Bracelet clasp
The bracelet clasp includes a rectangular base element wherein each of the long sides is formed of side bars each formed of at least two leaf springs forming an elastic device allowing first and second folding parts to be locked onto said base element and disengaged therefrom when a pressure is exerted simultaneously on said side bars.
Latest The Swatch Group Management Services AG Patents:
This application claims priority from European Patent application No. 13192011.8 filed Nov. 7, 2013, the entire disclosure of which is hereby incorporated herein by reference.
The present invention concerns a clasp of the type with a deployant buckle which may have two folding parts or a single folding part, the folding part(s) being hinged to a base element.
A first embodiment of the invention relates to a clasp of the type with a deployant buckle including a substantially rectangular base element whose first and second long sides are formed respectively of first and second side bars, and first and second pivoting folding parts hinged on first and second sides of said base element, said folding parts being arranged to be folded down onto said base element and held there in response to an elastic device associated with a locking and unlocking mechanism acting on said base element and said folding parts to respectively allow said first and said parts to lock onto said base element and then be disengaged therefrom.
Bracelet clasps answering the description given in the above paragraph are known in the state of the art.
EP Patent No 1925227B1 discloses a clasp formed of a base and two folding parts arranged to be folded down onto the base and held there in response to an elastic device formed of one or two helical springs. In order to avoid using these springs and to simplify the construction of the clasp, CH Patent No 703294 proposes a clasp formed of a base element onto which two folding parts can be folded down and held locked on by varying the elasticity contained in the side bars forming the base element (see in particular FIG. 3 of said Patent). Pressing on the push-pieces integrated in the side bars releases the folding parts from any engagement and makes it possible to open the clasp.
However, the solution proposed by CH Patent No 703294 raises a question, which consists in ensuring that the base element has high rigidity of construction while providing the side bars of which it is composed the elasticity necessary to hold the folding element properly on the base element and allowing said folding parts to be released when a force is exerted on said side bars.
To provide a response to the question raised above, the present invention not only complies with the generic definition set out in the second paragraph of this description relating to the first embodiment of the invention, but is remarkable in that the base element includes first and second side bars each formed of at least two leaf springs which form said elastic device, and a pressure simultaneously exerted on each of the side bars causes the unlocking of said folding parts from said base element.
A second embodiment of the invention relates to a clasp of the type with a deployant buckle including a substantially rectangular base element whose first and second long sides are respectively formed of first and second rigid arms and a pivoting folding part hinged on one of the small sides of said base element, said folding part including first and second side bars, said folding part being arranged to be folded down onto said base element and held there in response to an elastic device associated with a locking and unlocking mechanism acting on said base element and said folding part to respectively allow said folding element to be engaged on said base element and then disengaged therefrom.
A clasp which substantially answers the description given in the above paragraph is set out in EP Patent No 2502515, which describes a clasp formed of a base including two rigid arms and a folding part arranged to be folded down onto the base and held locked thereon by varying the elasticity contained in the side bars forming said folding part (see in particular
However, the solution proposed by this Patent raises a question, which consists in ensuring that the folding part has high rigidity of construction while providing the side bars of which it is composed the elasticity necessary to hold said folding part properly on said base element and limiting said folding part when a force is exerted on said side bars.
To provide a response to the question raised above, the present invention not only complies with the generic definition set out in the paragraph above relating to the second embodiment of the invention, but is remarkable in that the folding part includes first and second side bars each formed of at least two leaf springs which form said elastic device, and a pressure simultaneously exerted on each of the side bars causes the unlocking of said folding part from said base element.
The features and advantages of the present invention will appear from the following description, given with reference to the annexed drawings, and providing, by way of explanatory, but non-limiting example, two advantageous embodiments of a clasp. In the drawings:
Drawings 1 to 5 relate to the first embodiment of the clasp according to the invention. The first embodiment will now be explained in detail.
