Key assignment for a brand
Systems and methods for providing secured network access are provided. A user device located within range of a branded hotspot initiates a request for the secured network access. The request concerns secured network access at the hotspot by the user device and includes a unique pre-shared key. A query regarding the unique pre-shared key is sent to a database, which retrieves information regarding a corresponding pre-shared key. That information is sent to the hotspot controller, which allows the user device secured network access as governed by one or more parameters associated with the pre-shared key.
Latest Ruckus Wireless, Inc. Patents:
1. Field of the Invention
The present invention generally relates to key assignment. More specifically, the present invention relates to key assignment for a brand.
2. Description of the Related Art
An increasing number of individuals and businesses rely on wireless services to carry out various transactions and enable communication from remote locations. Many businesses such as hotels and coffee houses have sought to capitalize on this trend and offer free wireless access to attract and retain customers. A business offering such wireless access may do by creating a “hotspot”—a location that offers Internet access over a wireless local area network through the use of a router connected to a link to an Internet service provider.
Many hotspots only offer open and unsecured communications. Some users, however, may wish to engage in communications or transactions that involve personal, sensitive, or proprietary information that is not necessarily suited for an open and unsecured communications network. As such, users may wish for such transactions be conducted in a secure manner, such that such information may not be exposed or stolen.
Implementing security features is complicated, difficult to maintain, and requires a high level of technical knowledge. An additional complication is that users at a hotspot may be continually changing. Authentication relying on 802.1x/EAP is not a practical option as hotspot users may vary widely in security needs. Setting up a RADIUS server on a network backend may likewise be complicated and unwieldy.
Pre-shared key (PSK)-based security systems require that a secret be manually entered onto all user devices using the network. A PSK-based system relies on a secret shared between and stored at both the client station and the access point. The secret may be, for example, a long bit stream, such as a passphrase, a password, a hexadecimal string, or the like. Used by a client station and the access point to authenticate each other, the secret may also be used to generate an encryption key set.
A disadvantage to PSK-based systems is that once the shared secret becomes known to unauthorized personnel, the security of the entire network is compromised. This may pose a problem where network access is provided to an ever-changing set of numerous, diverse, and transient mobile users. Generally, to maintain the security of a PSK-based system, the secret must be changed on all client stations whenever a person with knowledge of the secret departs from the organization or is no longer authorized to access the network. As a result, many commercial organizations (e.g., small- and medium-sized businesses or enterprises with a high degree of turn over) have been unable to deploy security measures around their hotspots, because of their lack of expertise and/or full-time professional technical support.
In addition, a business (e.g., branded hotels) may have multiple locations where customers are provided service. While wireless internet services may be provided at these multiple locations, the customer is generally required to login and authenticate anew at each location. Such a business may wish to be able to leverage the information previously provided and steps previously performed at one location to facilitate and ease the customer experience at a second location. As used herein, a brand refers to any related products or services that may be provided at a plurality of locations. A branded hotspot, for example, may be a hotspot associated with a particular coffee shop that is associated with a chain of coffee shops, each of which may have its own branded hotspot.
SUMMARY OF THE CLAIMED INVENTIONEmbodiments of the present invention include systems and methods for providing secured network access at a branded hotspot. A user device located within range of a branded hotspot initiates a request for the secured network access. The request concerns secured network access at the hotspot by the user device and includes a unique pre-shared key. A query regarding the unique pre-shared key is sent to a database, which retrieves information regarding a corresponding pre-shared key. That information is sent to the hotspot controller, which allows the user device secured network access as governed by one or more parameters associated with the pre-shared key.
Various embodiments of the present invention include methods for providing secured network access at a branded hotspot. Such methods may include receiving a request for secured network access initiated by a user device located within a range of a hotspot associated with a brand. The request may include a unique pre-shared key associated with the user device. Methods may further include sending a query to a database of pre-shared keys concerning the unique pre-shared key included in the request, receiving a response to the query including a corresponding pre-shared key regarding secured network access that has been generated at another hotspot associated with the brand, and providing secured network access at the hotspot based on the unique pre-shared key associated with the user device and the corresponding pre-shared key.
Additional embodiments include apparatuses for providing secured network access at a branded hotspot. Such apparatuses may include an interface for receiving an incoming request initiated by a user device located within a range of a hotspot associated with a brand and a processor for executing instructions stored in memory to generates a query to a database of pre-shared keys concerning the unique pre-shared key included in the request. The interface may further receive a response to the query including a corresponding pre-shared key regarding secured network access that has been generated at another hotspot associated with the brand, and secured network access may be provided at the hotspot based on the unique pre-shared key associated with the user device and the corresponding pre-shared key.
Embodiments of the present invention may further include systems for providing secured network access at a branded hotspot. Such systems may include a hotspot controller controlling a branded hotspot and comprising an interface that receives an incoming request for secured network access concerning a unique pre-shared key and initiated by a user device located within a range of the branded hotspot, sends a query to a database of pre-shared keys concerning the unique pre-shared key included in the request, and receives a response to the query including a corresponding pre-shared key regarding secured network access that has been generated at another hotspot associated with the brand. Systems may further include an access point associated with the branded hotspot that provides secured network access based on the unique pre-shared key associated with the user device and the corresponding pre-shared key.
Other embodiments of the present invention include non-transitory computer-readable storage media on which is embodied instructions executable to providing secured network access at a branded hotspot in general accordance with the method previously set forth above.
Secured network access at a branded hotspot is provided. A user device located within range of the hotspot initiates a request sent via an open communication network associated with the hotspot. The request concerns secured network access at the hotspot by the user device and includes a unique pre-shared key. A query regarding the unique pre-shared key is sent to a database, which retrieves information regarding a corresponding pre-shared key. That information is sent to the hotspot controller, which allows the user device secured network access as governed by one or more parameters associated with the pre-shared key.
Users may use any number of different wireless user devices 110 such as notebook, netbook, and tablet computers with WiFi capability, smartphones with WiFi capability, or any other type of wireless computing device capable of communicating over communication networks 120. User device 110 may also be configured to access data from other storage media, such as memory cards or disk drives as may be appropriate in the case of downloaded services. User device 110 may include standard hardware computing components such as network (e.g., wireless) and media interfaces, non-transitory computer-readable storage (memory), and processors for executing instructions that may be stored in memory.
Communication networks 120A-B may convey various kinds of information to user devices, such as user device 110. Communication networks 120A-B may be a local, proprietary network (e.g., an intranet) and/or may be a part of a larger wide-area network. The communications network 120A-B may be a local area network (LAN), which may be communicatively coupled to a wide area network (WAN) such as the Internet. The Internet is a broad network of interconnected computers and servers allowing for the transmission and exchange of Internet Protocol (IP) data between users connected through a network service provider. Examples of network service providers are the public switched telephone network, a cable service provider, a provider of digital subscriber line (DSL) services, or a satellite service provider. Communications networks 120A-B allow a connecting device (e.g., user device 110) to access the Internet. Open communication network 120A is open and unsecured. As such, any user device 110 may be able to connect to the open communication network 120A without (much) restriction. In contrast, secured communication network 120B may involve various security policies and protocols so that communications to and from user device 110 may remain secure.
Communication networks 120A-B are provided by a hotspot access point 130, which can transmit various electromagnetic waves. Examples of wireless protocols that might be used by hotspot access point 130 include IEEE 802.11 (Wi-Fi or Wireless LAN), IEEE 802.16 (WiMAX), or IEEE 802.16c network. Hotspot may be inclusive or a number of wireless transceivers distributed over an area.
Access point 130 includes, at the least, an antenna system, radio, memory, and processor. The antenna system wirelessly receives and transmits data packets. For example, the antenna system can receive packet data such as Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) packet data using the IEEE 802.11 wireless protocol. Radio converts data into the requisite wireless protocols. Various instructions governing the control of the access point 130 are stored in memory and executed by processor.
One or more wireless or wired connections may be created to allow for data transmission between access point 130 and user device 110 (via communication networks 120A-B) as well as web server 140, hotspot controller 150, and various other access points in network environment 100. The antenna may further include selectable antenna elements like those disclosed in U.S. Pat. No. 7,292,198 for a “System and Method for an Omnidirectional Planar Antenna Apparatus,” the disclosure of which is incorporated herein by reference. Hotspot access point 130 may also utilize various transmission parameter controls like those disclosed in U.S. Pat. No. 7,889,497 for a “System and Method for Transmission Parameter Control for an Antenna Apparatus with Selectable Elements,” the disclosure of which is incorporated herein by reference.
