Disconnection of a string carrying direct current power

A direct current (DC) power combiner operable to interconnect multiple interconnected photovoltaic strings is disclosed. The DC power combiner may include a device adapted for disconnecting at least one photovoltaic string from the multiple interconnected photovoltaic strings, each photovoltaic string connectible by a first and second DC power line. The device may include a differential current sensor adapted to measure differential current by comparing respective currents in the first and second DC power lines. A first switch is connected in series with the first DC power line. A control module is operatively attached to the differential current sensor and the first switch. The control module may be operable to open the first switch when the differential current sensor measures the differential current to be greater than a maximum allowed current differential, thereby disconnecting the photovoltaic string from the interconnected photovoltaic strings.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
CROSS REFERENCE TO RELATED APPLICATIONS

The present application claims priority to patent application GB1020862.7, filed Dec. 9, 2010, in the United Kingdom Intellectual Property Office. Application GB1020862.7 is herein incorporated by reference.

BACKGROUND

1. Technical Field

This disclosure relates to multiple photovoltaic strings, which have direct current (DC) outputs, which are interconnected at an input of a power combiner junction box and specifically to a system and method to disconnect and or connect a photovoltaic string DC output from the input of the power combiner junction box.

2. Description of Related Art

In a photovoltaic distributed power harvesting system, a photovoltaic string includes a series connection of photovoltaic panels. Photovoltaic strings may be connected in parallel to give a parallel direct current (DC) power output. The parallel DC power output may connect to the input of a direct current (DC) to an alternating current (AC) inverter. The AC power output of the inverter connects across an AC load. The load may be an AC load such as an AC motor or may be an electrical power grid.

A Residual-Current Circuit Breaker (RCCB) is an electrical wiring device that disconnects a circuit whenever it detects that the electric current is not balanced between the energized conductor and the return neutral conductor. Such an imbalance may indicate current leakage through the body of a person who is grounded and accidentally touching the energized part of the circuit. A lethal shock can result from these conditions. RCCBs are designed to disconnect quickly enough to prevent injury caused by such shocks. They are not intended to provide protection against overcurrent (overload) or short-circuit conditions.

In the United States and Canada, a residual current device is most commonly known as a ground fault circuit interrupter (GFCI), ground fault interrupter (GFI) or an appliance leakage current interrupter (ALCI). In Australia they are sometimes known as “safety switches” or simply “RCD” and in the United Kingdom, along with circuit breakers, they can be referred to as “trips” or “trip switches.”

Under some circumstances, such as in a photovoltaic distributed power harvesting system, a residual current may also represent a fire hazard.

Thus, there is a need for and it would be advantageous to have a system and method for disconnection of a photovoltaic string carrying direct current power when residual current is detected in the photovoltaic string to prevent fire hazards in photovoltaic arrays.

BRIEF SUMMARY

Various systems and methods are provided for ground fault protection in a photovoltaic power harvesting system. According to some aspects, ground fault protection is provided in a direct current (DC) power combiner, which combines photovoltaic strings to form a photovoltaic array. The detection of a ground fault or residual current in the string causes the string to be disconnected from the photovoltaic array. In some aspects, the possibility for arcing while disconnecting the photovoltaic string from the photovoltaic array is minimized.

According to various aspects, there is provided a direct current (DC) power combiner operable to interconnect multiple interconnected photovoltaic strings. The DC power combiner may include a device adapted for disconnecting at least one photovoltaic string from the multiple interconnected photovoltaic strings, each photovoltaic string connectible by a first and second DC power line. The device may include a differential current sensor adapted to measure differential current by comparing respective currents in the first and second DC power lines. A first switch is connected in series with the first DC power line. A control module operatively is attached to the differential current sensor and the first switch. The control module may be operable to open the first switch when the differential current sensor measures the differential current to be greater than a maximum allowed current differential, thereby isolating the first DC power line from the DC power combiner and disconnecting the photovoltaic string from the interconnected photovoltaic strings.

A second switch may be parallel connected to the first switch to form a first unit. The first unit may be connected in series with the first DC power line. When the first switch is closed, the differential current sensor measures the differential current to be greater than a maximum allowed current differential, then the control module may open the first switch and subsequently may open the second switch. The first switch may allow through substantially more of a current flowing in the first DC power line and the second switch may allow through substantially less of the current flowing in the first DC power line.

A third switch and a fourth switch may be parallel-connected to form a second unit. The second unit may be connected in series with the second DC power line. The third switch may be closed and the fourth switch may be closed, when the differential current sensor measures the differential current to be greater than a maximum allowed current differential, then the control module opens the third switch and subsequently opens the fourth switch. The third switch may allow through substantially more of a current flowing in the second DC power line and the fourth switch may allow through substantially less of the current flowing in the second DC power line.

When the photovoltaic string begins to produce DC power, the first switch may be open and the second switch may be open, the control module closes the second switch and subsequently closes the first switch. The third switch may be open and the fourth switch may be open, the control module closes the fourth switch and subsequently closes the third switch.

The second switch and the fourth switch respectively, may be an insulated gate bipolar transistor (IGBT), an IGBT with integral diode, a solid state switch, metal oxide semiconductor field effect transistor (MOSFET) or a field effect transistor (FET). The first switch and the third switch respectively may be a relay or a circuit breaker.

According to various aspects, there is provided a method for providing ground fault protection. The method performed in a direct current (DC) power combiner operable to interconnect multiple photovoltaic strings, where each photovoltaic string may be connectible by a first and second DC power line. The method measures a differential current by comparing respective currents in the first and second DC power lines. When a control module measures the differential current to be greater than a maximum allowed current differential, a first switch is opened, thereby isolating the first DC power line from the DC power combiner and disconnecting the photovoltaic string from the interconnected photovoltaic strings. The first switch and a second switch may be parallel connected to form a first unit and the first unit may be connected in series with the first DC power line. A third switch and a fourth switch may be connected in parallel to form a second unit and the second unit may be connected in series with the second DC power line. The first unit may be operated simultaneously with the second unit.

When the differential current is measured and found to be greater than a maximum allowed current differential, the third switch may be opened and subsequently the fourth switch opened which isolates the second DC power line from the DC power combiner.

Prior to the comparing of respective currents in the first and second DC power lines, when the photovoltaic string begins to produce DC power with the first switch and the second switch both open. The second switch is closed and subsequently the first switch is closed, thereby connecting the first DC power line to the DC power combiner.

Prior to the comparing of respective currents in the first and second DC power lines, when the photovoltaic string begins to produce DC power with the third switch and the fourth switch both open. The fourth switch is closed and subsequently the third switch is closed, thereby connecting the second DC power line to the DC power combiner. The first switch and the third switch may be operated simultaneously. The second switch and the fourth switch may also be operated simultaneously.

The differential current may be indicative of current between the first DC power line and ground. The differential current may also be indicative of current between the second DC power line and ground. A failure of the string subsequent to the measuring of the differential current may be notified.

A test of the measuring of the differential current may be initiated by injecting a current in the first DC power line prior to and during the measuring. A test of the measuring of the differential current may also be initiated by injecting a current in the second DC power line prior to and during the measuring.

These, additional, and/or other aspects and/or advantages are set forth in the detailed description that follows.

BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects are herein described, by way of example only, with reference to the accompanying drawings, wherein:

FIG. 1 shows a power combiner box according to various aspects.

FIG. 2 shows further details of an isolator and sensing unit according to various aspects.

FIG. 3 shows more details of a digital controller according to various aspects.

FIG. 4 shows a method for disconnecting a string from multiple parallel-connected strings, using an isolation and test unit, according to various aspects.

The foregoing and/or other aspects will become apparent from the following detailed description when considered in conjunction with the accompanying figures.

DETAILED DESCRIPTION

Reference will now be made in detail to various aspects, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout.

Before explaining various aspects in detail, it is to be understood that embodiments are not limited in its application to the details of design and the arrangement of the components set forth in the following description or illustrated in the drawings. It is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.

The term “string” or “photovoltaic string” as used herein is a series connection of multiple photovoltaic panels, which may be connected together in parallel to form a “photovoltaic array.”

By way of introduction, various aspects may be directed to a device adapted for a disconnecting of at least one photovoltaic string from multiple interconnected photovoltaic strings. The disconnecting of at least one photovoltaic string may be required because a ground-fault has developed in the at least one photovoltaic string. Minimization of arcing may be performed whilst disconnecting or connecting a direct current (DC) string from multiple interconnected DC strings. Electric arcing can have detrimental effects on electric power distribution systems and electronic equipment. Arcing may occur in switches, circuit breakers, relay contacts, fuses, and poor cable terminations. When a circuit is switched off or a bad connection occurs in a connector, an arc discharge may form across the contacts of relay for example. An arc discharge is an electrical breakdown of a gas that produces an ongoing plasma discharge, resulting from a current flowing through a medium such as air, which may be normally non-conducting. At the beginning of a disconnection, the separation distance between the two contacts may be very small. As a result, the voltage across the air gap between the contacts produces a very large electrical field in terms of volts per millimeter. This large electrical field causes the ignition of an electrical arc between the two sides of the disconnection. If a circuit has enough current and voltage to sustain an arc, the arc can cause damage to equipment such as melting of conductors, destruction of insulation, and fire. The zero crossing of alternating current (AC) power systems may cause an arc not to reignite. However, a direct current system that has DC strings may be more prone to arcing than AC systems because of the absence of zero crossing in DC power systems.

Reference is now made to FIG. 1, which shows a power combiner box 19, according to various aspects. Power combiner box 19 includes multiple combiner circuit boards 12, multiple digital controllers 10, multiple isolation and test units 4, multiple photovoltaic string inputs 8, multiple bus bars 17 and 13, user interface 16, and power supply unit (PSU) 18.

Each combiner circuit board 12 has multiple units 4a-4n mechanically mounted to board 12. Unit 4 typically receives a direct current (DC) output from a photovoltaic string 8 or other DC power sources such as a battery, electric fuel cell, or DC generator. Outputs 9 of units 4a-4n may be preferably connected in parallel using bus bar 17. Alternatively, outputs 9 of units 4a-4n may first be connected to an input of a DC-to-DC converter. An output of the DC-to-DC converter may then be connected to bus bar 17. Multiple bus bars 17 may be further connected in parallel using bus bar 13. Bus bar 13, therefore gives the combined DC power output of power combiner 19. Power combiner 19 may be protected by lightning suppressor 192 (for example a varistor type) and may also be isolated using DC disconnect 194. A digital controller 10 may be operatively attached to units 4a-4n via communication and control lines 11. Communication and control lines 11 typically convey control signals to unit 4, to switch on or off unit 4 for example, or to receive signals, which represent currents or voltages measured by sensors located in unit 4 for example.

A user interface 16 may be operatively attached to digital controllers 10 via b-directional communication lines 3. Communication lines 3 may typically be a dual RS-485 bus for example. User interface 16 may be supplied with a DC power from a power supply 18, which converts a mains alternating current (AC) power into the DC power. The DC power may also be used to supply circuit boards 12, controllers 10, and unit circuits 4. Alternatively, circuit boards 12, controllers 10, and unit circuits 4 may be supplied from DC to DC converters, which get an input from strings 8 or the DC from PSU 18.

Reference is now made to FIG. 2, which shows further details of unit 4 according to various aspects. A photovoltaic string 8 has a negative line connected to node X and a positive line connected to one end of a fuse 404. The other end of fuse 404 connects to node A. Across nodes A and X may be a lightening suppressor 402. Suppressor 402 may be additionally connected to electrical earth.