With respect to the above description, in principle known from prior art documents, the clasp of the present invention differs in the originality of the elastic device implemented which consists in proposing first 1 and second 2 side bars each formed of at least two leaf springs. In the drawings of
The present invention therefore proposes at least two leaf springs for equipping each of the side bars forming the long sides of the base element and not a single leaf, for the sake of ensuring good rigidity of said base element and thereby preventing any warping thereof. Further, the use of thin leaf springs, in principle, provides several advantages. They are economical to manufacture since they can easily be cut, the means used for cutting being selected according to the materials chosen for making the leaves, such as for example, water jet, laser or stamping means. Another advantage lies in the wide choice of materials available, for example composites, amorphous metals or spring steels. Finally, it can be mentioned that the properties of the leaf springs can be modified in several manners, among which the following can be mentioned: cutting the leaves in sheets of smaller or larger thickness, stacking the leaves and changing their base material.
Here stacking at least two leaf springs doubles the stiffness of the spring while maintaining the deflection provided by a single leaf spring.
If three leaf springs were used, the stiffness of the assembly would be tripled according to the formula:
K=nk
where K is the stiffness of the assembly, n the number of leaf springs and k the stiffness of one leaf spring. In other words, with at least two leaf springs equipping each of the side bars, the force necessary to disengage the folding parts from the base element is doubled, while maintaining the same path to be travelled for disengagement.
The locking and unlocking mechanism implemented for respectively engaging and disengaging the first 3 and second 4 folding parts on base element 50 will now be described.
It will be understood that a lateral pressure exerted on each of side bars 1 and 2 will move together locks 15 and 17 (see
The leaf springs 5, 7 forming first side bar 1 and leaf springs 6, 8 forming second side bar 2 may be mounted contiguously and the drawings do not illustrate this construction. The Figures show that these leaf springs are separated by solid spacers 21. This avoids problems that may be caused by friction and corrosion between the leaf springs. It is to be noted that these spacers also reduce possible warping of the base element, that is to say they increase its resistance to torsion. It will also be noted that the spaces left free between the solid spacers 21 could be filled with a soft filler material, for example rubber.
Although not shown in the Figures, it goes without saying that a first bracelet strand is fixed to the free end 11 of first folding part 3 and a second bracelet strand is fixed to the free end 14 of second folding part 4.
With respect to the above description, the clasp of the present invention differs in the originality of the elastic device implemented which consists in proposing first 34 and second 35 side bars each formed of at least two leaf springs. In the drawings of
The present invention therefore proposes at least two leaf springs for equipping each of the side bars equipping the folding part and not a single leaf spring, for the sake of ensuring good rigidity of said folding part and thus preventing warping of the side bars. Further, the use of thin leaf springs in principle provides the same advantages as those listed above in relation to the first embodiment of the clasp and the reader may refer to that part of the description.
The locking and unlocking mechanism respectively implemented for locking on and disengaging folding part 33 from base element 30 will now be described.
It will be understood that a lateral pressure exerted on each of side bars 34 and 35 will move locks 42 and 43 closer together and respectively release them from hooks 40 and 41 carried by rigid arms 31 and 32 of base element 30 (see
The leaf springs 36, 37 forming first side bar 34 and leaf springs 38, 39 forming second side bar 35 may be mounted contiguously and the drawings do not illustrate this construction. Here the Figures show that these leaf springs are separated by solid spacers, denoted 47 for those which separate the leaf springs at the hinge point to base element 30 and 51 for those which separate said leaf springs at their free end. This therefore avoids problems which may be caused by friction and corrosion between the leaf springs, as already stated with reference to the first embodiment. It will be noted that, here too, the space left free between the leaf springs could be filled with a soft material, for example rubber.
Several constructions may be envisaged for equipping the free end of each of side bars which includes a push-piece, two leaf springs, a spacer and a lock.
It will also be mentioned that a first bracelet strand is fixed to the free end 48 of folding part 33, particularly the 12 o'clock strand if the bracelet is attached to a watch. Here the fastening will be achieved, for example, by means of a bar passing through holes 54 made at the end of spacers 51.
Likewise, at the free end 49 of base element 30 is arranged a bridge 55, which connects the first 31 and second 32 rigid arms, and to which is fixed a stud 56, intended to receive a second bracelet strand, particularly the 6 o'clock strand provided with perforations. This fastening also allows the length of the bracelet to be adjusted.