Web server 140 may include any type of server or other computing device as is known in the art for communication over the Internet (web). Web server 140 may include standard hardware computing components such as network and media interfaces, non-transitory computer-readable storage (memory), and processors for executing instructions or accessing information that may be stored in memory. The functionalities of multiple servers may be integrated into a single server. Any of the aforementioned servers (or an integrated server) may take on certain client-side, cache, or proxy server characteristics. These characteristics may depend on the particular network placement of the server or certain configurations of the server.
Hotspot controller 150 manages the one or more hotspot access points 130 in network environment 100. As such, the hotspot controller 150 intelligently manages the hotspot wireless services, including deployment, RF assignments, traffic/load balancing, and security. In terms of security, for example, the hotspot controller 150 may receive a request that a user device 110 be allowed to use the secured communication network 120B. The hotspot controller 150 may be located remotely (e.g., in the cloud) or in the same local area network as the hotspot access point 130.
In some instances, the hotspot controlled by hotspot controller 150 may be associated with a particular brand (e.g., hotel or coffee shop chain). When a user device 110 that is new to a brand requests secure network access, the request may be redirected to web server 140, which may convey the request to hotspot controller 150. Hotspot controller 150 dynamically generates a unique pre-shared key for the requesting user device 110 and return the key to web portal server 140, which in turns generates a web page displaying the unique pre-shared key to the user device 110. User device 110 may then use the pre-shared key in a request to access secure communication network 120B. Information regarding the pre-shared key associated with user device 110 is further sent by hotspot controller 150 to database of pre-shared keys 160 for storage.
The database of pre-shared keys 160 is accessible via the cloud (e.g., Internet) and stores a plurality of pre-shared keys associated with a brand. In some instances, the database 160 may store keys for a plurality of brands. The pre-shared keys and related information (e.g., associated parameter(s) for secured network access) may provided by a plurality of branded hotspots. Because the database 160 is located in the cloud, any hotspot controller 150 may send a query to the database 160 when an unfamiliar (to the hotspot controller 150) user device 110 submits an unfamiliar pre-shared key in a request for secured network access.
In some cases, the user device 110 may wish to request secured network access at another hotspot that is associated with the same brand but that is new to the user device 110. Because the user device 110 is already associated with a pre-shared key, the request sent by user device 110 may be sent using secured communication network 120B to hotspot controller 150. Since the user device 110 is new to this particular hotspot controller 150, a query regarding the pre-shared key is sent to database of pre-shared keys 160. In response to the query, the database 160 retrieves information regarding a corresponding pre-shared key. Such information may additionally include parameters of the secured network access to be provided to the user device 110.
In method 200 of
It is further determined whether the controller has a corresponding pre-shared key. Where the particular controller generated the key, for example, the controller may already have a corresponding key stored in memory. In some cases, however, the user device may be requesting secured network access from another hotspot new to the user device, but associated with the same brand as the hotspot where the pre-shared key was generated. The particular controller at the new hotspot may request the database for information regarding the pre-shared key associated with the user device. Such information may be retrieved and sent to the new hotspot, and secured network access is provided to the user device in accordance with the retrieved information.
In step 210, it is determined whether the user device 110 has already been associated with a pre-shared key. In such a scenario, user device 110 is within a range of a branded hotspot and is attempting to connect to a secured wireless network. If the user device 110 is already associated with a pre-shared key (e.g., previously generated at the branded hotspot or at another hotspot associated with the same brand), the method may skip ahead to step 245. If the user device 110 is not already associated with a pre-shared key, the method proceeds to step 215.
In step 215, a user device 110 connects to an open communication network 120A provided by hotspot access point 130. For some network activity (e.g., reading the news), the user may not necessarily require security and the use of the open communication network 120A may be sufficient. Some transactions (e.g., financial or business related) may require additional security so as to ensure that sensitive information is not exposed or misappropriated by other users of the open communication network 120A. The user of device 110 may be offered access to the secured communication network 120B as an option. Upon selection of that offering, a user request for access to the secure communication network 120B may be sent over the open communication network 120A. Connection to the open communication network 120A may, in some implementations, automatically initiate a request for secure access to the secured communication network 120B.
In step 220, the request for secure network access is redirected to web portal server 140. In addition to information regarding the particular user device 110, the access request may include information concerning various policies and parameters as determined by the particular entity (e.g., business) providing wireless access at the hotspot. These parameters and policies may include information used to configure a wireless device for connection to a restricted wireless network and access policies related to the same, such as a wireless network name, wireless device parameters, adapter configurations, security-related parameters, access constraints, quality of service parameters, security-related parameters, expiration date of the secure access, limits on session duration, bandwidth, user identity, user rewards, and access policies.
In step 225, the web portal server 140 submits a request for a unique pre-shared key to hotspot controller 150. Assigning each individual user/user device 110 a unique pre-shared key ensures that third-parties cannot eavesdrop on or otherwise access information belonging to another user accessing the network by way of device 110. Because each pre-shared key is unique, the encryption (and decryption) of information belonging to one particular user is different from that for any other user. Moreover, when the user leaves the hotspot, the unique pre-shared key assigned to that user/user device 110 does not need to be changed to maintain security for users remaining in the hotspot.
In step 230, the hotspot controller 150 generates a unique pre-shared key for the requesting user device 110 and sends the generated unique pre-shared key to the web portal server 140. Hotspot controller 150 may randomly generate the unique pre-shared secret for each user device 110 using various algorithms and formulas. By providing for randomly generated and unique keys, hotspot controller 150 increases the difficulty of illicitly gaining accessing user information by deducing the secret of any particular user.
Hotspot controller 150 may also store information associating the particular key with the requesting user device 110. Where a particular business providing the hotspot wishes to apply certain policies and parameters, those policies and parameters may also be stored. A hotel, for example, may wish to provide frequent guests with greater bandwidth than other guests. As such, information regarding the guest identity, the user device 110 belonging to the guests (e.g., as identified by MAC address) and the amount of bandwidth allotted may also be stored in association with the unique pre-shared key.
In step 235, the web portal server 140 generates a webpage to display the unique pre-shared key to the user of user device 110.
In step 240, information regarding the generated pre-shared key is sent from the hotspot controller 150 to the database of pre-shared keys 160. Any related information (e.g., policies and parameters described in relation to step 220) may also be sent to database 160 for storage and retrieval in response to subsequent queries.
In step 245, the unique pre-shared key is entered into user device 110, either manually by the user (e.g., a cut and paste operation), via user selection (e.g., execution of a script associated with a ‘install’ button), or automatically as a result of instructions embedded with a pre-shared key download package. A subsequent request for access to the secure communication network 120B is generated based on the unique pre-shared key. In some instances, the unique pre-shared key may be bundled as part of a package that may be installed automatically or upon request on the user device 110. The package may include any applications, policies, or parameters required for connection to the secure communication network 120B. For example, an application may be downloaded to the wireless device and executed to survey, configure (e.g., install parameters and policies), and/or connect the wireless device to the secured communication network 120B. The unique pre-shared key may then be used to authenticate the user device 110 so that the user device 110 can access the secured communication network 120B according to the installed policies and parameters.
In step 250, it is determined whether the hotspot controller 150 has a corresponding pre-shared key. In instances where the user device 110 is a repeat user of the same hotspot, the associated hotspot controller 150 may already have a corresponding pre-shared key in memory and the method may skip ahead to step 265. Where secured network access is being requested from a hotspot new to the user device 110, the hotspot controller 150 at this new hotspot may not have a corresponding pre-shared key, and the method proceeds to step 255.
In step 255, a query is generated and sent to a database of pre-shared keys 160. The query may include information regarding the user device 110 that may be used to identify the pre-shared key associated with the user device 110, and other associated information (e.g., policies and parameters described in relation to step 220). In some embodiments, the query may include information to identify the user device 110 (e.g., the MAC address).
In step 260, the pre-shared key information is retrieved from the database 160. Using the information in the query, the database 160 may identify that the user device 110 has been provided with a pre-shared key at a hotspot associated with the same brand as the hotspot (i.e., hotspot controller 150) that sent the query. In addition, certain policies and parameters may have been associated with that pre-shared key at other hotspots at other locations. For example, a customer may accumulate points by staying at a variety of locations of a branded hotel chain. Parameters of secured network access may be adjusted (e.g., higher bandwidth) as a reward to frequent customers. As such, information regarding a corresponding pre-shared key (including related policies and parameters) may be sent to the hotspot controller 150 in response to the query.
In step 265, secured network access is provided to the user device 110 in accordance with the parameters and policies indicated by the query response sent from the database 160. In addition, the current hotspot 160 may update 160 regarding any information that may affect the parameters and policies associated with the secured network access to be provided to the user device 110.
