Impairment aware path computation element method and system
The disclosure includes an apparatus comprising: a path computation element (PCE) comprising a processor configured to: receive a path computation element protocol (PCEP) path computation request from a path computation client (PCC), wherein the path computation request comprises an impairment validation request that directs the PCE to perform an impairment validation of a network path; after receiving the path computation request, compute a network path; and perform an impairment validation of the network path specified by the impairment validation request. In another embodiment, the disclosure includes a method comprising: sending, by a PCC a PCEP path computation request to a PCE, wherein the request directs the PCE to perform routing and wavelength assignment (RWA) and a first impairment validation of a network path, wherein the request comprises a type of signal quality of the network path which indicates the first type of impairment validation to be performed.
Latest Futurewei Technologies, Inc. Patents:
- Device, network, and method for network adaptation and utilizing a downlink discovery reference signal
- System and method for SRS switching, transmission, and enhancements
- Device/UE-oriented beam recovery and maintenance mechanisms
- Apparatus and method for managing storage of a primary database and a replica database
- METHOF FOR SIDELINK MEASUREMENT REPORT AND DEVICE THEREOF
The present application is a continuation of U.S. patent application Ser. No. 13/543,471 filed on Jul. 6, 2012 by Young Lee and Greg Bernstein and entitled “Impairment Aware Path Computation Element Method and System”, which claims priority to U.S. Provisional Patent Application No. 61/505,368 filed Jul. 7, 2011 by Young Lee and Greg Bernstein and entitled “Impairment Aware Path Computation Element Method and System,” both of which are incorporated herein by reference as if reproduced in their entirety.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENTNot applicable.
REFERENCE TO A MICROFICHE APPENDIXNot applicable.
BACKGROUNDWavelength division multiplexing (WDM) is one technology that is envisioned to increase bandwidth capability and enable bidirectional communications in optical networks. In WDM networks, multiple data signals can be transmitted simultaneously between network elements (NEs) using a single fiber. Specifically, the individual signals may be assigned different transmission wavelengths so that they do not interfere or collide with each other. The path that the signal takes through the network is referred to as the lightpath. One type of WDM network, a wavelength switched optical network (WSON), seeks to switch the optical signals with fewer optical-electrical-optical (OEO) conversions along the lightpath, e.g. at the individual NEs, than existing optical networks.
One of the challenges in implementing WDM networks is the determination of the routing and wavelength assignment (RWA) during path computation for the various signals that are being transported through the network at any given time. Unlike traditional circuit-switched and connection-oriented packet-switched networks that merely have to determine a route for the data stream across the network, WDM networks are burdened with the additional constraint of having to ensure that the same wavelength is not simultaneously used by two signals over a single fiber. This constraint is compounded by the fact that WDM networks typically use specific optical bands comprising a finite number of usable optical wavelengths. As such, the RWA continues to be one of the challenges in implementing WDM technology in optical networks.
Path computations can also be constrained due to other issues, such as excessive optical noise, along the lightpath. An optical signal that propagates along a path may be altered by various physical processes in the optical fibers and devices, which the signal encounters. When the alteration to the signal causes signal degradation, such physical processes are referred to as “optical impairments.” Optical impairments can accumulate along the path traversed by the signal and should be considered during path selection in WSONs to ensure signal propagation, e.g. from an ingress point to an egress point, with an acceptable amount of degradation.
SUMMARYIn one embodiment, the disclosure includes an apparatus comprising: a path computation element (PCE) comprising a processor configured to: receive a path computation element protocol (PCEP) path computation request from a path computation client (PCC), wherein the path computation request comprises an impairment validation request that directs the PCE to perform an impairment validation of a network path; after receiving the path computation request, compute a network path; and perform an impairment validation of the network path specified by the impairment validation request.
In another embodiment, the disclosure includes a method comprising: sending, by a PCC a PCEP path computation request to a PCE, wherein the request directs the PCE to perform routing and wavelength assignment (RWA) and a first impairment validation of a network path, wherein the request comprises a type of signal quality of the network path which indicates the first type of impairment validation to be performed.