Connected across nodes A and B may be a voltage sensor V1 which provides an output 406. Voltage sensor V1 typically may measure the voltage at node A or node B or the voltage difference between nodes A and B. Output 406 may be operatively attached to controller 10 via control and communication line 11 (not shown). A collector of an insulated gate bipolar transistor (IGBT) Q1 connects to node A. The emitter of Q1 connects to an emitter of an IGBT Q2. The collector of Q2 connects to node B. The emitters of Q1 and Q2 also connect to the anodes of two diodes D1 and D2. The cathode of D1 connects to node A and the cathode of D2 connects to node B. The base of Q1 is connected to the base of Q2. One output of a drive circuit 400 connects to the bases of Q1 and Q2 and another output connects to the anodes of diodes D1 and D2. One side of a relay RR1 contact switch S1 connects to node A. The other side of contact switch S1 connects to one side of a contact switch S2 of relay RR2. The other side of contact switch S2 connects to node B.

Connected across nodes X and Y may be a voltage sensor V2, which provides an output 408. Voltage sensor V2 typically may measure the voltage at node X or node Y or the voltage difference between nodes X and Y. Output 408 may be operatively attached to controller 10 via control and communication line 11. A collector of an insulated gate bipolar transistor (IGBT) Q3 connects to node X. The emitter of Q3 connects to an emitter of an IGBT Q4. The collector of Q4 connects to node Y. The emitters of Q3 and Q4 also connect to the anodes of two diodes D3 and D4. The cathode of D3 connects to node X and the cathode of D4 connects to node Y. The base of Q3 is connected to the base of Q4. One output of a drive circuit 400 connects to the bases of Q3 and Q4 and another output connects to the anodes of diodes D3 and D4. One side of a relay RR3 contact switch S3 connects to node X. The other side of contact switch S3 connects to one side of a contact switch S4 of relay RR4. The other side of contact switch S4 connects to node Y. Relays RR1, RR2, RR3 and RR4 may be typically rated with a breakdown DC voltage of 700 volts for switch contacts S1, S2, S3, and S4. Relays RR1, RR2, RR3, and RR4 may be typically AC relays or DC relays rated at around 1000 volts. During normal operation of strings 8 and combiner box 19, relays RR1, RR2, RR3 and RR4 may be on, i.e. switch contacts S1, S2, S3, S4 may be closed and IGBTs Q1, Q2, Q3, Q4 may be on also. The typical collector emitter voltage (VCE) for an IGBT may be around 2 volts compared to the substantially zero voltage across switch contacts S1, S2, S3, and S4. Therefore, the bulk of the string current (Istring) flows through switch contacts S1 and S2 (in the positive line) and through switch contacts S3 and S4 (in the negative line).

Node B connects to the positive input of residual current device RCD1 and node Y connects to the negative input of residual current device RCD1. Residual current device RCD1 provides a positive line output and a negative line output via a serially connected current sensor R2 in the negative line output. Alternatively residual current device RCD1 may be disposed between the positive and negative outputs of string 8 and nodes A and X. Residual current device RCD1 typically may be Hall Effect residual current device (RCD). Operatively attached to RCD1 may be a test circuit 414 via inductor L2. RCD1 may be operatively attached to test circuit 414 via Hall Effect. Inductor L2 may be connected in series with a battery B1 or a DC power supply from PSU 18, resistor R1 and switch Q5. The gate of switch Q5 may be operatively attached to controller 10 via control and communication line 11. Residual current device RCD1 provides a measure of a differential current between the currents in a positive line of DC output 9 and a negative line of DC output 9. The differential current threshold may be optionally around 20 milliamperes. Additionally residual current device RCD1 provides a measure of a differential voltage between the negative line and positive line of DC output 9. The differential current and the differential voltage may be used to calculate the power of a string 8. The measure of the differential current may be provided to controller 10 via output 410. Output 410 may be operatively attached to controller 10 via control and communication line 11. Output 410 may be provided from the output of an amplifier A1 that has an inductor L1 across an input of amplifier A1. Inductor L1 operatively attaches amplifier A1 to RCD1. A threshold of the differential current to indicate a current leakage may be optionally around a value of 20 milliamperes. The differential current above a value of 20 milliamperes, typically may indicate a current leakage in a photovoltaic string 8. Typically, both a positive and a negative of string 8 may be isolated from electrical earth. The current leakage may be either between the negative and electrical earth or between the positive and electrical earth. The differential current also above 20 milliamperes occurs when for example, an additional current may be imposed onto positive at node B and/or node Y using test circuit 414.

A measure of string 8 current may be also provided from the output 412 of amplifier A2. Output 412 may be operatively attached to controller 10 via control and communication line 11. Output 412 along with voltage sensors 408 and 406 may provide a measure of the power generated by a string 8. Current sensor R2 may be connected to the input of amplifier A2 via series resistors R3 and R4. Current sensor R2 may be located in the positive DC power line or the negative powers line.

Reference is now made to FIG. 3, which shows more details of digital controller 10, according to various aspects. Digital controller 10 includes multiplexors 106a, 106b/108a, 108b, digital signal processors (DSP) 100a/100b, analogue to digital (AD) converters 104a/104b, user interface 16, power supply unit 18 and complex programmable logic device (CPLD) 102. User interface 16 may be supplied with direct current (DC) power from PSU 18. User interface 16 may be operatively attached to DSP 100a and DSP 100b using bi-directional buses 3, Bus 3 may be typically a dual RS-485 bus. Using 16 photovoltaic strings 8 as an example; preferably DSP 100a and multiplexors 106a and 108a may be responsible for 8 of the photovoltaic strings 8 and DSP 100b and multiplexors 106b and 108b may be responsible for the remaining 8 photovoltaic strings 8. Control line 120a may be supplied from DSP 100a to control multiplexor 106a and control line 120b may be supplied from DSP 100b to control multiplexor 106b. Using the example, multiplexor 106a receives outputs 406, 408 and 412 for 8 strings 8. Multiplexor 106a may be controlled by DSP 100a via control line 120a to select which string 8 of the 8 strings 8, may be used to provide outputs 406, 408 and 412 to analogue to digital (AD) converter 104a. Similarly (as multiplexor 106a) multiplexor 106b receives outputs 406, 408, and 412 for the other 8 strings 8. Multiplexor 108a receives output 410 for 8 strings 8. Multiplexor 108a may be controlled by DSP 100a via control line 130a to select which string 8 of the 8 strings 8, may be used to provide output 410 to analogue to digital (AD) converter 104a. Similarly (as multiplexor 108a) multiplexor 108b receives output 410 for the other 8 strings 8. Synchronization between DSP 100a and DSP 100b may be by use of bi-directional synchronization control line 132. Complex programmable logic device (CPLD) 102 provides outputs to control test circuit 414, drive circuit 400 and relays RR1-RR4 in each unit 4 used for each string 8. The working operation of DSP 110b and DSP 100a may be also verified by CPLD 102 using watchdog bi-directional control lines WDb and WDa respectively. According to another aspect, just one DSP 100 and multiplexors 106 and 108 may be used to implement controller 10 for a number of photovoltaic strings 8.

Reference is now made FIG. 4, which shows a method 401 for disconnecting a string 8 from multiple parallel-connected strings 8 using isolation and test unit 4, according to various aspects. Referring again to FIG. 2, an isolator may be formed (step 403) between nodes A and B, so as to place the isolator in series with the positive power line (step 405) of string 8. Similarly, a second isolator may be formed between nodes X and Y, so as to place the second isolator in series with the negative DC power line of string 8. The isolator and the second isolator may be identical circuits and may be typically activated simultaneously by drive circuits 400. Typically, the negative power line of a string 8 may be not connected to electrical earth. Therefore, operation of both the isolator and the second isolator to disconnect string 8 in the event of a current leakage to earth due to a fault in string 8 prevents the current leakage to electrical earth from other parallel-connected strings 8.

Formation of an isolator in step 403 between nodes A and B includes a first switch and a second switch. The isolator connects and disconnects a string 8 from output 9. The first switch may be connected in parallel with the second switch to form a parallel connection. The parallel connection may be then connected serially between nodes A and B. The first switch may be formed by connecting in series switches S1 and S2 of relays RR1 and RR2 respectively. The second switch includes a collector of Q1 connected to node A and a collector of Q2 connected to node B. Emitters of Q1 and Q2 may be connected together. Where the emitters of Q1 and Q2 may be connected together may be also connected the anodes of diodes D1 and D2. The cathode of D1 connects to node A and the cathode of D2 connects to node B. The bases of Q1 and Q2 may be connected together and where the bases of Q1 and Q2 may be connected together, a connection to drive circuit 400 may be made. A second connection to drive circuit 400 may be made where the emitters of Q1 and Q2 may be connected together.

An input of residual current device RCD1 may be connected across nodes B and Y. RCD1 provides a measure (step 407) of a level of differential current between current flowing in the positive line of string 8 and the current flowing in the negative line of string 8. A differential current, which may be greater than a predetermined value, may be typically indicative of leakage current to electrical earth owing to fault in a string 8 or power lines connected to string 8. Also, a differential current, which may be greater than a predetermined value, may be provided by test circuit 414 so as to ensure that measurement step 407 may be functioning correctly as part of periodic test function. The level of differential current may be measured when the isolation between nodes A and B/X and Y may be ON, in a normal mode of operation. During the normal mode of operation, current in the positive line may be the sum of current flowing through switch contacts S1, S2 and current flowing through Q1 and D1 and Q2 and D2. During the normal mode of operation, current in the negative line may be the sum of current flowing through switch contacts S3, S4 and current flowing through Q3 and D3 and Q4 and D4. The lower ON resistance of switches S1-S4 means that the current going through switches S1-S4 may be much greater than the current going through IGBTs Q1-Q2 and diodes D1-D2. During the normal mode of operation, the level of differential current between current flowing in the positive line of string 8 and the current flowing in the negative line of string 8 may be substantially zero and/or less than 20 milliamperes. In decision box 409 if the modulus of the level of differential current may be substantially zero and/or less than 20 milliamperes, monitoring of the differential current continues with step 407. In decision box 409 if the modulus of the level of differential current may be greater than a predetermined value (typically greater than 20 milliamperes.), relays RR1-RR4 may be switched OFF (step 411) thereby opening switches S1-S4. The opening of switches S1-S4 substantially increases the current IGBTs Q1-Q4 and diodes D1-D4, which may be still ON. Substantial increase in the current through IGBTs Q1-Q4 and diodes D1-D4 means that the opening of switches S1-S4 in step 411 allows for minimized arcing of switches S1-S4. After switches S1-S4 may be opened, IGBTs Q1-Q4 may be turned OFF (step 413).

In decision 415, a check may be made to see if IGBTs Q1-Q4 and switches S1-S4 may be indeed turned OFF by measuring the voltages across nodes A, B and nodes X, Y. The voltages across nodes A, B and nodes X, Y may be measured by voltage sensor V1 and voltage sensor V2 respectively. Voltage sensor V1 provides output 406 and voltage sensor V2 provides output 408. Additionally current and voltage sensing from outputs 410, 412 and RCD1 may be used to see if IGBTs Q1-Q4 and switches S1-S4 may be indeed turned OFF. If IGBTs Q1-Q4 and switches S1-S4 may be indeed turned OFF a disconnected status for string may be initiated (step 419), otherwise an alarm or indication of a fault may be made with step 417.

Connection of a string 8, for example when multiple strings 8 begin to generate DC power, has IGBTs Q1-Q4 and switches S1-S4 initially turned OFF. First, IGBTs Q1-Q4 may be turned on, followed by switches S1-S4 being closed. Turning on IGBTs Q1-Q4 first before switches S1-S4 being closed prevents arcing of switches S1-S4. During a normal operation of a string 8, the lower ON resistance of switches S1-S4 means that the current going through switches S1-S4 may be much greater than the current going through IGBTs Q1-Q2 and diodes D1-D2.