The present invention may be implemented in a variety of devices. Non-transitory computer-readable storage media refer to any non-transitory storage medium or media that participate in providing instructions to a central processing unit (CPU) for execution. Such media can take many forms, including, but not limited to, non-volatile and volatile media, which may include optical disks, dynamic memory, floppy disks, flexible disks, hard disks, magnetic tape, any other magnetic medium, CD-ROM disks, digital video disks (DVDs), any other optical medium, RAM, PROM, EPROM, a FLASHEPROM, and any other memory chip or cartridge.
Various forms of transmission media may be involved in carrying one or more sequences of one or more instructions to a CPU for execution. A bus carries the data to system RAM, from which a CPU retrieves and executes the instructions. The instructions received by system RAM can optionally be stored on a fixed disk either before or after execution by a CPU. Various forms of storage may likewise be implemented as well as the necessary network interfaces and network topologies to implement the same.
While various embodiments have been described above, it should be understood that they have been presented by way of example only, and are not intended to limit the scope of the invention to the particular forms set forth herein. To the contrary, the present descriptions are intended to cover such alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims and otherwise appreciated by one of ordinary skill in the art along with their full scope of equivalents.
Claims
1. A method for providing secured communication network access, the method comprising:
- receiving a request sent over an open communication network for secured communication network access, the request initiated by a requesting user device located within a range of a first hotspot associated with a brand, the request including a unique pre-shared encryption key associated with the requesting user device, wherein the unique pre-shared encryption key was displayed in a web page generated by a web portal server to the requesting user device;
- determining there is currently no corresponding pre-shared encryption key stored at the first hotspot, wherein the corresponding pre-shared encryption key is required to decrypt communications encrypted based on the unique pre-shared encryption key associated with the requesting user device;
- sending a query for the corresponding pre-shared encryption key to a cloud database of pre-shared encryption keys generated at a plurality of different hotspots, the different hotspots including hotspots associated with a plurality of brands, wherein each pre-shared encryption key in the cloud database corresponds to a different pre-shared encryption key that is unique to an associated user device, the query concerning any prior use of the unique pre-shared encryption key associated with the requesting user device and included in the request;
- receiving a response to the query including the corresponding pre-shared encryption key, wherein the corresponding pre-shared encryption key is unique to the requesting user device and had been generated during prior use at a second hotspot associated with the brand; and
- providing secured communication network access at the first hotspot based on the unique pre-shared encryption key associated with the requesting user device and the corresponding pre-shared encryption key obtained from the cloud database, wherein encryption in accordance with the unique pre-shared encryption key associated with the requesting user device is different than encryption for any other user device in the secured communication network, and wherein the secured communication network access provided to the requesting user device is governed at least in part by at least one parameter identified as being associated with the unique pre-shared encryption key, the at least one parameter including an access policy.
2. The method of claim 1, further comprising storing information regarding the associated at least one parameter, the associated at least one parameter further including one or more of the following: expiration date, session duration, bandwidth, user identity, or user rewards.
3. The method of claim 1, further comprising submitting a second unique pre-shared encryption key to the cloud database of pre-shared encryption keys for retrieval in response to a subsequent query concerning the second pre-shared encryption key.
4. The method of claim 3, wherein adding the second unique pre-shared encryption key to the cloud database of pre-shared encryption keys comprises:
- executing instructions stored in memory, wherein execution of the instructions by a processor generates the second unique pre-shared encryption key for a second user device; and
- transmitting a corresponding pre-shared encryption key associated with the second unique pre-shared encryption key to the cloud database of pre-shared encryption keys for retrieval in response to a subsequent request sent by the second user device while located within range of another hotspot associated with the brand.
5. The method of claim 4, further comprising determining at least one parameter governing the secured communication network access to be provided to the second user device, wherein transmitted information regarding the second unique pre-shared encryption key further includes the at least one parameter.
6. An apparatus for providing secured communication network access, the apparatus comprising:
- an interface for receiving an incoming request sent over an open communication network for secured communication network access, the request initiated by a requesting user device located within a range of a first hotspot associated with a brand, the request including a unique pre-shared encryption key associated with the requesting user device, wherein the unique pre-shared encryption key was displayed in a web page generated by a web portal server to the requesting user device; and
- a processor for executing instructions stored in memory, wherein execution of the instructions by the processor: determines there is currently no corresponding pre-shared encryption key stored at the first hotspot, wherein the corresponding pre-shared encryption key is required to decrypt communications encrypted based on the unique pre-shared encryption key associated with the requesting user device, and generates a query for the corresponding pre-shared encryption key to a cloud database of pre-shared encryption keys generated at a plurality of different hotspots, the different hotspots including hotspots associated with a plurality of brands, wherein each pre-shared encryption key in the cloud database corresponds to a different pre-shared encryption key that is unique to an associated user device, the query concerning any prior use of the unique pre-shared encryption key associated with the requesting user device and included in the request, wherein the interface receives a response to the query from the cloud database, the response including the corresponding pre-shared encryption wherein the corresponding pre-shared encryption key is unique to the requesting user device and had been generated during prior use at a second hotspot associated with the brand use at a second hotspot associated with the brand;
- wherein secured communication network access at the first hotspot is subsequently provided based on the unique pre-shared encryption key associated with the requesting user device and the corresponding pre-shared encryption key obtained from the cloud database, wherein encryption in accordance with the unique pre-shared encryption key associated with the requesting user device is different than encryption for any other user device in the secured communication network, and wherein the secured communication network access provided to the requesting user device is governed at least in part by at least one parameter identified as being associated with the unique pre-shared encryption key, the at least one parameter including an access policy.
7. The apparatus of claim 6, further comprising memory for storing information regarding the associated at least one parameter, the associated at least one parameter further including one or more of the following: expiration date, session duration, bandwidth, user identity, or user rewards.
8. The apparatus of claim 6, wherein the interface sends a submission including a corresponding pre-shared encryption key associated with a second unique pre-shared encryption key to the cloud database of pre-shared encryption keys for retrieval in response to a subsequent query concerning the second unique pre-shared encryption key sent by a second user device while located within range of another hotspot associated with the brand.
9. The apparatus of claim 8, wherein further execution of instructions by the processor generates the second unique pre-shared encryption key for the second user device.
10. The apparatus of claim 9, wherein further execution of instructions by the processor determines at least one parameter governing the secured communication network access to be provided to the second user device, wherein transmitted information regarding the second unique pre-shared encryption key further includes the at least one parameter.
11. A system for providing secured communication network access, the system comprising:
- a hotspot controller of a first hotspot comprising an interface for: receiving an incoming request sent over an open communication network for secured communication network access, the request initiated by a requesting user device located within a range of the first hotspot, the request including a unique pre-shared encryption key associated with the requesting user device, wherein the unique pre-shared encryption key was displayed in a web page generated by a web portal server to the requesting user device,
- determining there is currently no corresponding pre-shared encryption key stored at the first hotspot, wherein the corresponding pre-shared encryption key is required to decrypt communications encrypted based on the unique pre-shared encryption key associated with the requesting user device,
- sending a query for the corresponding pre-shared encryption key to a cloud database of pre-shared encryption keys generated at a plurality of different hotspots, the different hotspots including hotspots associated with a plurality of brands, wherein each pre-shared encryption key in the cloud database corresponds to a different pre-shared encryption key that is unique to an associated user device, the query concerning any prior use of the unique pre-shared encryption key associated with the requesting user device and included in the request, and
- receiving a response to the query including the corresponding pre-shared encryption key, wherein the corresponding pre-shared encryption key is unique to the requesting user device and had been generated during prior use at a second hotspot associated with the brand; and
- an access point associated with the first hotspot, the hotspot associated with a brand, the access point providing secured communication network access based on the unique pre-shared encryption key associated with the requesting user device and the corresponding pre-shared encryption key obtained from the cloud database, wherein encryption in accordance with the unique pre-shared encryption key associated with the requesting user device is different than encryption for any other user device in the secured communication network, and wherein the secured communication network access provided to the requesting user device is governed at least in part by at least one parameter identified as being associated with the unique pre-shared encryption key, the at least one parameter including an access policy.
12. The system of claim 11, further comprising a server for storing the cloud database of pre-shared encryption keys, the server in communication with the hotspot controller via the Internet.
13. The system of claim 11, wherein the hotspot controller further includes memory for storing information regarding the associated at least one parameter, the associated at least one parameter further including one or more of the following: expiration date, session duration, bandwidth, user identity, or user rewards.
14. The system of claim 11, wherein the interface sends a submission including a corresponding pre-shared encryption key associated with a second unique pre-shared encryption key to the cloud database of pre-shared encryption keys for retrieval in response to a subsequent query concerning the second unique pre-shared encryption key sent by a second user device while located within range of another hotspot associated with the brand.