In yet another embodiment, the disclosure includes a method comprising: performing, by a PCE, a first impairment validation of a network path; and after performing the first network path impairment validation, sending, by the PCE, a PCEP reply to a network node, wherein the reply comprises a first indicator that indicates whether the first network path impairment validation is successful.
In yet another embodiment, the disclosure includes a method comprising: receiving, by a PCE, a PCEP path computation request (PCReq) message, wherein the PCReq message includes a measure of signal quality to which computed paths should conform.
These and other features will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings and claims.
For a more complete understanding of this disclosure, reference is now made to the following brief description, taken in connection with the accompanying drawings and detailed description, wherein like reference numerals represent like parts.
It should be understood at the outset that although an illustrative implementation of one or more embodiments are provided below, the disclosed systems and/or methods may be implemented using any number of techniques, whether currently known or in existence. The disclosure should in no way be limited to the illustrative implementations, drawings, and techniques illustrated below, including the exemplary designs and implementations illustrated and described herein, but may be modified within the scope of the appended claims along with their full scope of equivalents.
Disclosed herein is a system, apparatus, and method for performing PCE lightpath impairment validation. A PCC may send a PCEP path computation request to a PCE. The PCEP request may comprise at least one impairment value. The impairment value may comprise data indicating a particular optical signal quality that a computed lightpath should possess and a minimum/maximum threshold value that a computed lightpath's estimated optical signal quality should/shouldn't exceed. The PCE may perform impairment validation requested by the PCE on each computed lightpath using network impairment data. The PCE may validate the optical signal value of each link of a lightpath or may validate the cumulative optical signal value of the lightpath. The PCE may perform the validation using impairment data already known to the PCE, e.g. stored in a traffic engineering database and/or received directly from other network components, etc. The PCE may send a PCEP reply to the PCC with a computed lightpath and data indicating whether the computed lightpath was successfully validated for each impairment value.
The WSON 110 may be any optical network that uses active or passive components to transport optical signals. The WSON 110 may implement WDM to transport the optical signals through the WSON 110, and may comprise various optical components as described in detail below. The WSON 110 may be part of a long haul network, a metropolitan network, or a residential access network.
The NEs 112 may be any devices or components that transport signals through the WSON 110. In an embodiment, the NEs 112 consist essentially of optical processing components, such as line ports, add ports, drop ports, transmitters, receivers, amplifiers, optical taps, and so forth, and do not contain any electrical processing components. Alternatively, the NEs 112 may comprise a combination of optical processing components and electrical processing components. At least some of the NEs 112 may be configured with wavelength converters, optical-electrical (OE) converters, electrical-optical (EO) converters, OEO converters, or combinations thereof. However, it may be advantageous for at least some of the NEs 112 to lack such converters as such may reduce the cost and complexity of the WSON 110. In specific embodiments, the NEs 112 may comprise optical cross connects (OXCs), photonic cross connects (PXCs), type I or type II reconfigurable optical add/drop multiplexers (ROADMs), wavelength selective switches (WSSs), fixed optical add/drop multiplexers (FOADMs), or combinations thereof.
The NEs 112 may be coupled to each other via optical fibers. The optical fibers may be used to establish optical links and transport the optical signals between the NEs 112. The optical fibers may comprise standard single mode fibers (SMFs) as defined in International Telecommunications Union Telecommunications Standardization Sector (ITU-T) standard G.652, dispersion shifted SMFs as defined in ITU-T standard G.653, cut-off shifted SMFs as defined in ITU-T standard G.654, non-zero dispersion shifted SMFs as defined in ITU-T standard G.655, wideband non-zero dispersion shifted SMFs as defined in ITU-T standard G.656, or combinations thereof. These fiber types may be differentiated by their optical impairment characteristics, such as attenuation, chromatic dispersion, polarization mode dispersion, four wave mixing, or combinations thereof. These effects may be dependent upon wavelength, channel spacing, input power level, or combinations thereof. The optical fibers may be used to transport WDM signals, such as course WDM (CWDM) signals as defined in ITU-T G.694.2 or dense WDM (DWDM) signals as defined in ITU-T G.694.1. All of the standards described herein are incorporated herein by reference.