The term “comprising” as used herein, refers to an open group of elements for example, comprising an element A and an element B means including one or more of element A and one or more of element B and other elements other than element A and element B may be included.

The terms “sensing” and “measuring” are used herein interchangeably.

The indefinite articles “a”, “an” is used herein, such as “a string”, “a switch” have the meaning of “one or more” that is “one or more strings or “one or more switches.”

Examples of various features/components/operations have been provided to facilitate understanding of various embodiments. In addition, various preferences have been discussed to facilitate understanding of the disclosed aspects. It is to be understood that all examples and preferences disclosed herein are intended to be non-limiting.

Although selected aspects have been shown and described individually, it is to be understood that at least aspects of the described aspects may be combined. Also, although selected aspects have been shown and described, it is to be understood that other embodiments are not so limited. Instead, it is to be appreciated that changes may be made to these aspects without departing from the principles and spirit of the disclosure.

Claims

1. An apparatus comprising:

a differential current sensor configured to measure differential current of at least one photovoltaic string of a plurality of photovoltaic strings, the differential current measured by comparing respective currents in a first direct current (DC) power line and a second DC power line that interconnect the at least one photovoltaic string to the plurality of photovoltaic strings;
a first switch connected in series with the first DC power line;
a second switch connected in series with the first DC power line and in parallel with the first switch, wherein the first switch has a lower on-resistance than the second switch; and
a controller circuit configured to operate the first switch or the second switch in response to the differential current sensor measuring the differential current at a different level than a predetermined current differential.

2. The apparatus of claim 1, wherein the controller circuit is configured to, in response to the differential current sensor measuring the differential current at a greater level than the predetermined current differential, open the first switch and subsequently open the second switch.

3. The apparatus of claim 2, further comprising:

a third switch connected in series with the second DC power line; and
a fourth switch connected in series with the second DC power line and connected in parallel with the third switch,
wherein the controller circuit is configured to, in response to the differential current sensor measuring the differential current at the greater level than the predetermined current differential, open the third switch and subsequently open the fourth switch.

4. The apparatus of claim 1, wherein the controller circuit is configured to, in response to the at least one photovoltaic string beginning to produce power, close the second switch and subsequently close the first switch.

5. The apparatus of claim 1, wherein the second switch comprises at least one of an insulated gate bipolar transistor (IGBT), an integral diode, a solid state switch, a metal oxide semiconductor field effect transistor (MOSFET), and a field effect transistor (FET).

6. The apparatus of claim 1, wherein the first switch comprises at least one of a relay and a circuit breaker.

7. A method comprising:

measuring a differential current by comparing current in a first DC power line to current in a second DC power line, the first DC power line and the second DC power line connecting at least one photovoltaic string to a plurality of photovoltaic strings; and
switching, in response to the differential current being at a different level than a predetermined current differential, at least one of a first switch and a second switch, the first switch connected in series with the first DC power line and the second switch connected in series with the first DC power line and connected in parallel with the first switch, wherein the first switch has a lower on-resistance than the second switch.

8. The method of claim 7, further comprising:

opening, in response to the differential current being at a greater level than the predetermined current differential, a third switch and subsequently opening a fourth switch, the third switch connected in series with the second DC power line and the fourth switch connected in series with the second DC power line and connected in parallel to the third switch.

9. The method of claim 7, further comprising:

closing, in response to the at least one photovoltaic string beginning to produce power, the second switch and subsequently closing the first switch.

10. The method of claim 7, wherein the differential current is indicative of current between the first DC power line and ground.

11. The method of claim 7, wherein the differential current is indicative of current between the second DC power line and ground.

12. The method of claim 7, further comprising:

initiating a test, wherein the test comprises injecting current into at least one of the first DC power line and the second DC power line prior to and during measuring the first DC power line and the second DC power line to determine the differential current.

13. The method of claim 8, wherein the first switch and the third switch are operated simultaneously and the second switch and the fourth switch are operated simultaneously.

14. The apparatus of claim 1, wherein the first switch is an electro-mechanical switch and the second switch is a semiconductor.

15. The apparatus of claim 4, wherein the controller circuit is configured to, in response to the at least one photovoltaic string beginning to produce power, close a fourth switch and subsequently close a third switch, wherein the third switch is connected in series with the second DC power line and the fourth switch is connected in series with the second DC power line and connected in parallel to the third switch.

16. The apparatus of claim 3, wherein the controller circuit is configured to operate the first switch and the third switch simultaneously and operate the second switch and the fourth switch simultaneously.

17. The method of claim 9, further comprising:

closing, in response to the at least one photovoltaic string beginning to produce power, a fourth switch and subsequently closing a third switch, wherein the third switch is connected in series with the second DC power line and the fourth switch is connected in series with the second DC power line and connected in parallel to the third switch.

18. The method of claim 7, wherein the second switch comprises at least one of an insulated gate bipolar transistor (IGBT), an integral diode, a solid state switch, a metal oxide semiconductor field effect transistor (MOSFET), and a field effect transistor (FET).