15. The system of claim 14, wherein further execution of instructions by the processor generates the second unique pre-shared encryption key for the second user device.
16. The system of claim 15, wherein the hotspot controller further includes a processor for executing instructions stored in memory, wherein execution of instructions by the processor determines at least one parameter governing the secured communication network access to be provided to the second user device, wherein transmitted information regarding the second unique pre-shared encryption key further includes the at least one parameter.
17. A non-transitory computer-readable storage medium, having embodied thereon a program executable by a processor to perform a method for providing secured communication network access, the method comprising:
- receiving a request sent over an open communication network for secured communication network access, the request initiated by a requesting user device located within a range of a first hotspot associated with a brand, the request including a unique pre-shared encryption key associated with the requesting user device, wherein the unique pre-shared encryption key was displayed in a web page generated by a web portal server to the requesting user device;
- determining there is currently no corresponding pre-shared encryption key stored at the first hotspot, wherein the corresponding pre-shared encryption key is required to decrypt communications encrypted based on the unique pre-shared encryption key associated with the requesting user device;
- sending a query for the corresponding pre-shared encryption key to a cloud database of pre-shared encryption keys generated at a plurality of different hotspots, the different hotspots including hotspots associated with a plurality of brands, wherein each pre-shared encryption key in the cloud database corresponds to a different pre-shared encryption key that is unique to an associated user device, the query concerning any prior use of the unique pre-shared encryption key associated with the requesting user device and included in the request;
- receiving a response to the query including a corresponding pre-shared encryption key, wherein the corresponding pre-shared encryption key is unique to the requesting user device and had been generated during prior use at a second hotspot associated with the brand; and
- providing secured communication network access at the first hotspot based on the unique pre-shared encryption key associated with the requesting user device and the corresponding pre-shared encryption key obtained from the cloud database, wherein encryption in accordance with the unique pre-shared encryption key associated with the requesting user device is different than encryption for any other user device in the secured communication network, and wherein the secured communication network access provided to the requesting user device is governed at least in part by at least one parameter identified as being associated with the unique pre-shared encryption key, the at least one parameter including an access policy.
725605 | April 1903 | Tesla |
1869659 | August 1932 | Broertjes |
2292387 | August 1942 | Markey et al. |
3488445 | January 1970 | Chang |
3568105 | March 1971 | Felsenheld |
3721990 | March 1973 | Gibson et al. |
3887925 | June 1975 | Ranghelli |
3967067 | June 29, 1976 | Potter |
3969730 | July 13, 1976 | Fuchser |
3982214 | September 21, 1976 | Burns |
3991273 | November 9, 1976 | Mathes |
4001734 | January 4, 1977 | Burns |
4027307 | May 31, 1977 | Litchford |
4176356 | November 27, 1979 | Foster et al. |
4193077 | March 11, 1980 | Greenberg et al. |
4203118 | May 13, 1980 | Alford |
4253193 | February 24, 1981 | Kennard |
4305052 | December 8, 1981 | Baril et al. |
4513412 | April 23, 1985 | Cox |
4554554 | November 19, 1985 | Olesen et al. |
4733203 | March 22, 1988 | Ayasli |
4764773 | August 16, 1988 | Larsen et al. |
4800393 | January 24, 1989 | Edward et al. |
4814777 | March 21, 1989 | Monser |
4821040 | April 11, 1989 | Johnson et al. |
4920285 | April 24, 1990 | Clark et al. |
4937585 | June 26, 1990 | Shoemaker |
5063574 | November 5, 1991 | Moose |
5097484 | March 17, 1992 | Akaiwa |
5173711 | December 22, 1992 | Takeuchi et al. |
5203010 | April 13, 1993 | Felix |
5208564 | May 4, 1993 | Burns et al. |
5220340 | June 15, 1993 | Shafai |
5241693 | August 31, 1993 | Kim |
5282222 | January 25, 1994 | Fattouche et al. |
5291289 | March 1, 1994 | Hulyalkar et al. |
5311550 | May 10, 1994 | Fouche et al. |
5373548 | December 13, 1994 | McCarthy |
5434575 | July 18, 1995 | Jelinek |
5453752 | September 26, 1995 | Wang et al. |
5479176 | December 26, 1995 | Zavrel |
5507035 | April 9, 1996 | Bantz |
5532708 | July 2, 1996 | Krenz et al. |
5559800 | September 24, 1996 | Mousseau et al. |
5726666 | March 10, 1998 | Hoover et al. |
5754145 | May 19, 1998 | Evans |
5767755 | June 16, 1998 | Kim et al. |
5767807 | June 16, 1998 | Prtichett |
5767809 | June 16, 1998 | Chuang et al. |
5786793 | July 28, 1998 | Maeda et al. |
5802312 | September 1, 1998 | Lazaridis et al. |
5828346 | October 27, 1998 | Park |
5936595 | August 10, 1999 | Wang |
5964830 | October 12, 1999 | Durrett |
5990838 | November 23, 1999 | Burns et al. |
6005525 | December 21, 1999 | Kivela |
6011450 | January 4, 2000 | Miya |
6023250 | February 8, 2000 | Cronyn |
6031503 | February 29, 2000 | Preiss, II et al. |
6034638 | March 7, 2000 | Thiel et al. |
6046703 | April 4, 2000 | Wang |
6052093 | April 18, 2000 | Yao et al. |
6091364 | July 18, 2000 | Murakami et al. |
6094177 | July 25, 2000 | Yamamoto |
6097347 | August 1, 2000 | Duan et al. |
6104356 | August 15, 2000 | Hikuma et al. |
6169523 | January 2, 2001 | Ploussios |
6249216 | June 19, 2001 | Flick |
6266528 | July 24, 2001 | Farzaneh |
6281762 | August 28, 2001 | Nakao |
6288682 | September 11, 2001 | Thiel et al. |
6292153 | September 18, 2001 | Aiello et al. |
6307524 | October 23, 2001 | Britain |
6317599 | November 13, 2001 | Rappaport et al. |
6323810 | November 27, 2001 | Poilasne et al. |
6326922 | December 4, 2001 | Hegendoerfer |
6326924 | December 4, 2001 | Muramoto et al. |
6337628 | January 8, 2002 | Campana, Jr. |
6337668 | January 8, 2002 | Ito et al. |
6339404 | January 15, 2002 | Johnson |
6345043 | February 5, 2002 | Hsu |
6351240 | February 26, 2002 | Karimullah et al. |
6356242 | March 12, 2002 | Ploussios |
6356243 | March 12, 2002 | Schneider et al. |
6356905 | March 12, 2002 | Gershman et al. |
6366254 | April 2, 2002 | Sivenpiper |
6377227 | April 23, 2002 | Zhu et al. |
6392610 | May 21, 2002 | Braun et al. |
6396456 | May 28, 2002 | Chiang et al. |
6400329 | June 4, 2002 | Barnes |
6404386 | June 11, 2002 | Proctor, Jr. et al. |
6407719 | June 18, 2002 | Ohira et al. |
RE37802 | July 23, 2002 | Fattouche et al. |
6414647 | July 2, 2002 | Lee |
6424311 | July 23, 2002 | Tsai et al. |
6442507 | August 27, 2002 | Skidmore et al. |
6445688 | September 3, 2002 | Garces et al. |
6456242 | September 24, 2002 | Crawford |
6476773 | November 5, 2002 | Palmer |
6492957 | December 10, 2002 | Carillo et al. |
6493679 | December 10, 2002 | Rappaport et al. |
6496083 | December 17, 2002 | Kushitani et al. |
6498589 | December 24, 2002 | Horii |
6499006 | December 24, 2002 | Rappaport et al. |
6507321 | January 14, 2003 | Oberschmidt et al. |
6521422 | February 18, 2003 | Hsu |
6531985 | March 11, 2003 | Jones et al. |
6545643 | April 8, 2003 | Sward |
6583765 | June 24, 2003 | Schamberget et al. |
6586786 | July 1, 2003 | Kitazawa et al. |