The control plane controller 120 may coordinate activities within the WSON 110. Specifically, the control plane controller 120 may receive optical connection requests and provide lightpath signaling to the WSON 110 via an Interior Gateway Protocol (IGP) such as Generalized Multi-Protocol Label Switching (GMPLS), thereby coordinating the NEs 112 such that data signals are routed through the WSON 110 with little or no contention. In addition, the control plane controller 120 may communicate with the PCE 130 using PCEP, provide the PCE 130 with information that may be used for the RWA, receive the RWA from the PCE 130, and/or forward the RWA to the NEs 112. The control plane controller 120 may be located in a component outside of the WSON 110, such as an external server, or may be located in a component within the WSON 110, such as a NE 112.
The PCE 130 may perform all or part of the RWA for the WSON system 100. Specifically, the PCE 130 may receive the wavelength or other information that may be used for the RWA from the control plane controller 120, from the NEs 112, or both. The PCE 130 may process the information to obtain the RWA, for example, by computing the routes, e.g. lightpaths, for the optical signals, specifying the optical wavelengths that are used for each lightpath, and determining the NEs 112 along the lightpath at which the optical signal should be converted to an electrical signal or a different wavelength. The RWA may include at least one route for each incoming signal and at least one wavelength associated with each route. The PCE 130 may then send all or part of the RWA information to the control plane controller 120 or directly to the NEs 112. To assist the PCE 130 in this process, the PCE 130 may comprise a global traffic-engineering database (TED), a RWA information database, an optical performance monitor (OPM), a physical layer constraint (PLC) information database, or combinations thereof. The PCE 130 may be located in a component outside of the WSON 110, such as an external server, or may be located in a component within the WSON 110, such as a NE 112.
In some embodiments, the RWA information may be sent to the PCE 130 by a path computation client (PCC). The PCC may be any client application requesting a path computation to be performed by the PCE 130. The PCC may also be any network component that makes such a request, such as the control plane controller 120, or any NE 112, such as a ROADM or a FOADM.
When a network comprises a plurality of PCEs, not all PCEs within the network may have the ability to calculate the RWA. Therefore, the network may comprise a discovery mechanism that allows the PCC to determine the PCE in which to send the request 202. For example, the discovery mechanism may comprise an advertisement from a PCC for a RWA-capable PCE, and a response from the PCEs indicating whether they are RWA-capable. The discovery mechanism may be implemented as part of the method 200 or as a separate process.
The PCE may be embodied in one of several architectures as described in Internet Engineering Task Force (IETF) documents request for comment (RFC) 6566, which is incorporated by reference.
The PCE 320 may comprise a traffic engineering database (TED) 330. The TED may store information related to NEs and network links, including topology information, link state information, and/or physical characteristics of the NEs and links, such as optical impairment data, switching capabilities, etc. The TED may be used for traffic engineering and may be updated by the NEs in the network using Open Shortest Path First (OSPF) and similar interior gateway protocols (IGPs). The PCE 320 may use data stored in the TED when performing impairment validation on a computed lightpath.
In either architecture 300 or 400, the PCC 310 or 410 may receive a route from the source to destination along with the wavelengths, e.g. GMPLS generalized labels, to be used along portions of the path. The GMPLS signaling supports an explicit route object (ERO). Within an ERO, an ERO label sub-object can be used to indicate the wavelength to be used at a particular NE. The PCC 310 or 410 may also receive a communication indicating whether the impairment validation was successful and indicating the path's optical impairment value.
The network components and methods described above may be implemented on any general-purpose network component, such as a computer or network component with sufficient processing power, memory resources, and network throughput capability to handle the necessary workload placed upon it.