Claims
1. A bracelet clasp with a deployant buckle including a substantially rectangular base element whose first and second long sides are respectively formed of first and second side bars, and first and second pivoting folding parts hinged respectively on first and second small sides of said base element, said folding parts being arranged to be folded down onto said base element and held there in response to an elastic device associated with a locking and unlocking mechanism acting on said base element and said folding parts to respectively allow said first and second folding parts to be locked onto said base element and then disengaged therefrom, wherein the first and second side bars are each formed of at least two leaf springs which form said elastic device, a pressure simultaneously exerted on each of the side bars causing the unlocking of said folding parts from said base element.
2. The clasp according to claim 1, wherein the locking and unlocking mechanism is formed of first and second hooks carried by the free end of the first folding part and third and fourth hooks carried by the free end of the second folding part, said first and third hooks being arranged to be respectively locked by first and second locks carried by said first side bar and said second and fourth hooks being arranged to be respectively locked by third and fourth locks carried by said second side bar.
3. The clasp according to claim 1, wherein the first and second side bars respectively carry first and second push-pieces.
4. The clasp according to claim 1, wherein said leaf springs each forming said first and second side bars are contiguously mounted.
5. The clasp according to claim 1, wherein said leaf springs each forming said first and second side bars are separated by solid spacers.
6. The clasp according to claim 1, wherein a first bracelet strand is fixed to the free end of said first folding part and a second bracelet strand is fixed to the free end of said second folding part.
7. A bracelet clasp with a deployant buckle including a substantially rectangular base element whose first and second long sides are respectively formed of first and second rigid arms, and a pivoting folding part hinged on one of first and second small sides of said base element, said folding part including first and second side bars, said folding part being arranged to be folded down onto said base element and held there in response to an elastic device associated with a locking and unlocking mechanism acting on said base element and said folding part to respectively allow said folding part to be locked onto said base element and then disengaged therefrom, wherein the first and second side bars are each formed of at least two leaf springs which form said elastic device, a pressure simultaneously exerted on each of the side bars causing the unlocking of said folding part from said base element.
8. The clasp according to claim 7, wherein the locking and unlocking mechanism is formed of first and second hooks respectively carried towards the free end of said first and second rigid arms, said first and second hooks being arranged to be locked respectively by first and second locks carried respectively by said first and second side bars.
9. The clasp according to claim 7, wherein the first and second side bars respectively carry first and second push-pieces.
10. The clasp according to claim 7, wherein the leaf springs each forming the first and second side bars are contiguously mounted.
11. The clasp according to claim 7, wherein the leaf springs each forming the first and second side bars are separated by solid spacers.
12. The clasp according to claim 7, wherein a first bracelet strand is fixed to the free end of the folding part and a second bracelet strand is fixed to the free end of the base element.
2532840 | December 1950 | Gaun |
5331723 | July 26, 1994 | Mathieu |
5689859 | November 25, 1997 | Cuche |
5857243 | January 12, 1999 | Champion |
6094782 | August 1, 2000 | Gay et al. |
6401307 | June 11, 2002 | Wild |
6434798 | August 20, 2002 | Yamakawa et al. |
20020010985 | January 31, 2002 | Thalheim |
20040163217 | August 26, 2004 | Ferrario |
20120240359 | September 27, 2012 | Kaltenrieder |
20120318018 | December 20, 2012 | Mouche et al. |
20130255043 | October 3, 2013 | Mace et al. |
703 294 | December 2011 | CH |
10 2013 102 662 | September 2013 | DE |
1 925 227 | May 2008 | EP |
2 502 515 | September 2012 | EP |
- European Search Report issued Apr. 22, 2014, in European Application No. 13192011 filed Nov. 7, 2013 (with English Translation).
Type: Grant
Filed: Oct 21, 2014
Date of Patent: Nov 3, 2015
Patent Publication Number: 20150121668
Assignee: The Swatch Group Management Services AG (Biel/Bienne)
Inventor: Cedric Kaltenrieder (Courtelary)
Primary Examiner: Robert J Sandy
Assistant Examiner: Rowland Do
Application Number: 14/519,668
International Classification: A44C 5/24 (20060101);