6593891 | July 15, 2003 | Zhang |
6606059 | August 12, 2003 | Barabash |
6611230 | August 26, 2003 | Phelan |
6621029 | September 16, 2003 | Galmiche |
6625454 | September 23, 2003 | Rappaport et al. |
6633206 | October 14, 2003 | Kato |
6642889 | November 4, 2003 | McGrath |
6642890 | November 4, 2003 | Chen |
6674459 | January 6, 2004 | Ben-Shachar et al. |
6700546 | March 2, 2004 | Benhammou et al. |
6701522 | March 2, 2004 | Rubin et al. |
6724346 | April 20, 2004 | Le Bolzer |
6725281 | April 20, 2004 | Zintel et al. |
6741219 | May 25, 2004 | Shor |
6747605 | June 8, 2004 | Lebaric |
6753814 | June 22, 2004 | Killen et al. |
6757267 | June 29, 2004 | Evans |
6762723 | July 13, 2004 | Nallo et al. |
6774852 | August 10, 2004 | Chiang et al. |
6774864 | August 10, 2004 | Evans |
6779004 | August 17, 2004 | Zintel et al. |
6819287 | November 16, 2004 | Sullivan et al. |
6839038 | January 4, 2005 | Weinstein |
6859176 | February 22, 2005 | Choi |
6859182 | February 22, 2005 | Horii |
6864852 | March 8, 2005 | Chiang et al. |
6876280 | April 5, 2005 | Nakano |
6876836 | April 5, 2005 | Lin |
6879293 | April 12, 2005 | Sato |
6888504 | May 3, 2005 | Chiang et al. |
6888893 | May 3, 2005 | Li et al. |
6892230 | May 10, 2005 | Gu et al. |
6894653 | May 17, 2005 | Chiang et al. |
6903686 | June 7, 2005 | Vance et al. |
6906678 | June 14, 2005 | Chen |
6910068 | June 21, 2005 | Zintel et al. |
6914581 | July 5, 2005 | Popek |
6924768 | August 2, 2005 | Wu et al. |
6931429 | August 16, 2005 | Gouge et al. |
6933907 | August 23, 2005 | Shirosaka |
6941143 | September 6, 2005 | Mathur |
6943749 | September 13, 2005 | Paun |
6950019 | September 27, 2005 | Bellone et al. |
6950069 | September 27, 2005 | Gaucher et al. |
6961028 | November 1, 2005 | Joy et al. |
6965353 | November 15, 2005 | Shirosaka et al. |
6973622 | December 6, 2005 | Rappaport et al. |
6975834 | December 13, 2005 | Forster |
6980782 | December 27, 2005 | Braun et al. |
7023909 | April 4, 2006 | Adams et al. |
7024225 | April 4, 2006 | Ito |
7034769 | April 25, 2006 | Surducan et al. |
7034770 | April 25, 2006 | Yang et al. |
7043277 | May 9, 2006 | Pfister |
7046201 | May 16, 2006 | Okada |
7050809 | May 23, 2006 | Lim |
7053844 | May 30, 2006 | Gaucher et al. |
7064717 | June 20, 2006 | Kaluzni |
7085814 | August 1, 2006 | Ghandi et al. |
7088299 | August 8, 2006 | Siegler et al. |
7088306 | August 8, 2006 | Chiang et al. |
7089307 | August 8, 2006 | Zintel et al. |
7098863 | August 29, 2006 | Bancroft |
D530325 | October 17, 2006 | Kerila |
7120405 | October 10, 2006 | Rofougaran |
7130895 | October 31, 2006 | Zintel et al. |
7148846 | December 12, 2006 | Qi et al. |
7162273 | January 9, 2007 | Ambramov et al. |
7164380 | January 16, 2007 | Saito |
7171475 | January 30, 2007 | Weisman et al. |
7193562 | March 20, 2007 | Shtrom |
7206610 | April 17, 2007 | Iacono et al. |
7215296 | May 8, 2007 | Ambramov et al. |
7277063 | October 2, 2007 | Shirosaka et al. |
7292198 | November 6, 2007 | Shtrom |
7292870 | November 6, 2007 | Heredia et al. |
7295825 | November 13, 2007 | Raddant |
7298228 | November 20, 2007 | Sievenpiper |
7312762 | December 25, 2007 | Puente Ballarda et al. |
7319432 | January 15, 2008 | Andersson |
7333460 | February 19, 2008 | Vaisanen et al. |
7358912 | April 15, 2008 | Kish et al. |
7362280 | April 22, 2008 | Shtrom |
7385563 | June 10, 2008 | Bishop |
7498999 | March 3, 2009 | Shtrom et al. |
7511680 | March 31, 2009 | Shtrom et al. |
7522569 | April 21, 2009 | Rada |
7525486 | April 28, 2009 | Shtrom |
7609648 | October 27, 2009 | Hoffmann et al. |
7697550 | April 13, 2010 | Rada |
7733275 | June 8, 2010 | Hirota |
7782895 | August 24, 2010 | Pasanen et al. |
7835697 | November 16, 2010 | Wright |
7847741 | December 7, 2010 | Hirota |
7864119 | January 4, 2011 | Shtrom et al. |
7893882 | February 22, 2011 | Shtrom |
7916463 | March 29, 2011 | Aya et al. |
8068068 | November 29, 2011 | Kish et al. |
8085206 | December 27, 2011 | Shtrom |
8217843 | July 10, 2012 | Shtrom |
8355912 | January 15, 2013 | Keesey et al. |
8358248 | January 22, 2013 | Shtrom |
8686905 | April 1, 2014 | Shtrom |
8704720 | April 22, 2014 | Kish |
8723741 | May 13, 2014 | Shtrom |
8756668 | June 17, 2014 | Ranade et al. |
8836606 | September 16, 2014 | Kish |
20010046848 | November 29, 2001 | Kenkel |
20020031130 | March 14, 2002 | Tsuchiya et al. |
20020036586 | March 28, 2002 | Gothard et al. |
20020047800 | April 25, 2002 | Proctor, Jr. et al. |
20020080767 | June 27, 2002 | Lee |
20020084942 | July 4, 2002 | Tsai et al. |
20020101377 | August 1, 2002 | Crawford |
20020105471 | August 8, 2002 | Kojima et al. |
20020112058 | August 15, 2002 | Weisman et al. |
20020119757 | August 29, 2002 | Hamabe |
20020158798 | October 31, 2002 | Chiang et al. |
20020170064 | November 14, 2002 | Monroe et al. |
20030026240 | February 6, 2003 | Eyuboglu et al. |
20030030588 | February 13, 2003 | Kalis et al. |
20030038698 | February 27, 2003 | Hirayama |
20030063591 | April 3, 2003 | Leung et al. |
20030122714 | July 3, 2003 | Wannagot et al. |
20030169330 | September 11, 2003 | Ben-Shachar et al. |
20030184490 | October 2, 2003 | Raiman et al. |
20030189514 | October 9, 2003 | Miyano et al. |
20030189521 | October 9, 2003 | Yamamoto et al. |
20030189523 | October 9, 2003 | Ojantakanen et al. |
20030210207 | November 13, 2003 | Suh et al. |
20030214446 | November 20, 2003 | Shehab |
20030227414 | December 11, 2003 | Saliga et al. |
20040014432 | January 22, 2004 | Boyle |
20040017310 | January 29, 2004 | Vargas-Hurlston et al. |
20040017315 | January 29, 2004 | Fang et al. |
20040017860 | January 29, 2004 | Liu |
20040027291 | February 12, 2004 | Zhang et al. |
20040027304 | February 12, 2004 | Chiang et al. |
20040030900 | February 12, 2004 | Clark |
20040032378 | February 19, 2004 | Volman et al. |
20040036651 | February 26, 2004 | Toda |
20040036654 | February 26, 2004 | Hsieh |
20040041732 | March 4, 2004 | Aikawa et al. |
20040048593 | March 11, 2004 | Sano |
20040058690 | March 25, 2004 | Ratzel et al. |
20040061653 | April 1, 2004 | Webb et al. |
20040070543 | April 15, 2004 | Masaki |
20040075609 | April 22, 2004 | Li |
20040080455 | April 29, 2004 | Lee |
20040090371 | May 13, 2004 | Rossman |
20040095278 | May 20, 2004 | Kanemoto et al. |
20040114535 | June 17, 2004 | Hoffmann et al. |
20040125777 | July 1, 2004 | Doyle et al. |
20040145528 | July 29, 2004 | Mukai et al. |
20040153647 | August 5, 2004 | Rotholtz et al. |
20040160376 | August 19, 2004 | Hornsby et al. |
20040190477 | September 30, 2004 | Olson et al. |
20040203347 | October 14, 2004 | Nguyen |
20040207563 | October 21, 2004 | Yang |
20040227669 | November 18, 2004 | Okada |
20040260800 | December 23, 2004 | Gu et al. |
20050022210 | January 27, 2005 | Zintel et al. |
20050041739 | February 24, 2005 | Li et al. |
20050042988 | February 24, 2005 | Hoek et al. |
20050048934 | March 3, 2005 | Rawnick et al. |
20050050352 | March 3, 2005 | Narayanaswami et al. |
20050062649 | March 24, 2005 | Chiang et al. |
20050074018 | April 7, 2005 | Zintel et al. |
20050097503 | May 5, 2005 | Zintel et al. |
20050122265 | June 9, 2005 | Gaucher et al. |
20050128983 | June 16, 2005 | Kim et al. |
20050128988 | June 16, 2005 | Simpson et al. |
20050135480 | June 23, 2005 | Li et al. |
20050138137 | June 23, 2005 | Encarnacion et al. |
20050138193 | June 23, 2005 | Encarnacion et al. |
20050146475 | July 7, 2005 | Bettner et al. |
20050180381 | August 18, 2005 | Retzer et al. |
20050188193 | August 25, 2005 | Kuehnel et al. |
20050237258 | October 27, 2005 | Abramov et al. |