19. The method of claim 7, wherein the first switch comprises at least one of a relay and a circuit breaker.

20. The method of claim 8, further comprising:

sending a notification in response to at least one of the first switch, the second switch, the third switch, or the fourth switch being closed.
Referenced Cited
U.S. Patent Documents
2367925 January 1945 Brown
2852721 September 1958 Harders et al.
3369210 February 1968 Manickella
3392326 July 1968 Lamberton
3566143 February 1971 Paine et al.
3596229 July 1971 Hohorst
3696286 October 1972 Ule
4060757 November 29, 1977 McMurray
4101816 July 18, 1978 Shepter
4104687 August 1, 1978 Zulaski
4129788 December 12, 1978 Chavannes
4146785 March 27, 1979 Neale
4171861 October 23, 1979 Hohorst
4183079 January 8, 1980 Wachi
4321581 March 23, 1982 Tappeiner et al.
4346341 August 24, 1982 Blackburn
4375662 March 1, 1983 Baker
4404472 September 13, 1983 Steigerwald
4412142 October 25, 1983 Ragonese et al.
4452867 June 5, 1984 Conforti
4453207 June 5, 1984 Paul
4460232 July 17, 1984 Sotolongo
4479175 October 23, 1984 Gille et al.
4481654 November 6, 1984 Daniels et al.
4488136 December 11, 1984 Hansen et al.
4545997 October 8, 1985 Wong et al.
4554502 November 19, 1985 Rohatyn
4554515 November 19, 1985 Burson et al.
4580090 April 1, 1986 Bailey et al.
4591965 May 27, 1986 Dickerson
4598330 July 1, 1986 Woodworth
4604567 August 5, 1986 Chetty
4623753 November 18, 1986 Feldman et al.
4626983 December 2, 1986 Harada et al.
4631565 December 23, 1986 Tihanyi
4637677 January 20, 1987 Barkus
4641042 February 3, 1987 Miyazawa
4641079 February 3, 1987 Kato et al.
4644458 February 17, 1987 Harafuji et al.
4649334 March 10, 1987 Nakajima
4652770 March 24, 1987 Kumano
4683529 July 28, 1987 Bucher, II
4719553 January 12, 1988 Hinckley
4736151 April 5, 1988 Dishner
4772994 September 20, 1988 Harada et al.
4783728 November 8, 1988 Hoffman
4819121 April 4, 1989 Saito et al.
RE33057 September 12, 1989 Clegg et al.
4868379 September 19, 1989 West
4873480 October 10, 1989 Lafferty
4888063 December 19, 1989 Powell
4888702 December 19, 1989 Gerken et al.
4899269 February 6, 1990 Rouzies
4903851 February 27, 1990 Slough
4951117 August 21, 1990 Kasai
4987360 January 22, 1991 Thompson
5001415 March 19, 1991 Watkinson
5027051 June 25, 1991 Lafferty
5027059 June 25, 1991 de Montgolfier et al.
5045988 September 3, 1991 Gritter et al.
5081558 January 14, 1992 Mahler
5138422 August 11, 1992 Fujii et al.
5144222 September 1, 1992 Herbert
5155670 October 13, 1992 Brian
5191519 March 2, 1993 Kawakami
5196781 March 23, 1993 Jamieson et al.
5237194 August 17, 1993 Takahashi
5268832 December 7, 1993 Kandatsu
5280133 January 18, 1994 Nath
5280232 January 18, 1994 Kohl et al.
5289998 March 1, 1994 Bingley et al.
5327071 July 5, 1994 Frederick et al.
5329222 July 12, 1994 Gyugyi et al.
5345375 September 6, 1994 Mohan
5379209 January 3, 1995 Goff
5381327 January 10, 1995 Yan
5402060 March 28, 1995 Erisman
5404059 April 4, 1995 Loffler
5412558 May 2, 1995 Sakurai et al.
5413313 May 9, 1995 Mutterlein et al.
5446645 August 29, 1995 Shirahama et al.
5460546 October 24, 1995 Kunishi et al.
5493154 February 20, 1996 Smith et al.
5497289 March 5, 1996 Sugishima et al.
5504418 April 2, 1996 Ashley
5504449 April 2, 1996 Prentice
5517378 May 14, 1996 Asplund et al.
5530335 June 25, 1996 Decker et al.
5539238 July 23, 1996 Malhi
5548504 August 20, 1996 Takehara
5565855 October 15, 1996 Knibbe
5576941 November 19, 1996 Nguyen et al.
5585749 December 17, 1996 Pace et al.
5604430 February 18, 1997 Decker et al.
5616913 April 1, 1997 Litterst
5636107 June 3, 1997 Lu et al.
5644219 July 1, 1997 Kurokawa
5646501 July 8, 1997 Fishman et al.
5648731 July 15, 1997 Decker et al.
5659465 August 19, 1997 Flack et al.
5677833 October 14, 1997 Bingley
5684385 November 4, 1997 Guyonneau et al.
5686766 November 11, 1997 Tamechika
5703390 December 30, 1997 Itoh
5708576 January 13, 1998 Jones et al.
5719758 February 17, 1998 Nakata et al.
5722057 February 24, 1998 Wu
5726615 March 10, 1998 Bloom
5731603 March 24, 1998 Nakagawa et al.
5734565 March 31, 1998 Mueller et al.
5747967 May 5, 1998 Muljadi et al.
5773963 June 30, 1998 Blanc et al.
5777515 July 7, 1998 Kimura
5780092 July 14, 1998 Agbo et al.
5793184 August 11, 1998 O'Connor
5798631 August 25, 1998 Spee et al.
5801519 September 1, 1998 Midya et al.
5804894 September 8, 1998 Leeson et al.
5812045 September 22, 1998 Ishikawa et al.
5814970 September 29, 1998 Schmidt
5821734 October 13, 1998 Faulk
5822186 October 13, 1998 Bull et al.
5838148 November 17, 1998 Kurokami et al.
5847549 December 8, 1998 Dodson, III
5859772 January 12, 1999 Hilpert
5869956 February 9, 1999 Nagao et al.
5873738 February 23, 1999 Shimada et al.
5886890 March 23, 1999 Ishida et al.
5892354 April 6, 1999 Nagao et al.
5898585 April 27, 1999 Sirichote et al.
5903138 May 11, 1999 Hwang et al.
5905645 May 18, 1999 Cross
5919314 July 6, 1999 Kim
5923100 July 13, 1999 Lukens et al.
5923158 July 13, 1999 Kurokami et al.
5929614 July 27, 1999 Copple
5930131 July 27, 1999 Feng
5932994 August 3, 1999 Jo et al.
5933327 August 3, 1999 Leighton et al.
5945806 August 31, 1999 Faulk
5946206 August 31, 1999 Shimizu et al.
5949668 September 7, 1999 Schweighofer
5961739 October 5, 1999 Osborne
5963010 October 5, 1999 Hayashi et al.
5963078 October 5, 1999 Wallace
5986909 November 16, 1999 Hammond et al.
5990659 November 23, 1999 Frannhagen
6002603 December 14, 1999 Carver
6021052 February 1, 2000 Unger et al.
6031736 February 29, 2000 Takehara et al.
6038148 March 14, 2000 Farrington et al.
6046470 April 4, 2000 Williams et al.
6046919 April 4, 2000 Madenokouji et al.
6050779 April 18, 2000 Nagao et al.
6058035 May 2, 2000 Madenokouji et al.
6064086 May 16, 2000 Nakagawa et al.
6078511 June 20, 2000 Fasullo et al.
6081104 June 27, 2000 Kern
6082122 July 4, 2000 Madenokouji et al.
6093885 July 25, 2000 Takehara et al.
6094129 July 25, 2000 Baiatu
6101073 August 8, 2000 Takehara
6105317 August 22, 2000 Tomiuchi et al.
6111188 August 29, 2000 Kurokami et al.
6111391 August 29, 2000 Cullen
6111767 August 29, 2000 Handleman
6130458 October 10, 2000 Takagi et al.
6150739 November 21, 2000 Baumgartl et al.
6151234 November 21, 2000 Oldenkamp
6163086 December 19, 2000 Choo
6166455 December 26, 2000 Li
6166527 December 26, 2000 Dwelley et al.
6169678 January 2, 2001 Kondo et al.
6175219 January 16, 2001 Imamura et al.
6175512 January 16, 2001 Hagihara et al.
6191456 February 20, 2001 Stoisiek et al.
6219623 April 17, 2001 Wills
6225793 May 1, 2001 Dickmann
6255360 July 3, 2001 Domschke et al.
6255804 July 3, 2001 Herniter et al.
6256234 July 3, 2001 Keeth et al.
6259234 July 10, 2001 Perol
6262558 July 17, 2001 Weinberg
6268559 July 31, 2001 Yamawaki
6281485 August 28, 2001 Siri
6285572 September 4, 2001 Onizuka et al.
6301128 October 9, 2001 Jang et al.
6304065 October 16, 2001 Wittenbreder
6307749 October 23, 2001 Daanen et al.
6311137 October 30, 2001 Kurokami et al.
6316716 November 13, 2001 Hilgrath
6320769 November 20, 2001 Kurokami et al.
6331670 December 18, 2001 Takehara et al.
6339538 January 15, 2002 Handleman
6346451 February 12, 2002 Simpson et al.
6350944 February 26, 2002 Sherif et al.
6351130 February 26, 2002 Preiser et al.
6369461 April 9, 2002 Jungreis et al.
6369462 April 9, 2002 Siri
6380719 April 30, 2002 Underwood et al.
6396170 May 28, 2002 Laufenberg et al.
6396239 May 28, 2002 Benn et al.
6425248 July 30, 2002 Tonomura et al.
6429546 August 6, 2002 Ropp et al.
6429621 August 6, 2002 Arai
6433522 August 13, 2002 Siri
6433978 August 13, 2002 Neiger et al.
6445599 September 3, 2002 Nguyen
6448489 September 10, 2002 Kimura et al.
6452814 September 17, 2002 Wittenbreder
6469919 October 22, 2002 Bennett
6472254 October 29, 2002 Cantarini et al.
6493246 December 10, 2002 Suzui et al.
6501362 December 31, 2002 Hoffman et al.
6507176 January 14, 2003 Wittenbreder, Jr.
6509712 January 21, 2003 Landis
6512444 January 28, 2003 Morris, Jr. et al.
6515215 February 4, 2003 Mimura
6519165 February 11, 2003 Koike
6528977 March 4, 2003 Arakawa
6531848 March 11, 2003 Chitsazan et al.
6545211 April 8, 2003 Mimura
6548205 April 15, 2003 Leung et al.
6560131 May 6, 2003 vonBrethorst
6590793 July 8, 2003 Nagao et al.
6590794 July 8, 2003 Carter
6593520 July 15, 2003 Kondo et al.
6593521 July 15, 2003 Kobayashi
6603672 August 5, 2003 Deng et al.
6608468 August 19, 2003 Nagase
6611441 August 26, 2003 Kurokami et al.
6628011 September 30, 2003 Droppo et al.
6650031 November 18, 2003 Goldack
6650560 November 18, 2003 MacDonald et al.
6653549 November 25, 2003 Matsushita et al.
6657419 December 2, 2003 Renyolds
6672018 January 6, 2004 Shingleton
6678174 January 13, 2004 Suzui et al.
6690590 February 10, 2004 Stamenic et al.
6693327 February 17, 2004 Priefert et al.
6709291 March 23, 2004 Wallace et al.
6731136 May 4, 2004 Knee
6738692 May 18, 2004 Schienbein et al.
6765315 July 20, 2004 Hammerstrom et al.
6768047 July 27, 2004 Chang et al.
6768180 July 27, 2004 Salama et al.
6788033 September 7, 2004 Vinciarelli
6795318 September 21, 2004 Haas et al.
6800964 October 5, 2004 Beck
6801442 October 5, 2004 Suzui et al.
6807069 October 19, 2004 Nieminen et al.
6809942 October 26, 2004 Madenokouji et al.
6812396 November 2, 2004 Makita et al.
6837739 January 4, 2005 Gorringe et al.
6838611 January 4, 2005 Kondo et al.
6850074 February 1, 2005 Adams et al.
6856102 February 15, 2005 Lin et al.
6882131 April 19, 2005 Takada et al.
6888728 May 3, 2005 Takagi et al.
6914418 July 5, 2005 Sung
6919714 July 19, 2005 Delepaut
6927955 August 9, 2005 Suzui et al.
6933627 August 23, 2005 Wilhelm
6933714 August 23, 2005 Fasshauer et al.
6936995 August 30, 2005 Kapsokavathis et al.
6940735 September 6, 2005 Deng et al.
6949843 September 27, 2005 Dubovsky
6950323 September 27, 2005 Achleitner et al.
6963147 November 8, 2005 Kurokami et al.
6966184 November 22, 2005 Toyomura et al.
6980783 December 27, 2005 Liu et al.
6984967 January 10, 2006 Notman
6984970 January 10, 2006 Capel
6996741 February 7, 2006 Pittelkow et al.
7030597 April 18, 2006 Bruno et al.
7031176 April 18, 2006 Kotsopoulos et al.
7038430 May 2, 2006 Itabashi et al.
7042195 May 9, 2006 Tsunetsugu et al.
7045991 May 16, 2006 Nakamura et al.
7046531 May 16, 2006 Zocchi et al.
7053506 May 30, 2006 Alonso et al.
7061211 June 13, 2006 Satoh et al.