The secondary storage 1004 is typically comprised of one or more disk drives or tape drives and is used for non-volatile storage of data and as an over-flow data storage device if RAM 1008 is not large enough to hold all working data. Secondary storage 1004 may be used to store programs that are loaded into RAM 1008 when such programs are selected for execution. The ROM 1006 is used to store instructions and perhaps data that are read during program execution. ROM 1006 is a non-volatile memory device that typically has a small memory capacity relative to the larger memory capacity of secondary storage. The RAM 1008 is used to store volatile data and perhaps to store instructions. Access to both ROM 1006 and RAM 1008 is typically faster than to secondary storage 1004.
At least one embodiment is disclosed and variations, combinations, and/or modifications of the embodiment(s) and/or features of the embodiment(s) made by a person having ordinary skill in the art are within the scope of the disclosure. Alternative embodiments that result from combining, integrating, and/or omitting features of the embodiment(s) are also within the scope of the disclosure. Where numerical ranges or limitations are expressly stated, such express ranges or limitations should be understood to include iterative ranges or limitations of like magnitude falling within the expressly stated ranges or limitations (e.g., from about 1 to about 10 includes, 2, 3, 4, etc.; greater than 0.10 includes 0.11, 0.12, 0.13, etc.). For example, whenever a numerical range with a lower limit, R1, and an upper limit, Ru, is disclosed, any number falling within the range is specifically disclosed. In particular, the following numbers within the range are specifically disclosed: R=R1+k*(Ru−R1), wherein k is a variable ranging from 1 percent to 100 percent with a 1 percent increment, i.e., k is 1 percent, 2 percent, 3 percent, 4 percent, 7 percent, . . . , 70 percent, 71 percent, 72 percent, . . . , 97 percent, 96 percent, 97 percent, 98 percent, 99 percent, or 100 percent. Moreover, any numerical range defined by two R numbers as defined in the above is also specifically disclosed. Unless otherwise stated, the term “about” means ±10% of the subsequent number. Use of the term “optionally” with respect to any element of a claim means that the element is required, or alternatively, the element is not required, both alternatives being within the scope of the claim. Use of broader terms such as comprises, includes, and having should be understood to provide support for narrower terms such as consisting of, consisting essentially of, and comprised substantially of. Accordingly, the scope of protection is not limited by the description set out above but is defined by the claims that follow, that scope including all equivalents of the subject matter of the claims. Each and every claim is incorporated as further disclosure into the specification and the claims are embodiment(s) of the present disclosure. The discussion of a reference in the disclosure is not an admission that it is prior art, especially any reference that has a publication date after the priority date of this application. The disclosure of all patents, patent applications, and publications cited in the disclosure are hereby incorporated by reference, to the extent that they provide exemplary, procedural, or other details supplementary to the disclosure.
While several embodiments have been provided in the present disclosure, it should be understood that the disclosed systems and methods might be embodied in many other specific forms without departing from the spirit or scope of the present disclosure. The present examples are to be considered as illustrative and not restrictive, and the intention is not to be limited to the details given herein. For example, the various elements or components may be combined or integrated in another system or certain features may be omitted, or not implemented.
In addition, techniques, systems, subsystems, and methods described and illustrated in the various embodiments as discrete or separate may be combined or integrated with other systems, modules, techniques, or methods without departing from the scope of the present disclosure. Other items shown or discussed as coupled or directly coupled or communicating with each other may be indirectly coupled or communicating through some interface, device, or intermediate component whether electrically, mechanically, or otherwise. Other examples of changes, substitutions, and alterations are ascertainable by one skilled in the art and could be made without departing from the spirit and scope disclosed herein.
Claims
1. An apparatus comprising:
- a receiver configured to receive a path computation element protocol (PCEP) path computation request from a path computation client (PCC), wherein the path computation request comprises an impairment validation request that directs a path computation element (PCE) to perform an impairment validation of a computed network path, wherein a type length value (TLV) is included in the impairment validation request, and wherein the TLV comprises a first Pass (P) bit that indicates whether a signal quality impairment to be validated is a link level impairment;
- a processor coupled to the receiver and configured to implement the PCE by: computing the computed network path after receiving the path computation request; and performing an impairment validation of the computed network path specified by the impairment validation request; and
- a transmitter coupled to the processor and configured to transmit a PCEP reply to the PCC,
- wherein the PCEP reply comprises an estimated optical signal impairment value resulting from the impairment validation of the computed network path.