20050240665 | October 27, 2005 | Gu et al. |
20050267935 | December 1, 2005 | Gandhi et al. |
20060031922 | February 9, 2006 | Sakai |
20060038734 | February 23, 2006 | Shtrom et al. |
20060050005 | March 9, 2006 | Shirosaka et al. |
20060094371 | May 4, 2006 | Nguyen |
20060098607 | May 11, 2006 | Zeng et al. |
20060109191 | May 25, 2006 | Shtrom |
20060111902 | May 25, 2006 | Julia et al. |
20060123124 | June 8, 2006 | Weisman et al. |
20060123125 | June 8, 2006 | Weisman et al. |
20060123455 | June 8, 2006 | Pai et al. |
20060168159 | July 27, 2006 | Weisman et al. |
20060184660 | August 17, 2006 | Rao et al. |
20060184661 | August 17, 2006 | Weisman et al. |
20060184693 | August 17, 2006 | Rao et al. |
20060224690 | October 5, 2006 | Falkenburg et al. |
20060225107 | October 5, 2006 | Seetharaman et al. |
20060227062 | October 12, 2006 | Francque et al. |
20060227761 | October 12, 2006 | Scott, III et al. |
20060239369 | October 26, 2006 | Lee |
20060251256 | November 9, 2006 | Asokan et al. |
20060262015 | November 23, 2006 | Thornell-Pers et al. |
20060291434 | December 28, 2006 | Gu et al. |
20070027622 | February 1, 2007 | Cleron et al. |
20070037619 | February 15, 2007 | Matsunaga et al. |
20070055752 | March 8, 2007 | Wiegand et al. |
20070115180 | May 24, 2007 | Kish et al. |
20070124490 | May 31, 2007 | Kalavade et al. |
20070130294 | June 7, 2007 | Nishio |
20070135167 | June 14, 2007 | Liu |
20080060064 | March 6, 2008 | Wynn et al. |
20080062058 | March 13, 2008 | Bishop |
20080075280 | March 27, 2008 | Ye et al. |
20080096492 | April 24, 2008 | Yoon |
20080109657 | May 8, 2008 | Bajaj et al. |
20080136715 | June 12, 2008 | Shtrom |
20080212535 | September 4, 2008 | Karaoguz et al. |
20080272977 | November 6, 2008 | Gaucher et al. |
20090005005 | January 1, 2009 | Forstall et al. |
20090103731 | April 23, 2009 | Sarikaya |
20090187970 | July 23, 2009 | Mower et al. |
20090217048 | August 27, 2009 | Smith |
20090219903 | September 3, 2009 | Alamouti et al. |
20090295648 | December 3, 2009 | Dorsey et al. |
20090315794 | December 24, 2009 | Alamouti et al. |
20100053023 | March 4, 2010 | Shtrom |
20100103065 | April 29, 2010 | Shtrom et al. |
20100103066 | April 29, 2010 | Shtrom et al. |
20100299518 | November 25, 2010 | Viswanathan et al. |
20100332828 | December 30, 2010 | Goto |
20110007705 | January 13, 2011 | Buddhikot et al. |
20110040870 | February 17, 2011 | Wynn et al. |
20110047603 | February 24, 2011 | Gordon et al. |
20110095960 | April 28, 2011 | Shtrom |
20110126016 | May 26, 2011 | Sun |
20110208866 | August 25, 2011 | Marmolejo-Meillon et al. |
20120030466 | February 2, 2012 | Yamaguchi |
20120054338 | March 1, 2012 | Ando |
20120089845 | April 12, 2012 | Raleigh |
20120098730 | April 26, 2012 | Kish |
20120134291 | May 31, 2012 | Raleigh |
20120257536 | October 11, 2012 | Kholaif et al. |
20120284785 | November 8, 2012 | Salkintzis et al. |
20120299772 | November 29, 2012 | Shtrom |
20120322035 | December 20, 2012 | Julia et al. |
20130007853 | January 3, 2013 | Gupta et al. |
20130038496 | February 14, 2013 | Shtrom |
20130047218 | February 21, 2013 | Smith |
20130182693 | July 18, 2013 | Sperling et al. |
20130207865 | August 15, 2013 | Shtrom |
20130207866 | August 15, 2013 | Shtrom |
20130207877 | August 15, 2013 | Shtrom |
20130212656 | August 15, 2013 | Ranade et al. |
20130241789 | September 19, 2013 | Shtrom |
20140210681 | July 31, 2014 | Shtrom |
20140282951 | September 18, 2014 | Ranade |
2003/227399 | October 2003 | AU |
02494982 | October 2003 | CA |
10 2006 026350 | December 2006 | DE |
352 787 | January 1990 | EP |
0 534 612 | March 1993 | EP |
0 756 381 | January 1997 | EP |
0 883 206 | December 1998 | EP |
1 152 452 | November 2001 | EP |
1 152 542 | November 2001 | EP |
1 152 543 | November 2001 | EP |
1 376 920 | June 2002 | EP |
1 220 461 | July 2002 | EP |
1 315 311 | May 2003 | EP |
1 450 521 | August 2004 | EP |
1 608 108 | December 2005 | EP |
1 909 358 | April 2008 | EP |
1 287 588 | January 2009 | EP |
2 426 870 | June 2006 | GB |
2 423 191 | August 2006 | GB |
03038933 | February 1991 | JP |
2008/088633 | April 1996 | JP |
2001-057560 | February 2001 | JP |
2002-505835 | February 2002 | JP |
2005-354249 | December 2005 | JP |
2006/060408 | March 2006 | JP |
201351188 | December 2013 | TW |
WO 90/04893 | May 1990 | WO |
WO 99/55012 | October 1999 | WO |
WO 01/13461 | February 2001 | WO |
WO 01/69724 | September 2001 | WO |
WO 02/07258 | January 2002 | WO |
WO 02/07258 | January 2002 | WO |
WO 02/25967 | March 2002 | WO |
WO 03/079484 | September 2003 | WO |
WO 03/081718 | October 2003 | WO |
WO 2004/051798 | June 2004 | WO |
WO 2006/023247 | March 2006 | WO |
WO 2006/057679 | June 2006 | WO |
WO 2007/076105 | July 2007 | WO |
WO 2007/127087 | November 2007 | WO |
WO 2013/119750 | August 2013 | WO |
WO 2013/152027 | October 2013 | WO |
- Ruckus Wireless, Inc. vs. Netgear, Inc; Defendant Netgear, Inc. Invalidity Contentions.
- Abramov 2003—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
- Abramov 273—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
- Abramov 296—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
- Airgain 2004—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
- Bancroft 863—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
- Barabash 059—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
- Cetiner 2003—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
- Chuang 2003—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
- Evans 864—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486.
- Johnson 404—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
- Kalis 2000—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
- Kalis 2002—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486.
- Kaluzni 717—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
- Kim 693—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
- Lin 836—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
- Nakao 762—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486.
- Okada 201—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
- Palmer 773—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
- Paun 749—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
- Qian 2000—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
- Shehab 2003—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
- Shirosaka 907—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
- Shtrom 198 & 280—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
- Sievenpiper 254—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
- Simons 1994—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
- Sward 643—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
- Vaughan 1995—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
- Wang 703—P.R. 3-3 © Chart for U.S. Patent No. 7,525,486 and U.S. Patent No. 7,193,562.
- Alard, M., et al., “Principles of Modulation and Channel Coding for Digital Broadcasting for Mobile Receivers,” 8301 EBU Review Technical, Aug. 1987, No. 224, Brussels, Belgium.
- Ando et al., “Study of Dual-Polarized Omni-Directional Antennas for 5.2 GHz-Band 2×2 MIMO-OFDM Systems,” Antennas and Propogation Society International Symposium, 2004, IEEE, pp. 1740-1743 vol. 2.
- Areg Alimian et al., “Analysis of Roaming Techniques,” doc.:IEEE 802.11-04/0377r1, Submission, Mar. 2004.
- “Authorization of Spread Spectrum Systems Under Parts 15 and 90 of the FCC Rules and Regulations,” Rules and Regulations Federal Communications Commission, 47 CFR Part 2, and 90, Jun. 18, 1985.