7061214 June 13, 2006 Mayega et al.
7064967 June 20, 2006 Ichinose et al.
7068017 June 27, 2006 Willner et al.
7072194 July 4, 2006 Nayar et al.
7078883 July 18, 2006 Chapman et al.
7079406 July 18, 2006 Kurokami et al.
7087332 August 8, 2006 Harris
7090509 August 15, 2006 Gilliland et al.
7091707 August 15, 2006 Cutler
7097516 August 29, 2006 Werner et al.
7126053 October 24, 2006 Kurokami et al.
7126294 October 24, 2006 Minami et al.
7138786 November 21, 2006 Ishigaki et al.
7142997 November 28, 2006 Widner
7148669 December 12, 2006 Maksimovic et al.
7158359 January 2, 2007 Bertele et al.
7158395 January 2, 2007 Deng et al.
7161082 January 9, 2007 Matsushita et al.
7174973 February 13, 2007 Lysaght
7183667 February 27, 2007 Colby et al.
7193872 March 20, 2007 Siri
7202653 April 10, 2007 Pai
7218541 May 15, 2007 Price et al.
7248946 July 24, 2007 Bashaw et al.
7256566 August 14, 2007 Bhavaraju et al.
7259474 August 21, 2007 Blanc
7262979 August 28, 2007 Wai et al.
7276886 October 2, 2007 Kinder et al.
7277304 October 2, 2007 Stancu et al.
7282814 October 16, 2007 Jacobs
7291036 November 6, 2007 Daily et al.
RE39976 January 1, 2008 Schiff et al.
7315052 January 1, 2008 Alter
7319313 January 15, 2008 Dickerson et al.
7324361 January 29, 2008 Siri
7336004 February 26, 2008 Lai
7336056 February 26, 2008 Dening
7339287 March 4, 2008 Jepsen et al.
7348802 March 25, 2008 Kasanyal et al.
7352154 April 1, 2008 Cook
7361952 April 22, 2008 Miura et al.
7371963 May 13, 2008 Suenaga et al.
7372712 May 13, 2008 Stancu et al.
7385380 June 10, 2008 Ishigaki et al.
7385833 June 10, 2008 Keung
7388348 June 17, 2008 Mattichak
7394237 July 1, 2008 Chou et al.
7405117 July 29, 2008 Zuniga et al.
7414870 August 19, 2008 Rottger et al.
7420354 September 2, 2008 Cutler
7420815 September 2, 2008 Love
7432691 October 7, 2008 Cutler
7435134 October 14, 2008 Lenox
7435897 October 14, 2008 Russell
7443152 October 28, 2008 Utsunomiya
7450401 November 11, 2008 Iida
7463500 December 9, 2008 West
7466566 December 16, 2008 Fukumoto
7471014 December 30, 2008 Lum et al.
7471524 December 30, 2008 Batarseh et al.
7479774 January 20, 2009 Wai et al.
7482238 January 27, 2009 Sung
7485987 February 3, 2009 Mori et al.
7504811 March 17, 2009 Watanabe et al.
7518346 April 14, 2009 Prexl et al.
7538451 May 26, 2009 Nomoto
7560915 July 14, 2009 Ito et al.
7589437 September 15, 2009 Henne et al.
7595616 September 29, 2009 Prexl et al.
7596008 September 29, 2009 Iwata et al.
7599200 October 6, 2009 Tomonaga
7600349 October 13, 2009 Liebendorfer
7602080 October 13, 2009 Hadar et al.
7605498 October 20, 2009 Ledenev et al.
7612283 November 3, 2009 Toyomura et al.
7626834 December 1, 2009 Chisenga et al.
7646116 January 12, 2010 Batarseh et al.
7649434 January 19, 2010 Xu et al.
7701083 April 20, 2010 Savage
7719140 May 18, 2010 Ledenev et al.
7723865 May 25, 2010 Kitanaka
7733069 June 8, 2010 Toyomura et al.
7748175 July 6, 2010 Liebendorfer
7759575 July 20, 2010 Jones et al.
7763807 July 27, 2010 Richter
7780472 August 24, 2010 Lenox
7782031 August 24, 2010 Qiu et al.
7787273 August 31, 2010 Lu et al.
7804282 September 28, 2010 Bertele
7807919 October 5, 2010 Powell et al.
7808125 October 5, 2010 Sachdeva et al.
7812701 October 12, 2010 Lee et al.
7821225 October 26, 2010 Chou et al.
7839022 November 23, 2010 Wolfs
7843085 November 30, 2010 Ledenev et al.
7868599 January 11, 2011 Rahman et al.
7880334 February 1, 2011 Evans et al.
7883808 February 8, 2011 Norimatsu et al.
7884278 February 8, 2011 Powell et al.
7893346 February 22, 2011 Nachamkin et al.
7898112 March 1, 2011 Powell et al.
7900361 March 8, 2011 Adest et al.
7906870 March 15, 2011 Ohm
7919952 April 5, 2011 Fahrenbruch
7919953 April 5, 2011 Porter et al.
7925552 April 12, 2011 Tarbell et al.
7948221 May 24, 2011 Watanabe et al.
7952897 May 31, 2011 Nocentini et al.
7960650 June 14, 2011 Richter et al.
7960950 June 14, 2011 Glovinsky
7969133 June 28, 2011 Zhang et al.
8003885 August 23, 2011 Richter et al.
8004113 August 23, 2011 Sander et al.
8004116 August 23, 2011 Ledenev et al.
8004117 August 23, 2011 Adest et al.
8004866 August 23, 2011 Bucella et al.
8013472 September 6, 2011 Adest et al.
8039730 October 18, 2011 Hadar et al.
8058747 November 15, 2011 Avrutsky et al.
8077437 December 13, 2011 Mumtaz et al.
8089780 January 3, 2012 Mochikawa et al.
8089785 January 3, 2012 Rodriguez
8090548 January 3, 2012 Abdennadher et al.
8093756 January 10, 2012 Porter et al.
8093757 January 10, 2012 Wolfs
8102074 January 24, 2012 Hadar et al.
8111052 February 7, 2012 Glovinsky
8138631 March 20, 2012 Allen et al.
8138914 March 20, 2012 Wong et al.
8158877 April 17, 2012 Klein et al.
8169252 May 1, 2012 Fahrenbruch et al.
8179147 May 15, 2012 Dargatz et al.
8204709 June 19, 2012 Presher, Jr. et al.
8212408 July 3, 2012 Fishman
8212409 July 3, 2012 Bettenwort et al.
8271599 September 18, 2012 Eizips et al.
8274172 September 25, 2012 Hadar et al.
8279644 October 2, 2012 Zhang et al.
8289742 October 16, 2012 Adest et al.
8304932 November 6, 2012 Ledenev et al.
8310101 November 13, 2012 Amaratunga et al.
8310102 November 13, 2012 Raju
8314375 November 20, 2012 Arditi et al.
8325059 December 4, 2012 Rozenboim
8369113 February 5, 2013 Rodriguez
8405248 March 26, 2013 Mumtaz et al.
8405349 March 26, 2013 Kikinis et al.
8405367 March 26, 2013 Chisenga et al.
8415552 April 9, 2013 Hadar et al.
8461809 June 11, 2013 Rodriguez
8473250 June 25, 2013 Adest et al.
8509032 August 13, 2013 Rakib
8581441 November 12, 2013 Rotzoll et al.
8653689 February 18, 2014 Rozenboim
8669675 March 11, 2014 Capp et al.
8686333 April 1, 2014 Arditi et al.
8751053 June 10, 2014 Hadar et al.
8773236 July 8, 2014 Makhota et al.
8811047 August 19, 2014 Rodriguez
8823218 September 2, 2014 Hadar et al.
8823342 September 2, 2014 Williams
8841916 September 23, 2014 Avrutsky
8853886 October 7, 2014 Avrutsky et al.
8854193 October 7, 2014 Makhota et al.
8860241 October 14, 2014 Hadar et al.
8860246 October 14, 2014 Hadar et al.
8922061 December 30, 2014 Arditi
8933321 January 13, 2015 Hadar et al.
20010023703 September 27, 2001 Kondo et al.
20010032664 October 25, 2001 Takehara et al.
20010034982 November 1, 2001 Nagao et al.
20010035180 November 1, 2001 Kimura et al.
20010048605 December 6, 2001 Kurokami et al.
20010050102 December 13, 2001 Matsumi et al.
20010054881 December 27, 2001 Watanabe
20020014262 February 7, 2002 Matsushita et al.
20020034083 March 21, 2002 Ayyanar et al.
20020038667 April 4, 2002 Kondo et al.
20020041505 April 11, 2002 Suzui et al.
20020044473 April 18, 2002 Toyomura et al.
20020047309 April 25, 2002 Droppo et al.
20020047693 April 25, 2002 Chang
20020056089 May 9, 2002 Houston
20020063552 May 30, 2002 Arakawa
20020078991 June 27, 2002 Nagao et al.
20020080027 June 27, 2002 Conley
20020118559 August 29, 2002 Kurokami et al.
20020148497 October 17, 2002 Sasaoka et al.
20020149950 October 17, 2002 Takebayashi
20020165458 November 7, 2002 Carter et al.
20020177401 November 28, 2002 Judd et al.
20020179140 December 5, 2002 Toyomura
20020180408 December 5, 2002 McDaniel et al.
20030038615 February 27, 2003 Elbanhawy
20030058593 March 27, 2003 Bertele et al.
20030066076 April 3, 2003 Minahan
20030066555 April 10, 2003 Hui et al.
20030075211 April 24, 2003 Makita et al.
20030080741 May 1, 2003 LeRow et al.
20030085621 May 8, 2003 Potega
20030090233 May 15, 2003 Browe
20030094931 May 22, 2003 Renyolds
20030107352 June 12, 2003 Downer et al.
20030156439 August 21, 2003 Ohmichi et al.
20030164695 September 4, 2003 Fasshauer et al.
20030185026 October 2, 2003 Matsuda et al.
20030193821 October 16, 2003 Krieger et al.
20030201674 October 30, 2003 Droppo et al.
20030214274 November 20, 2003 Lethellier
20030223257 December 4, 2003 Onoe
20040041548 March 4, 2004 Perry
20040056642 March 25, 2004 Nebrigic et al.
20040056768 March 25, 2004 Matsushita et al.
20040061527 April 1, 2004 Knee
20040076028 April 22, 2004 Achleitner et al.
20040117676 June 17, 2004 Kobayashi et al.
20040118446 June 24, 2004 Toyomura
20040123894 July 1, 2004 Erban
20040124816 July 1, 2004 DeLepaut
20040125618 July 1, 2004 De Rooij et al.
20040140719 July 22, 2004 Vulih et al.
20040150410 August 5, 2004 Schoepf et al.
20040164718 August 26, 2004 McDaniel et al.
20040165408 August 26, 2004 West et al.
20040169499 September 2, 2004 Huang et al.
20040170038 September 2, 2004 Ichinose et al.
20040189432 September 30, 2004 Yan et al.
20040201279 October 14, 2004 Templeton
20040201933 October 14, 2004 Blanc
20040207366 October 21, 2004 Sung
20040211458 October 28, 2004 Gui et al.
20040223351 November 11, 2004 Kurokami et al.
20040230343 November 18, 2004 Zalesski
20040233685 November 25, 2004 Matsuo et al.
20040246226 December 9, 2004 Moon
20040258141 December 23, 2004 Tustison et al.
20040263183 December 30, 2004 Naidu et al.
20040264225 December 30, 2004 Bhavaraju et al.
20050002214 January 6, 2005 Deng et al.
20050005785 January 13, 2005 Poss et al.
20050006958 January 13, 2005 Dubovsky
20050017697 January 27, 2005 Capel
20050017701 January 27, 2005 Hsu
20050030772 February 10, 2005 Phadke
20050040800 February 24, 2005 Sutardja
20050057214 March 17, 2005 Matan
20050057215 March 17, 2005 Matan
20050068012 March 31, 2005 Cutler
20050068820 March 31, 2005 Radosevich et al.
20050099138 May 12, 2005 Wilhelm
20050103376 May 19, 2005 Matsushita et al.
20050105224 May 19, 2005 Nishi
20050105306 May 19, 2005 Deng et al.
20050110454 May 26, 2005 Tsai et al.
20050135031 June 23, 2005 Colby et al.
20050139258 June 30, 2005 Liu et al.
20050162018 July 28, 2005 Realmuto et al.
20050172995 August 11, 2005 Rohrig et al.
20050179420 August 18, 2005 Satoh et al.
20050201397 September 15, 2005 Petite
20050213272 September 29, 2005 Kobayashi
20050225090 October 13, 2005 Wobben
20050226017 October 13, 2005 Kotsopoulos et al.
20050242795 November 3, 2005 Al-Kuran et al.
20050257827 November 24, 2005 Gaudiana et al.
20050269988 December 8, 2005 Thrap
20050275386 December 15, 2005 Jepsen et al.
20050275527 December 15, 2005 Kates
20050275979 December 15, 2005 Xu
20060001406 January 5, 2006 Matan
20060017327 January 26, 2006 Siri et al.
20060034106 February 16, 2006 Johnson
20060038692 February 23, 2006 Schnetker
20060043792 March 2, 2006 Hjort et al.
20060053447 March 9, 2006 Krzyzanowski et al.
20060066349 March 30, 2006 Murakami