2. The apparatus of claim 1, wherein the PCEP reply further comprises the computed network path and data indicating whether validation of the computed network path was successful or unsuccessful.
3. The apparatus of claim 1, wherein the impairment validation request comprises a type of signal quality of the computed network path which indicates a type of impairment validation to be performed, and wherein, the PCE is configured to perform the impairment validation of the computed network path based on the type of signal quality.
4. The apparatus of claim 3, wherein the type of signal quality of the computed network path comprises at least one of Bit Error Rate (BER), Optical Signal to Noise Ratio (OSNR), OSNR margin, Polarization-Mode Dispersion (PMD), and Quality Factor (Q factor).
5. The apparatus of claim 1, wherein the impairment validation request comprises an indicator that indicates whether the impairment validation is requested to be performed at a network path level or at a network path link level, and wherein the PCE performs the impairment validation of the computed network path based on the indicator.
6. The apparatus of claim 4, wherein the impairment validation request comprises a threshold value that indicates a minimum or maximum value of signal quality of the computed network path or a network path link to be satisfied, and wherein the PCE performs the impairment validation of the computed network path based on the threshold value.
7. The apparatus of claim 6, wherein the PCE performs the impairment validation of the computed network path based on the threshold value by comparing a signal quality value of the computed network path, at a path level or at a link level, to the threshold value, wherein when the threshold value comprises a minimum value, the impairment validation is successful when the signal quality value is greater than or equal to the threshold value.
8. The apparatus of claim 7, further comprising a memory coupled to the processor and comprising a traffic engineering database (TED), wherein the TED comprises network impairment data, and wherein the PCE employs the network impairment data to determine the signal quality value of the computed network path.
9. An apparatus comprising:
- a processor configured to implement a path computation client (PCC);
- a transmitter coupled to the processor and configured to send a path computation element protocol (PCEP) path computation request to a path computation element (PCE), wherein the request directs the PCE to perform routing and wavelength assignment (RWA) and a first impairment validation of a computed network path resulting from the RWA, and wherein the request comprises a type of signal quality impairment of the computed network path which indicates a first type of impairment validation to be performed; and
- a receiver configured to receive a PCEP reply from the PCE, the PCEP reply comprising the computed network path and an estimated optical signal impairment value resulting from the requested validation of the computed network path,
- wherein a type length value (TLV) is included in the request, and wherein the TLV comprises: a first Signal Quality Type field that comprises the type of signal quality of the computed network path; a first Threshold field that comprises a threshold value that a signal quality measurement for the computed network path or a computed network path link must satisfy, and a first Pass (P) bit that indicates whether the type of signal quality impairment is a path level impairment.
10. The apparatus of claim 9, wherein the type of signal quality of the computed network path comprises at least one of Bit Error Rate (BER), Optical Signal to Noise Ratio (OSNR), OSNR margin, Polarization-Mode Dispersion (PMD), and Quality Factor (Q factor).
11. The apparatus of claim 9, wherein the request further comprises a threshold value that indicates a minimum or maximum value the computed network path or a network path link of the computed network path needs to satisfy to be validated.
12. A method comprising:
- receiving, by a processor comprising a path computation element (PCE), a path computation element protocol (PCEP) path computation request (PCReq) message from a Path Computation Client (PCC), wherein the PCReq message includes a measure of signal quality to which a computed path must conform, wherein the PCReq message comprises a signal quality measure type length value (TLV), and wherein the signal quality measure TLV comprises: a Signal Quality Type field that indicates a kind of signal quality impairment; a pass (P) bit that indicates if the signal quality impairment is a path level impairment; and a Threshold field that indicates a threshold that a signal quality measurement for a path or a link must satisfy;
- computing the computed path after receiving the PCReq message;
- performing an impairment validation of the computed path specified by the PCReq message; and
- transmitting a PCEP reply towards the PCC, wherein the PCEP reply comprises an estimated optical signal impairment value resulting from the impairment validation of the computed path.