- “Authorization of spread spectrum and other wideband emissions not presently provided for in the FCC Rules and Regulations,” Before the Federal Communications Commission, FCC 81-289, 87 F.C.C.2d 876, Gen Docket No. 81-413, Jun. 30, 1981.
- Bedell, Paul, “Wireless Crash Course,” 2005, p. 84, The McGraw-Hill Companies, Inc., USA.
- Behdad et al., Slot Antenna Miniaturization Using Distributed Inductive Loading, Antenna and Propagation Society International Symposium, 2003 IEEE, vol. 1, pp. 308-311 (Jun. 2003).
- Berenguer, Inaki, et al., “Adaptive MIMO Antenna Selection,” Nov. 2003.
- Casas, Eduardo F., et al., “OFDM for Data Communication Over Mobile Radio FM Channels—Part I: Analysis and Experimental Results,” IEEE Transactions on Communications, vol. 39, No. 5, May 1991, pp. 783-793.
- Casas, Eduardo F., et al., “OFDM for Data Communication over Mobile Radio FM Channels; Part II: Performance Improvement,” Department of Electrical Engineering, University of British Columbia.
- Chang, Nicholas B. et al., “Optimal Channel Probing and Transmission Scheduling for Opportunistics Spectrum Access,” Sep. 2007.
- Chang, Robert W., et al., “A Theoretical Study of Performance of an Orthogonal Multiplexing Data Transmission Scheme,” IEEE Transactions on Communication Technology, vol. Com-16, No. 4, Aug. 1968, pp. 529-540.
- Chang, Robert W., “Synthesis of Band-Limited Orthogonal Signals for Multichannel Data Transmission,” The Bell System Technical Journal, Dec. 1966, pp. 1775-1796.C.
- Chuang et al., A 2.4 GHz Polarization-diversity Planar Printed Dipole Antenna for WLAN and Wireless Communication Applications, Microwave Journal, vol. 45, No. 6, pp. 50-62 (Jun. 2002).
- Cimini, Jr., Leonard J, “Analysis and Simulation of a Digital Mobile Channel Using Orthogonal Frequency Division Multiplexing,” IEEE Transactions on Communications, vol. Com-33, No. 7, Jul. 1985, pp. 665-675.
- Cisco Systems, “Cisco Aironet Access Point Software Configuration Guide: Configuring Filters and Quality of Service,” Aug. 2003.
- Dell Inc., “How Much Broadcast and Multicast Traffic Should I Allow in My Network,” PowerConnect Application Note #5, Nov. 2003.
- Dutta, Ashutosh et al., “MarconiNet Supporting Streaming Media Over Localized Wireless Multicast,” Proc. of the 2d Int'l Workshop on Mobile Commerce, 2002.
- Dunkels, Adam et al., “Making TCP/IP Viable for Wireless Sensor Networks,” Proc. of the 1st Euro. Workshop on Wireless Sensor Networks, Berlin, Jan. 2004.
- Dunkels, Adam et al., “Connecting Wireless Sensornets with TCP/IP Networks,” Proc. of the 2d Int'l Conf. on Wired Networks, Frankfurt, Feb. 2004.
- English Translation of PCT Pub. No. WO2004/051798 (as filed U.S. Appl. No. 10/536,547).
- Festag, Andreas, “What is MOMBASA?” Telecommunication Networks Group (TKN), Technical University of Berlin, Mar. 7, 2002.
- Frederick et al., Smart Antennas Based on Spatial Multiplexing of Local Elements (SMILE) for Mutual Coupling Reduction, IEEE Transactions of Antennas and Propogation, vol. 52., No. 1, pp. 106-114 (Jan. 2004).
- Gaur, Sudhanshu, et al., “Transmit/Receive Antenna Selection for MIMO Systems to Improve Error Performance of Linear Receivers,” School of ECE, Georgia Institute of Technology, Apr. 4, 2005.
- Gledhill, J. J., et al., “The Transmission of Digital Television in the UHF Band Using Orthogonal Frequency Division Multiplexing,” Sixth International Conference on Digital Processing of Signals in Communications, Sep. 2-6, 1991, pp. 175-180.
- Golmie, Nada, “Coexistence in Wireless Networks: Challenges and System-Level Solutions in the Unlicensed Bands,” Cambridge University Press, 2006.
- Hewlett Packard, “HP ProCurve Networking: Enterprise Wireless LAN Networking and Mobility Solutions,” 2003.
- Hirayama, Koji et al., “Next-Generation Mobile-Access IP Network,” Hitachi Review vol. 49, No. 4, 2000.
- Ian F. Akyildiz, et al., “A Virtual Topology Based Routing Protocol for Multihop Dynamic Wireless Networks,” Broadband and Wireless Networking Lab, School of Electrical and Computer Engineering, Georgia Institute of Technology.
- Information Society Technologies Ultrawaves, “System Concept / Architecture Design and Communication Stack Requirement Document,” Feb. 23, 2004.
- Ken Tang, et al., “MAC Layer Broadcast Support in 802.11 Wireless Networks,” Computer Science Department, University of California, Los Angeles, 2000 IEEE, pp. 544-548.
- Ken Tang, et al., “MAC Reliable Broadcast in Ad Hoc Networks,” Computer Science Department, University of California, Los Angeles, 2001 IEEE, pp. 1008-1013.
- Mawa, Rakesh, “Power Control in 3G Systems,” Hughes Systique Corporation, Jun. 28, 2006.
- Microsoft Corporation, “IEEE 802.11 Networks and Windows XP,” Windows Hardware Developer Central, Dec. 4, 2001.
- Molisch, Andreas F., et al., “MIMO Systems with Antenna Selection—an Overview,” Draft, Dec. 31, 2003.
- Moose, Paul H., “Differential Modulation and Demodulation of Multi-Frequency Digital Communications Signals,” 1990 IEEE,CH2831-6/90/0000-0273.
- ORINOCO AP-2000 5GHz Kit, “Access Point Family,” Proxim Wireless Corporation.
- Pat Calhoun et al., “802.11r strengthens wireless voice,” Technology Update, Network World, Aug. 22, 2005, http://www.networkworld.com/news/tech/2005/082208techupdate.html.
- Press Release, NETGEAR RangeMax(TM) Wireless Networking Solutions Incorporate Smart MIMO Technology to Eliminate Wireless Dead Spots and Take Consumers Farther, Ruckus Wireles Inc. (Mar. 7, 2005), available at http://ruckuswireless.com/press/releases/20050307.php.
- RL Miller, “4.3 Project X—A True Secrecy System for Speech,” Engineering and Science in the Bell System, A History of Engineering and Science in the Bell System National Service in War and Peace (1925-1975), pp. 296-317, 1978, Bell Telephone Laboratories, Inc.
- Sadek, Mirette, et al., “Active Antenna Selection in Multiuser MIMO Communications,” IEEE Transactions on Signal Processing, vol. 55, No. 4, Apr. 2007, pp. 1498-1510.
- Saltzberg, Burton R., “Performance of an Efficient Parallel Data Transmission System,” IEEE Transactions on Communication Technology, vol. Com-15, No. 6, Dec. 1967, pp. 805-811.
- Steger, Christopher et al., “Performance of IEEE 802.11b Wireless LAN in an Emulated Mobile Channel,” 2003.
- Toskala, Antti, “Enhancement of Broadcast and Introduction of Multicast Capabilities in RAN,” Nokia Networks, Palm Springs, California, Mar. 13-16, 2001.
- Tsunekawa, Kouichi, “Diversity Antennas for Portable Telephones,” 39th IEEE Vehicular Technology Conference, pp. 50-56, vol. I, Gateway to New Concepts in Vehicular Technology, May 1-3, 1989, San Francisco, CA.
- Varnes et al., A Switched Radial Divider for an L-Band Mobile Satellite Antenna, European Microwave Conference (Oct. 1995), pp. 1037-1041.
- Vincent D. Park, et al., “A Performance Comparison of the Temporally-Ordered Routing Algorithm and Ideal Link-State Routing,” IEEE, Jul. 1998, pp. 592-598.
- W.E. Doherty, Jr. et al., The Pin Diode Circuit Designer's Handbook (1998).
- Weinstein, S. B., et al., “Data Transmission by Frequency-Division Multiplexing Using the Discrete Fourier Transform,” IEEE Transactions on Communication Technology, vol. Com-19, No. 5, Oct. 1971, pp. 628-634.
- Wennstrom, Mattias et al., “Transmit Antenna Diversity in Ricean Fading MIMO Channels with Co-Channel Interference,” 2001.