20060068239 March 30, 2006 Norimatsu et al.
20060103360 May 18, 2006 Cutler
20060108979 May 25, 2006 Daniel et al.
20060109009 May 25, 2006 Banke et al.
20060113843 June 1, 2006 Beveridge
20060113979 June 1, 2006 Ishigaki et al.
20060118162 June 8, 2006 Saelzer et al.
20060132102 June 22, 2006 Harvey
20060149396 July 6, 2006 Templeton
20060152085 July 13, 2006 Flett et al.
20060162772 July 27, 2006 Presher et al.
20060163946 July 27, 2006 Henne et al.
20060164065 July 27, 2006 Hoouk et al.
20060171182 August 3, 2006 Siri et al.
20060174939 August 10, 2006 Matan
20060176029 August 10, 2006 McGinty et al.
20060176031 August 10, 2006 Forman et al.
20060176036 August 10, 2006 Flatness et al.
20060185727 August 24, 2006 Matan
20060192540 August 31, 2006 Balakrishnan et al.
20060208660 September 21, 2006 Shinmura et al.
20060222916 October 5, 2006 Norimatsu et al.
20060227578 October 12, 2006 Datta et al.
20060231132 October 19, 2006 Neussner
20060232220 October 19, 2006 Melis
20060237058 October 26, 2006 McClintock
20060261751 November 23, 2006 Okabe et al.
20060290317 December 28, 2006 McNulty et al.
20070001653 January 4, 2007 Xu
20070019613 January 25, 2007 Frezzolini
20070024257 February 1, 2007 Boldo
20070027644 February 1, 2007 Bettenwort et al.
20070029636 February 8, 2007 Kanemaru et al.
20070035975 February 15, 2007 Dickerson et al.
20070040540 February 22, 2007 Cutler
20070044837 March 1, 2007 Simburger et al.
20070075711 April 5, 2007 Blanc et al.
20070081364 April 12, 2007 Andreycak
20070103108 May 10, 2007 Capp et al.
20070107767 May 17, 2007 Hayden et al.
20070119718 May 31, 2007 Gibson et al.
20070121648 May 31, 2007 Hahn
20070133421 June 14, 2007 Young
20070147075 June 28, 2007 Bang
20070158185 July 12, 2007 Andelman et al.
20070159866 July 12, 2007 Siri
20070164612 July 19, 2007 Wendt et al.
20070164750 July 19, 2007 Chen et al.
20070165347 July 19, 2007 Wendt et al.
20070205778 September 6, 2007 Fabbro et al.
20070209656 September 13, 2007 Lee
20070211888 September 13, 2007 Corcoran et al.
20070227574 October 4, 2007 Cart
20070235071 October 11, 2007 Work et al.
20070236187 October 11, 2007 Wai et al.
20070271006 November 22, 2007 Golden et al.
20070273342 November 29, 2007 Kataoka et al.
20070273351 November 29, 2007 Matan
20070290636 December 20, 2007 Beck et al.
20070290656 December 20, 2007 Lee Tai Keung
20080021707 January 24, 2008 Bou-Ghazale et al.
20080024098 January 31, 2008 Hojo
20080036440 February 14, 2008 Garmer
20080055941 March 6, 2008 Victor et al.
20080080177 April 3, 2008 Chang
20080088184 April 17, 2008 Tung et al.
20080089277 April 17, 2008 Alexander et al.
20080097655 April 24, 2008 Hadar et al.
20080106250 May 8, 2008 Prior et al.
20080111529 May 15, 2008 Shah et al.
20080115823 May 22, 2008 Kinsey
20080121272 May 29, 2008 Besser et al.
20080122449 May 29, 2008 Besser et al.
20080122518 May 29, 2008 Besser et al.
20080136367 June 12, 2008 Adest et al.
20080143188 June 19, 2008 Adest et al.
20080143462 June 19, 2008 Belisle et al.
20080144294 June 19, 2008 Adest et al.
20080147335 June 19, 2008 Adest et al.
20080149167 June 26, 2008 Liu
20080150366 June 26, 2008 Adest et al.
20080150484 June 26, 2008 Kimball et al.
20080164766 July 10, 2008 Adest et al.
20080179949 July 31, 2008 Besser et al.
20080186004 August 7, 2008 Williams
20080191560 August 14, 2008 Besser et al.
20080191675 August 14, 2008 Besser et al.
20080192519 August 14, 2008 Iwata et al.
20080198523 August 21, 2008 Schmidt et al.
20080205096 August 28, 2008 Lai et al.
20080224652 September 18, 2008 Zhu et al.
20080236647 October 2, 2008 Gibson et al.
20080236648 October 2, 2008 Klein et al.
20080238195 October 2, 2008 Shaver et al.
20080238372 October 2, 2008 Cintra et al.
20080246460 October 9, 2008 Smith
20080246463 October 9, 2008 Sinton et al.
20080264470 October 30, 2008 Masuda et al.
20080266919 October 30, 2008 Mallwitz
20080291707 November 27, 2008 Fang
20080294472 November 27, 2008 Yamada
20080297963 December 4, 2008 Lee et al.
20080304296 December 11, 2008 NadimpalliRaju et al.
20080304298 December 11, 2008 Toba et al.
20090012917 January 8, 2009 Thompson et al.
20090014050 January 15, 2009 Haaf
20090015071 January 15, 2009 Iwata et al.
20090020151 January 22, 2009 Fornage
20090021877 January 22, 2009 Fornage et al.
20090039852 February 12, 2009 Fishelov et al.
20090066357 March 12, 2009 Fornage
20090066399 March 12, 2009 Chen et al.
20090069950 March 12, 2009 Kurokami et al.
20090073726 March 19, 2009 Babcock
20090080226 March 26, 2009 Fornage
20090084570 April 2, 2009 Gherardini et al.
20090097172 April 16, 2009 Bremicker et al.
20090101191 April 23, 2009 Beck et al.
20090102440 April 23, 2009 Coles
20090114263 May 7, 2009 Powell et al.
20090120485 May 14, 2009 Kikinis
20090133736 May 28, 2009 Powell et al.
20090140715 June 4, 2009 Adest et al.
20090141522 June 4, 2009 Adest et al.
20090145480 June 11, 2009 Adest et al.
20090146667 June 11, 2009 Adest et al.
20090146671 June 11, 2009 Gazit
20090147554 June 11, 2009 Adest et al.
20090150005 June 11, 2009 Hadar et al.
20090179500 July 16, 2009 Ragonese et al.
20090179662 July 16, 2009 Moulton et al.
20090182532 July 16, 2009 Stoeber et al.
20090189456 July 30, 2009 Skutt
20090190275 July 30, 2009 Gilmore et al.
20090195081 August 6, 2009 Quardt et al.
20090206666 August 20, 2009 Sella et al.
20090207543 August 20, 2009 Boniface et al.
20090224817 September 10, 2009 Nakamura et al.
20090234692 September 17, 2009 Powell et al.
20090237042 September 24, 2009 Glovinski
20090237043 September 24, 2009 Glovinsky
20090242011 October 1, 2009 Proisy et al.
20090243547 October 1, 2009 Andelfinger
20090273241 November 5, 2009 Gazit et al.
20090278496 November 12, 2009 Nakao et al.
20090282755 November 19, 2009 Abbott et al.
20090283129 November 19, 2009 Foss
20090283130 November 19, 2009 Gilmore et al.
20090284232 November 19, 2009 Zhang et al.
20090284998 November 19, 2009 Zhang et al.
20090295225 December 3, 2009 Asplund et al.
20090322494 December 31, 2009 Lee
20100002349 January 7, 2010 La Scala et al.
20100013452 January 21, 2010 Tang et al.
20100026097 February 4, 2010 Avrutsky et al.
20100052735 March 4, 2010 Burkland et al.
20100057267 March 4, 2010 Liu et al.
20100060000 March 11, 2010 Scholte-Wassink
20100085670 April 8, 2010 Palaniswami et al.
20100115093 May 6, 2010 Rice
20100124027 May 20, 2010 Handelsman et al.
20100127570 May 27, 2010 Hadar et al.
20100132757 June 3, 2010 He et al.
20100132758 June 3, 2010 Gilmore
20100133911 June 3, 2010 Williams et al.
20100139734 June 10, 2010 Hadar et al.
20100139743 June 10, 2010 Hadar et al.
20100191383 July 29, 2010 Gaul
20100207764 August 19, 2010 Muhlberger et al.
20100207770 August 19, 2010 Thiemann
20100208501 August 19, 2010 Matan et al.
20100214808 August 26, 2010 Rodriguez
20100229915 September 16, 2010 Ledenev et al.
20100244575 September 30, 2010 Coccia et al.
20100246223 September 30, 2010 Xuan
20100264736 October 21, 2010 Mumtaz et al.
20100269430 October 28, 2010 Haddock
20100277001 November 4, 2010 Wagoner
20100282290 November 11, 2010 Schwarze et al.
20100286836 November 11, 2010 Shaver, II
20100288327 November 18, 2010 Lisi et al.
20100294528 November 25, 2010 Sella et al.
20100294903 November 25, 2010 Shmukler et al.
20100295680 November 25, 2010 Dumps
20100297860 November 25, 2010 Shmukler et al.
20100301991 December 2, 2010 Sella et al.
20100308662 December 9, 2010 Schatz et al.
20100309692 December 9, 2010 Chisenga et al.
20100321148 December 23, 2010 Gevorkian
20100326809 December 30, 2010 Lang et al.
20100327657 December 30, 2010 Kuran
20100327659 December 30, 2010 Lisi et al.
20100332047 December 30, 2010 Arditi et al.
20110006743 January 13, 2011 Fabbro
20110012430 January 20, 2011 Cheng et al.
20110025130 February 3, 2011 Hadar et al.
20110031946 February 10, 2011 Egan et al.
20110037600 February 17, 2011 Takehara et al.
20110043172 February 24, 2011 Dearn
20110049990 March 3, 2011 Amaratunga et al.
20110050190 March 3, 2011 Avrutsky
20110056533 March 10, 2011 Kuan
20110061713 March 17, 2011 Powell et al.
20110062784 March 17, 2011 Wolfs
20110080147 April 7, 2011 Schoenlinner et al.
20110083733 April 14, 2011 Marroquin et al.
20110084553 April 14, 2011 Adest et al.
20110114154 May 19, 2011 Lichy et al.
20110121652 May 26, 2011 Sella et al.
20110125431 May 26, 2011 Adest et al.
20110132424 June 9, 2011 Rakib
20110133552 June 9, 2011 Binder et al.
20110140536 June 16, 2011 Adest et al.
20110161722 June 30, 2011 Makhota et al.
20110172842 July 14, 2011 Makhota et al.
20110173276 July 14, 2011 Eizips et al.
20110181251 July 28, 2011 Porter et al.
20110181340 July 28, 2011 Gazit
20110210610 September 1, 2011 Mitsuoka et al.
20110210611 September 1, 2011 Ledenev et al.
20110210612 September 1, 2011 Leutwein
20110218687 September 8, 2011 Hadar et al.
20110232714 September 29, 2011 Bhavaraju et al.
20110245989 October 6, 2011 Makhota et al.
20110246338 October 6, 2011 Eich
20110254372 October 20, 2011 Haines et al.
20110260866 October 27, 2011 Avrutsky et al.
20110267859 November 3, 2011 Chapman
20110271611 November 10, 2011 Maracci et al.
20110273015 November 10, 2011 Adest et al.
20110273016 November 10, 2011 Adest et al.
20110273302 November 10, 2011 Fornage et al.
20110285205 November 24, 2011 Ledenev et al.
20110290317 December 1, 2011 Naumovitz et al.
20110291486 December 1, 2011 Adest et al.
20110301772 December 8, 2011 Zuercher et al.
20110304204 December 15, 2011 Avrutsky et al.
20110304213 December 15, 2011 Avrutsky et al.
20110304215 December 15, 2011 Avrutsky et al.
20110316346 December 29, 2011 Porter et al.
20120007613 January 12, 2012 Gazit
20120019966 January 26, 2012 DeBoer
20120026769 February 2, 2012 Schroeder et al.
20120032515 February 9, 2012 Ledenev et al.
20120033463 February 9, 2012 Rodriguez
20120039099 February 16, 2012 Rodriguez
20120043818 February 23, 2012 Stratakos et al.
20120044014 February 23, 2012 Stratakos et al.
20120048325 March 1, 2012 Matsuo
20120049627 March 1, 2012 Matsuo
20120056483 March 8, 2012 Capp et al.
20120063177 March 15, 2012 Garrity
20120081933 April 5, 2012 Garrity
20120081934 April 5, 2012 Garrity et al.
20120081937 April 5, 2012 Phadke
20120087159 April 12, 2012 Chapman et al.
20120091810 April 19, 2012 Aiello et al.
20120098344 April 26, 2012 Bergveld et al.
20120113554 May 10, 2012 Paoletti