13. The method of claim 12, wherein the PCReq message comprises at least one of a Bit Error Rate (BER) limit, an Optical Signal to Noise Ratio (OSNR), an OSNR margin, a Polarization-Mode Dispersion (PMD), and a Quality Factor (Q factor).
14. The method of claim 12, wherein the PCReq message does not comprise a BER limit, wherein no default BER limit is provisioned at the PCE, and wherein the method further comprises sending, by the PCE, an error message specifying that the BER limit must be provided.
15. The method of claim 12, wherein the PCRep message comprises the computed path, wavelengths assigned to the computed path, and an indicator that indicates whether the computed path conforms to the threshold of the signal quality measurement of the PCReq message.
16. The method of claim 12, wherein the PCReq message is received from the PCC via a Routing and Wavelength Assignment (RWA) coordinating PCE, and wherein the PCReq message comprises:
- an indicator that indicates whether more than one computed path is desired;
- a limit to a number of optical impairment qualified computed paths to be returned in the PCRep message; and
- a specified path and wavelength to be qualified by the PCE.
20080225723 | September 18, 2008 | Lee et al. |
2063585 | May 2009 | EP |
2063585 | May 2009 | EP |
2010097049 | September 2010 | WO |
2011021976 | February 2011 | WO |
2011072710 | June 2011 | WO |
WO 2010/097049 | September 2015 | WO |
- Farrel, A., et al., “A Path Computation Element (PCE)-Based Architecture,” RFC 4655, Aug. 2006, 40 pages.
- Lee et al., “A frame for the control of WSON with impairments” published on Oct. 22, 2009.
- “Series G: Transmission Systems and Media, Digital Systems and Networks, Transmission Media Characteristics—Optical Fibre Cables, Characteristics of a Dispersion-Shifted Single-mode Optical Fibre Cable,” ITU-T, G.652, Oct. 2000, 24 pages.
- “Series G: Transmission Systems and Media, Digital Systems and Networks, Transmission Media Characteristics—Optical Fibre Cables, Characteristics of a Dispersion-Shifted Single-mode Optical Fibre Cable,” ITU-T, G.653, Apr. 1997, 15 pages.
- “Series G: Transmission Systems and Media, Digital Systems and Networks, Transmission Media Characteristics—Optical Fibre Cables, Characteristics of a cut-off shifted Single-Mode Optical Fibre Cable,” ITU-T, G.654, Apr. 1997, 13 pages.
- “Series G: Transmission Systems and Media, Digital Systems and Networks, Transmission Media Characteristics—Optical Fibre Cables, Characteristics of a Non-Zero Dispersion Shifted Single-Mode Optical Fibre Cable,” ITU-T, G.655, Oct. 1996, 13 pages.
- “Series G: Transmission Systems and Media, Digital Systems and Networks, Transmission Media Characteristics—Optical Fibre Cables, Characteristics of a Fibre and Cable with Non-Zero Dispersion for Wideband Optical Transport,” ITU-T, G.656, Dec. 2006, 18 pages.
- “Series G: Transmission Systems and Media, Digital Systems and Networks, Transmission Media Characteristics—Characteristics of Optical Components and Subsystems, Spectral Grids for WDM Applications: DWDM Frequency Grid,” ITU-T, G.694.1, Jun. 2002,11 pages.
- “Series G: Transmission Systems and Media, Digital Systems and Networks, Transmission Media Characteristics—Characteristics of Optical Components and Subsystems, Spectral Grids for WDM Applications: CWDM Wavelength Grid,” ITU-T, G.694.2, Dec. 2003, 10 pages.
- Lee, Y., Ed., et al., “A Framework for the Control of Wavelength Switched Optical Networks (WSONS) with Impairments,” RFC 6566, Mar. 2012, 32 pages.