- Petition Decision Denying Request to Order Additional Claims for U.S. Patent No. 7,193,562 (Control No. 95/001078) mailed on Jul. 10, 2009.
- Right of Appeal Notice for U.S. Patent No. 7,193,562 (Control No. 95/001078) mailed on Jul. 2009.
- European Examination Report for EP Application No. 05776697.4 mailed Jan. 21, 2011.
- European Second Examination Report for EP Application No. 07775498.4 dated Mar. 12, 2013.
- European Third Examination Report for EP Application No. 07775498.4 dated Oct. 17, 2011.
- European First Examination Report for EP Application No. 09014989.9 dated May 7, 2012.
- Supplementary European Search Report for EP Application No. EP05776697.4 dated Jul. 10, 2009.
- Supplementary European Search Report for EP Application No. EP07755519 dated Mar. 11, 2009.
- PCT Application No. PCT/US2005/27023, International Search Report and Written Opinion mailed Dec. 23, 2005.
- PCT Application No. PCT/US2006/49211, International Search Report and Written Opinion mailed Aug. 29, 2008.
- PCT Application No. PCT/US2007/09276, International Search Report and Written Opinion mailed Aug. 11, 2008.
- Chinese Application No. 200680048001.7, Office Action dated Jun. 20, 2012.
- Chinese Application No. 200780020943.9, Office Action dated Feb. 7, 2013.
- Chinese Application No. 200780020943.9, Office Action dated Aug. 29, 2012.
- Chinese Application No. 200780020943.9, Office Action dated Dec. 19, 2011.
- Chinese Application No. 200910258884.X, Office Action dated Aug. 3, 2012.
- Taiwan Application No. 094127953, Office Action dated Mar. 20, 2012.
- Taiwan Application No. 096114265, Office Action dated Jun. 20, 2011.
- U.S. Appl. No. 11/010,076, Office Action mailed Oct. 31, 2006.
- U.S. Appl. No. 11/010,076, Final Office Action mailed Aug. 8, 2006.
- U.S. Appl. No. 11/010,076, Office Action mailed Dec. 23, 2006.
- U.S. Appl. No. 11/022,080, Office Action mailed Jul. 21, 2006.
- U.S. Appl. No. 11/041,145, Final Office Action mailed Jan. 29, 2007.
- U.S. Appl. No. 11/041,145, Office Action mailed Jul. 21, 2006.
- U.S. Appl. No. 11/265,751, Office Action mailed Mar. 18, 2008.
- U.S. Appl. No. 11/714,707, Final Office Action mailed May 30, 2008.
- U.S. Appl. No. 11/714,707, Office Action mailed Oct. 15, 2007.
- U.S. Appl. No. 11/924,082, Office Action mailed Aug. 29, 2008.
- U.S. Appl. No. 12/082,090, Office Action mailed Jan. 18, 2011.
- U.S. Appl. No. 12/404,124, Final Office Action mailed Feb. 7, 2012.
- U.S. Appl. No. 12/404,124, Office Action mailed Sep. 19, 2011.
- U.S. Appl. No. 12/953,324, Office Action mailed Mar. 24, 2011.
- U.S. Appl. No. 13/280,278, Office Action mailed Mar. 25, 2013.
- U.S. Appl. No. 13/280,278, Final Office Action mailed Aug. 22, 2012.
- U.S. Appl. No. 13/280,278, Office Action mailed Feb. 21, 2012.
- U.S. Appl. No. 13/305,609, Final Office Action mailed Jul. 3, 2012.
- U.S. Appl. No. 13/305,609, Office Action mailed Dec. 20, 2011.
- U.S. Appl. No. 13/370,201, Office Action mailed May 13, 2013.
- U.S. Appl. No. 13/485,012, Final Office Action mailed Mar. 3, 2013.
- U.S. Appl. No. 13/485,012, Office Action mailed Oct. 25, 2012.
- Encrypted Preshared key; cisco corp. 14 pages, 2010.
- Request for Inter Partes Rexamination for U.S. Patent No. 7,358,912, filed by Rayspan Corporation and Netgear, Inc. on Sep. 4, 2008.
- Third Party Comments after Patent Owner's Response in Accordance with 37 CFR 1.947 for U.S. Patent No. 7,358,912 (Control No. 95/001079) mailed on Jul. 17, 2009.
- U.S. Appl. No. 95/001,078, Sep. 4, 2008, Shtrom et al. (Re-Exam).
- U.S. Appl. No. 95/001,079, Sep. 4, 2008, Shtrom et al. (Re-Exam).
- PCT Application No. PCT/US2005/027169, International Search Report and Written Opinion mailed Aug. 10, 2006.
- PCT Application No. PCT/US2013/34997, International Search Report mailed Jun. 17, 2013.
- Chinese Application No. 20058001532.6, Office Action dated Jun. 23, 2011.
- Chinese Application No. 200910258884.X, Office Action dated Apr. 15, 2013.
- Taiwan Application No. 094127953, Office Action dated Aug. 16, 2011.
- U.S. Appl. No. 12/404,127, Final Office Action mailed Feb. 7, 2012.
- U.S. Appl. No. 12/404,127, Office Action mailed Sep. 19, 2011.
- U.S. Appl. No. 11/877,465, Final Office Action mailed May 16, 2013.
- U.S. Appl. No. 11/877,465, Office Action mailed Oct. 3, 2012.
- U.S. Appl. No. 11/877,465, Final Office Action mailed Jun. 20, 2012.
- U.S. Appl. No. 11/877,465, Office Action mailed Sep. 19, 2011.
- U.S. Appl. No. 11/877,465, Final Office Action mailed Dec. 9, 2010.
- U.S. Appl. No. 11/877,465, Office Action mailed Apr. 12, 2010.
- U.S. Appl. No. 12/980,253, Final Office Action mailed Jun. 6, 2013.
- U.S. Appl. No. 12/980,253, Office Action mailed Aug. 17, 2012.
- U.S. Appl. No. 12/980,253, Office Action mailed Sep. 13, 2011.
- U.S. Appl. No. 12/980,253, Office Action mailed Mar. 1, 2011.
- U.S. Appl. No. 12/425,374, Office Action mailed Jul. 6, 2010.
- U.S. Appl. No. 11/413,461, Office Action mailed Jun. 7, 2007.
- U.S. Appl. No. 13/653,405, Office Action mailed Dec. 19, 2012.
- U.S. Appl. No. 13/731,273, Office Action mailed May 23, 2013.
- U.S. Appl. No. 13/396,482, Office Action mailed Oct. 18, 2013.
- U.S. Appl. No. 13/396,484, Office Action mailed Oct. 11, 2013.
- Bargh et al., “Fast Authentication Methods for Handovers between IEEE 802.11 Wireless LANs”, Proceedings of the ACM International Workshop on Wireless Mobile Applications and Services on WLAN Hotspots. Oct. 1, 2004.
- Kassab et al., “Fast Pre-Authentication Based on Proactive Key Distribution for 802.11 Infrastructure Networks”, WMuNeP'05, Oct. 13, 2005, Montreal, Quebec, Canada, Copyright 2005 ACM.
- European Second Examination Report for EP Application No. 09014989.9 dated Dec. 13, 2013.
- Taiwan Application No. 094141018, Office Action dated May 8, 2013.
- U.S. Appl. No. 13/653,405, Office Action mailed Dec. 19, 2013.
- U.S. Appl. No. 12/980,253, Office Action mailed Mar. 27, 2014.
- U.S. Appl. No. 13/396,482, Final Office Action mailed Mar. 28, 2014.
- U.S. Appl. No. 13/396,484, Final Office Action mailed Apr. 11, 2014.
- U.S. Appl. No. 11/877,465, Office Action mailed Jul. 29, 2014.
- U.S. Appl. No. 13/396,482, Office Action mailed Sep. 16, 2014.
- U.S. Appl. No. 12/980,253, Final Office Action mailed Jan. 23, 2015.
- U.S. Appl. No. 13/396,482, Final Office Action mailed Jan. 22, 2015.
- U.S. Appl. No. 13/396,484, Office Action mailed Jan. 21 2015.
Type: Grant
Filed: Apr 4, 2012
Date of Patent: Apr 21, 2015
Patent Publication Number: 20130269008
Assignee: Ruckus Wireless, Inc. (Sunnyvale, CA)
Inventors: Ming-Jye Sheu (San Jose, CA), Prashant Ranade (San Jose, CA)
Primary Examiner: Ashok Patel
Assistant Examiner: Gary Gracia
Application Number: 13/439,844
International Classification: G06F 17/30 (20060101); G06F 21/44 (20130101); H04W 12/04 (20090101); H04W 12/06 (20090101); G06F 7/04 (20060101);