20120119584 May 17, 2012 Hadar et al.
20120146420 June 14, 2012 Wolfs
20120161528 June 28, 2012 Mumtaz et al.
20120169124 July 5, 2012 Nakashima et al.
20120174961 July 12, 2012 Larson et al.
20120187769 July 26, 2012 Spannhake et al.
20120199172 August 9, 2012 Avrutsky
20120215367 August 23, 2012 Eizips et al.
20120217973 August 30, 2012 Avrutsky
20120240490 September 27, 2012 Gangemi
20120253533 October 4, 2012 Eizips et al.
20120253541 October 4, 2012 Arditi et al.
20120255591 October 11, 2012 Arditi et al.
20120274145 November 1, 2012 Taddeo
20120280571 November 8, 2012 Hargis
20130026839 January 31, 2013 Grana
20130026840 January 31, 2013 Arditi et al.
20130026842 January 31, 2013 Arditi et al.
20130026843 January 31, 2013 Arditi et al.
20130063119 March 14, 2013 Lubomirsky
20130094262 April 18, 2013 Avrutsky
20130134790 May 30, 2013 Amaratunga et al.
20130181533 July 18, 2013 Capp et al.
20130192657 August 1, 2013 Hadar et al.
20130222144 August 29, 2013 Hadar et al.
20130229834 September 5, 2013 Garrity et al.
20130229842 September 5, 2013 Garrity
20130234518 September 12, 2013 Mumtaz et al.
20130235637 September 12, 2013 Rodriguez
20130279210 October 24, 2013 Chisenga et al.
20130294126 November 7, 2013 Garrity et al.
20130307556 November 21, 2013 Ledenev et al.
20130332093 December 12, 2013 Adest et al.
20140191583 July 10, 2014 Chisenga et al.
20140246915 September 4, 2014 Mumtaz
20140246927 September 4, 2014 Mumtaz
20140252859 September 11, 2014 Chisenga et al.
20140265579 September 18, 2014 Mumtaz
20140265638 September 18, 2014 Orr et al.
20140306543 October 16, 2014 Garrity et al.
20140327313 November 6, 2014 Arditi et al.
20150022006 January 22, 2015 Garrity et al.
20150028683 January 29, 2015 Hadar et al.
20150028692 January 29, 2015 Makhota et al.
20150188415 July 2, 2015 Abido et al.
Foreign Patent Documents
2073800 September 2000 AU
2005262278 January 2006 AU
1183574 March 1985 CA
2063243 December 1991 CA
2301657 March 1999 CA
2394761 June 2001 CA
2658087 June 2001 CA
2443450 March 2005 CA
2572452 January 2006 CA
2613038 January 2007 CA
2704605 May 2009 CA
2305016 January 1999 CN
1262552 August 2000 CN
1064487 April 2001 CN
1309451 August 2001 CN
1362655 August 2002 CN
2514538 October 2002 CN
1185782 January 2005 CN
2672938 January 2005 CN
1245795 March 2006 CN
1787717 June 2006 CN
1841254 October 2006 CN
1841823 October 2006 CN
1892239 January 2007 CN
1929276 March 2007 CN
1930925 March 2007 CN
2891438 April 2007 CN
101030752 September 2007 CN
101050770 October 2007 CN
100371843 February 2008 CN
101128974 February 2008 CN
100426175 October 2008 CN
201203438 March 2009 CN
101672252 March 2010 CN
101779291 July 2010 CN
101847939 September 2010 CN
201601477 October 2010 CN
201623478 November 2010 CN
101951011 January 2011 CN
101953060 January 2011 CN
101976952 February 2011 CN
202103601 January 2012 CN
102474112 May 2012 CN
3236071 January 1984 DE
3525630 January 1987 DE
3729000 March 1989 DE
4019710 January 1992 DE
4032569 April 1992 DE
4232356 March 1994 DE
4325436 February 1995 DE
4328511 March 1995 DE
19515786 November 1995 DE
19502762 August 1996 DE
19538946 April 1997 DE
19609189 September 1997 DE
19618882 November 1997 DE
19701897 July 1998 DE
19718046 November 1998 DE
19732218 March 1999 DE
19737286 March 1999 DE
19838230 February 2000 DE
19846818 April 2000 DE
19904561 August 2000 DE
19928809 January 2001 DE
019937410 February 2001 DE
19961705 July 2001 DE
10064039 December 2001 DE
10060108 June 2002 DE
10103431 August 2002 DE
10136147 February 2003 DE
10222621 November 2003 DE
202004001246 April 2004 DE
10345302 April 2005 DE
102004043478 April 2005 DE
EP1657797 May 2006 DE
69734495 July 2006 DE
69735169 August 2006 DE
102005018173 October 2006 DE
102005020937 November 2006 DE
102005030907 January 2007 DE
102005032864 January 2007 DE
WO2007073951 July 2007 DE
102006023563 November 2007 DE
102006026073 December 2007 DE
102007050031 April 2009 DE
EP2048679 April 2010 DE
102008057874 May 2010 DE
0027405 April 1981 EP
169673 January 1986 EP
0178757 April 1986 EP
0206253 December 1986 EP
0231211 August 1987 EP
0293219 November 1988 EP
0340006 November 1989 EP
419093 March 1991 EP
420295 April 1991 EP
0521467 January 1993 EP
0576271 December 1993 EP
0577334 January 1994 EP
604777 July 1994 EP
0628901 December 1994 EP
0642199 March 1995 EP
0670915 September 1995 EP
756178 January 1997 EP
0756372 January 1997 EP
0780750 June 1997 EP
0809293 November 1997 EP
827254 March 1998 EP
0895146 February 1999 EP
0906660 April 1999 EP
0947905 October 1999 EP
1012886 June 2000 EP
1034465 September 2000 EP
1035640 September 2000 EP
1039620 September 2000 EP
1130770 September 2001 EP
1143594 October 2001 EP
1187291 March 2002 EP
1235339 August 2002 EP
1239573 September 2002 EP
1239576 September 2002 EP
1254505 November 2002 EP
1271742 January 2003 EP
1330009 July 2003 EP
1339153 August 2003 EP
1369983 December 2003 EP
1376706 January 2004 EP
1388774 February 2004 EP
1400988 March 2004 EP
1407534 April 2004 EP
1418482 May 2004 EP
1429393 June 2004 EP
1442473 August 2004 EP
1447561 August 2004 EP
1457857 September 2004 EP
1463188 September 2004 EP
1475882 November 2004 EP
1503490 February 2005 EP
1521345 April 2005 EP
1526633 April 2005 EP
1531545 May 2005 EP
1532727 May 2005 EP
1552563 July 2005 EP
1562281 August 2005 EP
1580862 September 2005 EP
1603212 December 2005 EP
1610571 December 2005 EP
1623495 February 2006 EP
1657557 May 2006 EP
1657797 May 2006 EP
1691246 August 2006 EP
1706937 October 2006 EP
1708070 October 2006 EP
1716272 November 2006 EP
1728413 December 2006 EP
1750193 February 2007 EP
1766490 March 2007 EP
1782146 May 2007 EP
1785800 May 2007 EP
1842121 October 2007 EP
1859362 November 2007 EP
1887675 February 2008 EP
1901419 March 2008 EP
1902349 March 2008 EP
1911101 April 2008 EP
2061088 May 2009 EP
2092625 August 2009 EP
2092631 August 2009 EP
2135348 December 2009 EP
2144133 January 2010 EP
2206159 July 2010 EP
2232690 September 2010 EP
2234237 September 2010 EP
2315328 April 2011 EP
2374190 October 2011 EP
2393178 December 2011 EP
2495766 September 2012 EP
2533299 December 2012 EP
2549635 January 2013 EP
2561596 February 2013 EP
2621045 July 2013 EP
2666222 November 2013 EP
2722979 April 2014 EP
2779251 September 2014 EP
2249147 March 2006 ES
2249149 March 2006 ES
WO0075947 December 2000 FR
2796216 January 2001 FR
2819653 July 2002 FR
1211885 November 1970 GB
1261838 January 1972 GB
1571681 July 1980 GB
1597508 September 1981 GB
2327208 January 1999 GB
2339465 January 2000 GB
2376801 December 2002 GB
2399463 September 2004 GB
2399465 September 2004 GB
2415841 January 2006 GB
2419968 May 2006 GB
2421847 July 2006 GB
2476508 June 2011 GB
2482653 February 2012 GB
2483317 March 2012 GB
2485527 May 2012 GB
2486408 June 2012 GB
2487368 July 2012 GB
2497275 June 2013 GB
2498365 July 2013 GB
2498790 July 2013 GB
2498791 July 2013 GB
2499991 September 2013 GB
61065320 April 1986 JP
H01311874 December 1989 JP
H04219982 August 1992 JP
H04364378 December 1992 JP
H0897460 April 1996 JP
H08116628 May 1996 JP
H08185235 July 1996 JP
H08227324 September 1996 JP
H08316517 November 1996 JP
H08317664 November 1996 JP
H094692 January 1997 JP
H09148611 June 1997 JP
H09275644 October 1997 JP
2676789 November 1997 JP
H1017445 January 1998 JP
H1075580 March 1998 JP
H10201086 July 1998 JP
H10285966 October 1998 JP
H1110353 January 1999 JP
11041832 February 1999 JP
H1146457 February 1999 JP
11103538 April 1999 JP
2892183 May 1999 JP
11206038 July 1999 JP
H11266545 September 1999 JP
11289891 October 1999 JP
11318042 November 1999 JP
2000020150 January 2000 JP
3015512 March 2000 JP
2000160789 June 2000 JP
2000166097 June 2000 JP
2000232791 August 2000 JP
2000232793 August 2000 JP
2000316282 November 2000 JP
2000324852 November 2000 JP
2000341974 December 2000 JP
2000347753 December 2000 JP
2000358330 December 2000 JP
2001060120 March 2001 JP
2001075662 March 2001 JP
2001178145 June 2001 JP
2001224142 August 2001 JP
2001250964 September 2001 JP
2002073184 March 2002 JP
2002238246 August 2002 JP
2002270876 September 2002 JP
2002300735 October 2002 JP
2002339591 November 2002 JP
2002354677 December 2002 JP
2003102134 April 2003 JP
2003124492 April 2003 JP
2003134661 May 2003 JP
2003134667 May 2003 JP
2003289674 October 2003 JP
2004055603 February 2004 JP
2004111754 April 2004 JP
2004194500 July 2004 JP
2004260944 September 2004 JP
2004312994 November 2004 JP
3656531 June 2005 JP
2005251039 September 2005 JP
2006041440 February 2006 JP
2007058845 March 2007 JP
2010-146047 July 2010 JP
2010245532 October 2010 JP
2012511299 May 2012 JP
20010044490 June 2001 KR
20040086088 October 2004 KR
100468127 January 2005 KR
200402282 November 2005 KR
100725755 May 2007 KR
100912892 August 2009 KR
1011483 September 2000 NL
497326 August 2002 TW
8202134 June 1982 WO
8403402 August 1984 WO
8804801 June 1988 WO
9207418 April 1992 WO
9313587 July 1993 WO
95/25374 September 1995 WO
9607130 March 1996 WO
9613093 May 1996 WO
9823021 May 1998 WO
9823021 May 1998 WO
9928801 June 1999 WO
00/00839 January 2000 WO
00/21178 April 2000 WO
0077522 December 2000 WO
0147095 June 2001 WO
0231517 April 2002 WO
02056126 July 2002 WO
02078164 October 2002 WO
02093655 November 2002 WO
03012569 February 2003 WO
03012569 February 2003 WO
03050938 June 2003 WO
03071655 August 2003 WO
03084041 October 2003 WO
04001942 December 2003 WO
2004006342 January 2004 WO
2004008619 January 2004 WO
2004023278 March 2004 WO
2004053993 June 2004 WO
2004090993 October 2004 WO
2004100344 November 2004 WO
2004100348 November 2004 WO
2004107543 December 2004 WO
2005015584 February 2005 WO
2005027300 March 2005 WO
2005053189 June 2005 WO
2005069096 July 2005 WO
2005076444 August 2005 WO
2005076445 August 2005 WO
2005089030 September 2005 WO
2005112551 December 2005 WO
2005119609 December 2005 WO
2005124498 December 2005 WO
2006002380 January 2006 WO
2006005125 January 2006 WO
2006007198 January 2006 WO
2006011071 February 2006 WO
2006011359 February 2006 WO
2006013600 February 2006 WO
2006048688 May 2006 WO
2006048689 May 2006 WO
2006071436 July 2006 WO
WO2006078685 July 2006 WO
2006079503 August 2006 WO
2006089778 August 2006 WO
2006110613 October 2006 WO
2007006564 January 2007 WO
2007007360 January 2007 WO
2007010326 January 2007 WO
2007048421 May 2007 WO
2007072517 June 2007 WO
2007080429 July 2007 WO
2007084196 July 2007 WO