- Foreign Communication From a Counterpart Application, PCT Application No. PCT/US2012/045813, International Search Report dated Feb. 1, 2013, 3 pages.
- Foreign Communication From a Counterpart Application, PCT Application No. PCT/US2012/045813, Written Opinion dated Feb. 1, 2013, 8 pages.
- Notice of Allowance dated Jul. 24, 2014, 20 pages, U.S. Appl. No. 13/543,471, filed Jul. 6, 2012.
- Office Action dated Apr. 1, 2014, 22 pages, U.S. Appl. No. 13/543,471, filed Jul. 6, 2012.
- Lee, Y., et al., “PCEP Extensions for WSON Impairments,” draft-lee-pce-wson-impairments-03.txt, Jan. 6, 2012, 19 pages.
- Lee, Y., et al., “PCEP Extensions for WSON Impairments,” draft-lee-pce-wson-impairments-02.txt, Jul. 7, 2011, 19 pages.
- Lee, Y., et al., “PCEP Requirements for WSON Impairments,” draft-lee-pce-wson-impairments-01, Dec. 15, 2009, 15 pages.
- Vasseur, JP., Ed., et al., Path Computation Element (PCE) Communication Protocol (PCEP)—Version 1, draft-ietf-pce-pcep-01.txt, Feb. 24, 2006, 57 pages.
- Bernstein, G., Ed., et al., “Framework for GMPLS and PCE Control of Wavelength Switched Optical Networks,” draft-bernstein-ccamp-wavelength-switched-03.txt, Feb. 19, 2008, 34 pages.
- Lee, Y., et al., “PCEP Requirements for WSON Routing and Wavelength Assignment,” draft-lee-pce-wson-routing-wavelength-05.txt, Jun. 29, 2009, 11 pages.
- Lee, Y., et al., “PCEP Requirements for WSON Routing and Wavelength Assignment,” draft-ietf-pce-wson-routing-wavelength-07.txt, Apr. 23, 2012, 13 pages.
- Lee, Y., et al., “PCEP Requirements for WSON Routing and Wavelength Assignment,” draft-ietf-pce-wson-routing-wavelength-05.txt, Jul. 6, 2011, 13 pages.
- Berger, L., Ed., et al., “Generalized Multi-Protocol Label Switched (GMPLS) Signaling Functional Description,” RFC 3471, Jan. 2003, 34 pages.
- Berger, L., Ed., et al., “Generalized Multi-Protocol Label Switched (GMPLS) Signaling Resource ReserVation Protocol-Traffic Engineering (RSVP-TE) Extensions,” RFC 3473, Jan. 2003, 42 pages.
- Bradner, S., et al., “Key Words for use in RFCs to Indicate Requirement Levels,” RFC 2119, Mar. 1997, 3 pages.
- Ash, J., Ed., et al., “Path Computation Element (PCE) Communication Protocol Generic Requirements,” RFC 4657, Sep. 2006, 21 pages.
- Le Roux, JL., Ed., et al., “OSPF Protocol Extensions for Path Computation Element (PCE) Discovery,” RFC 5088, Jan. 2008, 20 pages.
- Le Roux, JL., Ed., et al., “IS-IS Protocol Extensions for Path Computation Element (PCE) Discovery,” RFC 5089, Jan. 2008, 17 pages.
Type: Grant
Filed: Oct 16, 2014
Date of Patent: Feb 23, 2016
Patent Publication Number: 20150037026
Assignee: Futurewei Technologies, Inc. (Plano, TX)
Inventors: Young Lee (Plano, TX), Greg Bernstein (Fremont, CA)
Primary Examiner: Ian N Moore
Assistant Examiner: Mewale Ambaye
Application Number: 14/516,341
International Classification: H04B 10/077 (20130101); H04L 12/721 (20130101); H04B 10/079 (20130101); H04B 10/27 (20130101); H04L 12/717 (20130101); H04J 14/02 (20060101);