530114 | July 23, 1985 | Tepic |
4569338 | February 11, 1986 | Edwards |
4590928 | May 27, 1986 | Hunt et al. |
4930499 | June 5, 1990 | Rowe |
5000165 | March 19, 1991 | Watanabe |
5108397 | April 28, 1992 | White |
5127912 | July 7, 1992 | Ray et al. |
5129904 | July 14, 1992 | Illi |
5152794 | October 6, 1992 | Davidson |
5300073 | April 5, 1994 | Ray et al. |
5306275 | April 26, 1994 | Bryan |
5382257 | January 17, 1995 | Lewis et al. |
5458599 | October 17, 1995 | Adobbati |
5515562 | May 14, 1996 | Miller et al. |
5797915 | August 25, 1998 | Pierson, III et al. |
5800544 | September 1, 1998 | Demopulos et al. |
5885294 | March 23, 1999 | Pedlick et al. |
5899901 | May 4, 1999 | Middleton |
5989252 | November 23, 1999 | Fumex |
6010505 | January 4, 2000 | Asche et al. |
6041485 | March 28, 2000 | Pedlick et al. |
6080192 | June 27, 2000 | Demopulos et al. |
6106556 | August 22, 2000 | Demopulos et al. |
6126660 | October 3, 2000 | Dietz |
6197028 | March 6, 2001 | Ray et al. |
6197065 | March 6, 2001 | Martin et al. |
6214004 | April 10, 2001 | Coker |
6302887 | October 16, 2001 | Spranza et al. |
6348053 | February 19, 2002 | Cachia |
6368326 | April 9, 2002 | Dakin et al. |
6508841 | January 21, 2003 | Martin et al. |
6520990 | February 18, 2003 | Ray |
6544267 | April 8, 2003 | Cole et al. |
6558387 | May 6, 2003 | Errico et al. |
6565568 | May 20, 2003 | Rogozinski |
6602214 | August 5, 2003 | Heinz et al. |
6613059 | September 2, 2003 | Schaller et al. |
6626916 | September 30, 2003 | Yeung et al. |
6648890 | November 18, 2003 | Culbert et al. |
6648903 | November 18, 2003 | Pierson, III |
6712855 | March 30, 2004 | Martin et al. |
6730092 | May 4, 2004 | Songer |
6761722 | July 13, 2004 | Cole et al. |
7037308 | May 2, 2006 | Medoff |
7153305 | December 26, 2006 | Johnson et al. |
7326222 | February 5, 2008 | Dreyfuss et al. |
7410489 | August 12, 2008 | Dakin et al. |
7651528 | January 26, 2010 | Montgomery et al. |
7704252 | April 27, 2010 | Albertson et al. |
7722643 | May 25, 2010 | Schaller et al. |
7749255 | July 6, 2010 | Johnson et al. |
7771426 | August 10, 2010 | Burch et al. |
7780707 | August 24, 2010 | Johnson et al. |
7789895 | September 7, 2010 | Heinz |
7799057 | September 21, 2010 | Hudgins et al. |
7892255 | February 22, 2011 | Schaller et al. |
7938832 | May 10, 2011 | Culbert et al. |
7947064 | May 24, 2011 | Bergeron et al. |
20030236555 | December 25, 2003 | Thornes |
20040260297 | December 23, 2004 | Padget et al. |
20080177306 | July 24, 2008 | Lamborne et al. |
20090228049 | September 10, 2009 | Park |
20100036440 | February 11, 2010 | Morris et al. |
20110137356 | June 9, 2011 | Kollmer |
20 2007 017 159 | June 2008 | DE |
0 260 222 | March 1988 | EP |
Type: Grant
Filed: Dec 4, 2012
Date of Patent: Apr 21, 2015
Patent Publication Number: 20130158609
Assignee: Depuy Synthes Products, Inc. (Raynham, MA)
Inventors: George Mikhail (West Chester, PA), Glen Pierson (West Chester, PA)
Primary Examiner: Christopher Beccia
Application Number: 13/693,603
International Classification: A61B 17/86 (20060101); A61B 17/68 (20060101); A61B 17/84 (20060101); A61B 17/88 (20060101);