2007090476 August 2007 WO
2007113358 October 2007 WO
2007124518 November 2007 WO
2008026207 March 2008 WO
2008041983 April 2008 WO
2008077473 July 2008 WO
2008097591 August 2008 WO
2008125915 October 2008 WO
2008132551 November 2008 WO
2008132553 November 2008 WO
2008142480 November 2008 WO
2009006879 January 2009 WO
2009007782 January 2009 WO
2009020917 February 2009 WO
2009051221 April 2009 WO
2009051222 April 2009 WO
2009051853 April 2009 WO
2009056957 May 2009 WO
2009059028 May 2009 WO
2009064683 May 2009 WO
2009/072075 June 2009 WO
2009/073867 June 2009 WO
2009072077 June 2009 WO
2009073995 June 2009 WO
2009114341 September 2009 WO
2009118682 October 2009 WO
2009118683 October 2009 WO
2009073868 November 2009 WO
2009136358 November 2009 WO
2009155392 December 2009 WO
2010/003941 January 2010 WO
2010014116 February 2010 WO
2010037393 April 2010 WO
2010062662 June 2010 WO
2010065043 June 2010 WO
WO2010065388 June 2010 WO
2010072717 July 2010 WO
2010078303 July 2010 WO
2010091025 August 2010 WO
2010/132369 November 2010 WO
2010134057 November 2010 WO
20100134057 November 2010 WO
2011005339 January 2011 WO
2011011711 January 2011 WO
2011014275 February 2011 WO
2011017721 February 2011 WO
2011023732 March 2011 WO
2011028456 March 2011 WO
2011028457 March 2011 WO
2011059067 May 2011 WO
2011074025 June 2011 WO
2011085259 July 2011 WO
2011119587 September 2011 WO
2011133843 October 2011 WO
2011133928 October 2011 WO
2011151672 December 2011 WO
2013015921 January 2013 WO
2013130563 September 2013 WO
Other references
  • International Search Report and Opinion of International Patent Application PCT/2009/051222, dated Oct. 7, 2009.
  • Communication in EP07874025.5 dated Aug. 17, 2011.
  • IPRP for PCT/IB2008/055095 dated Jun. 8, 2010, with Written Opinion.
  • ISR for PCT/IB2008/055095 dated Apr. 30, 2009.
  • ISR for PCT/IL07/01064 dated Mar. 25, 2008.
  • IPRP for PCT/IB2007/004584 dated Jun. 10, 2009, with Written Opinion.
  • IPRP for PCT/IB2007/004591 dated Jul. 13, 2010, with Written Opinion.
  • IPRP for PCT/IB2007/004643 dated Jun. 10, 2009, with Written Opinion.
  • Written Opinion for PCT/IB2008/055092 submitted with IPRP dated Jun. 8, 2010.
  • IPRP for PCT/US2008/085754 dated Jun. 8, 2010, with Written Opinion dated Jan. 21, 2009.
  • IPRP for PCT/US2008/085755 dated Jun. 8, 2010, with Written Opinion dated Jan. 20, 2009.
  • IPRP for PCT/IB2009/051221 dated Sep. 28, 2010, with Written Opinion.
  • IPRP for PCT/IB2009/051222 dated Sep. 28, 2010, with Written Opinion.
  • IPRP for PCT/IB2009/051831 dated Nov. 9, 2010, with Written Opinion.
  • IPRP for PCT/US2008/085736 dated Jun. 7, 2011, with Written Opinion.
  • IPRP for PCT/IB2010/052287 dated Nov. 22, 2011, with Written Opinion.
  • ISR for PCT/IB2010/052413 dated Sep. 7, 2010.
  • UK Intellectual Property Office, Application No. GB1109618.7, Patents Act 1977, Examination Report Under Section 18(3), Sep. 16, 2011.
  • UK Intellectual Property Office, Patents Act 1977: Patents Rules Notification of Grant: Patent Serial No. GB2480015, Nov. 29, 2011.
  • Walker, et al. “PV String Per-Module Maximim Power Point Enabling Converters”, School of Information Technology and Electrical Engineering The Univiversity of Queensland, Sep. 28, 2003.
  • Walker, “Cascaded DC-DC Converter Connection of Photovoltaic Modules”, 33rd Annual IEEE Power Electronics Specialists Conference. PESC 2002. Conference Proceedings. CAIRNS, Queensland, Australia, Jun. 23-27, 2002; [Annual Power Electronics Specialists Conference], New York, NY: IEEE US, vol. 1, Jun. 23, 2002, pp. 24-29, XP010596060 ISBN: 978-0-7803-7262-7, figure 1.
  • Baggio, “Quasi-ZVS Activity Auxiliary Commutation Circuit for Two Switches Forward Converter”, 32nd Annual IEEE Power Electronics Specialists Conference. PESC 2001. Conference Proceedings. Vancouver, Canada, Jun. 17-21, 2001; [Annual Power Electronics Specialists Conference] New York, NY: IEEE, US.
  • Ilic, “Interleaved Zero-Current-Transition Buck Converter”, IEEE Transactions on Industry Applications, IEEE Service Center, Piscataway, NJ, US, vol. 43, No. 6, Nov. 1, 2007, pp. 1619-1627, XP011197477 ISSN: 0093-9994, pp. 1619-1922.
  • Lee: “Novel Zero-Voltage-Transition and Zero-Current-Transition Pulse-Width-Modulation Converters”, Power Electronics Specialists Conference, 1997, PESC '97, Record, 28th Annual IEEE St. Louis, MO, USA, Jun. 22-27, 1997, New York, NY, USA IEEE, US, vol. 1, Jun. 22, 1997, pp. 233-239, XP010241553, ISBN: 978-0-7803-3840-1, pp. 233-236.
  • Sakamoto, “Switched Snubber for High-Frequency Switching Converters”, Electronics & Communications in Japan, Part 1—Communications, Wiley, Hoboken, NJ, US, vol. 76, No. 2, Feb. 1, 1993, pp. 30-38, XP000403018 ISSN: 8756-6621, pp. 30-35.
  • Duarte, “A Family of ZVX-PWM Active-Clamping DC-to-DC Converters: Synthesis, Analysis and Experimentation”, Telecommunications Energy Conference, 1995, INTELEC '95, 17th International The Hague, Netherlands, Oct. 29-Nov. 1, 1995, New York, NY, US, IEEE, US, Oct. 29, 1995, pp. 502-509, XP010161283 ISBN: 978-0-7803-2750-4 p. 503-504.
  • IPRP for PCT/IL2007/001064 dated Mar. 17, 2009, with Written Opinion dated Mar. 25, 2008.
  • IPRP for PCT/IB2007/004586 dated Jun. 10, 2009, with Written Opinion.
  • Gao, et al., “Parallel-Connected Solar PV System to Address Partial and Rapidly Fluctuating Shadow Conditions”, IEEE Transactions on Industrial Electronics, vol. 56, No. 5, May 2009, pp. 1548-1556.
  • IPRP PCT/IB2007/004610—date of issue Jun. 10, 2009.
  • Flexible DER Utility Interface System: Final Report Sep. 2004-May 2006 J. Lynch, et al Northern Power Systems, Inc. Waitsfield, Vermont B. Kroposki et al, National Renewable Energy Laboratory Golden, Colorado echnical Report NREL/TP-560-39876 Aug. 2006.
  • Fritz Schimpf et al, “Grid connected Converters for Photovoltaic, State of the Art, Ideas for Improvement of Transformerless Inverters”, NORPIE/2008, Nordic Workshop on Power and Industrial Electronics, Jun. 9-11, 2008.
  • Sandia Report SAND96-2797 I UC-1290 Unlimited Release, Printed Dec. 1996, “Photovoltaic Power Systems and The National Electrical Code: Suggested Practices”, by John Wiles, Southwest Technology Development Institute New Mexico State University Las Cruces, NM.
  • United Kingdom Intellectual Property Office, Combined Search and examination Report under Sections 17 and 18(3), Jun. 16, 2011. Application No. GB 1020862.7.
  • QT Technical Application Papers, “ABB circuit-breakers for direct current applications”, ABB SACE S.p.A., An ABB Group Company, L.V. Breakers, via Baioni, 35, 24123 Bergamo—Italy, Tel.: +39 035.395.111—Telefax: +39 035.395.306-433.
  • “Mains Monitoring and protection in a European Context”, 17th European Photovolatic Solar energy Conference and Exhibition, Munich, Germany, Oct. 22-26, 2001, Achim Woyte et al, pp. 1-4.
  • “Implementation and Testing of Anti-Islanding Algorithms for IEEE 929—2000 Compliance of Single Phase Photovoltaic Inverters” Raymond M. Hudson, Photovoltaic Specialists Conference, 2002. Conference Record of the Twenty-Ninth IEEE, May 19-24, 2002.
  • Fairchild Semiconductor, Application Note 9016, IGBT Basics 1, by K.S. Oh Feb. 1, 2001.
  • “Disconnect switches in photovoltaic applications”, ABB Inc., Low Voltage Control Products & Systems, 1206 Hatton Road, Wichita Falls, TX 76302, Phone: 888-385-1221, 940-397-7000, Fax: 940-397-7085, 1SXU301197B0201 Nov. 2009.
  • A DC Circuit Breaker for an Electric Vehicle, Battery Pack, Geoff Walker, Australasian Universities Power Engineering Conference and IEAust Electric Energy Conference, Sep. 26-29, 1999.
  • Extended European Search Report—EP12176089.6—Mailing date: Nov. 8, 2012.
  • Gwon-Jong Yu et al: “Maximum power point tracking with temperature compensation of photovoltaic for air conditioning system with fuzzy controller”, May 13, 1996-May 17, 1996, pp. 1429-1432, XP010208423.
  • Extended European Search Report—EP12177067.1—Mailing Date: Dec. 7, 2012.
  • GB Combined Search and Examination Report—GB1200423.0—Mailing date: Apr. 30, 2012.
  • GB Combined Search and Examination Report—GB1201499.9—Mailing date: May 28, 2012.
  • GB Combined Search and Examination Report—GB1201506.1—Mailing date: May 22, 2012.
  • Ciobotaru, et al., Control of single-stage single-phase PV inverter, Aug. 7, 2006.
  • International Search Report and Written Opinion for PCT/IB2007/004591 dated Jul. 5, 2010.
  • European Communication for EP07873361.5 dated Jul. 12, 2010.
  • European Communication for EP07874022.2 dated Oct. 18, 2010.
  • European Communication for EP07875148.4 dated Oct. 18, 2010.
  • Chen, et al., “A New Low-Stress Buck-Boost Converter for Universal-Input PFC Applications”, IEEE Applied Power Electronics Converence, Feb. 2001, Colorado Power Electronics Center Publications.
  • Chen, et al., “Buck-Boost PWM Converters Having Two Independently Controlled Switches”, IEEE Power Electronics Specialists Converence, Jun. 2001, Colorado Power Electronics Center Publications.
  • Esram, et al., “Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques”, IEEE Transactions on Energy Conversion, vol. 22, No. 2, Jun. 2007, pp. 439-449.
  • Walker, et al., “PhotoVoltaic DC-DC Module Integrated Converter for Novel Cascaded and Bypass Grid Connection Topologies-Design and Optimisation”, 37th IEEE Power Electronics Specialists Converence, Jun. 18-22, 2006, Jeju, Korea.
  • Geoffrey R. Walker Affidavit re: U.S. Appl. No. 11/950,307, submitted in an IDS for U.S. Pat. No. 11/950,271 on Mar. 9, 2010.
  • Geoffrey R. Walker Affidavit re: U.S. Appl. No. 11/950,271, submitted in an IDS for U.S. Pat. No. 11/950,271 on Mar. 9, 2010.
  • International Search Report for PCT/IB2007/004610 dated Feb. 23, 2009.
  • International Search Report for PCT/IB2007/004584 dated Jan. 28, 2009.
  • International Search Report for PCT/IB2007/004586 dated Mar. 5, 2009.
  • International Search Report for PCT/IB2007/004643 dated Jan. 30, 2009.
  • International Search Report for PCT/US2008/085736 dated Jan. 28, 2009.
  • International Search Report for PCT/US2008/085754 dated Feb. 9, 2009.
  • International Search Report for PCT/US2008/085755 dated Feb. 3, 2009.
  • Kajihara, et al., “Model of Photovoltaic Cell Circuits Under Partial Shading”, 2005 IEEE, pp. 866-870.
  • Knaupp, et al., “Operation of a 10 KW PV Façade with 100 W AC Photovoltaic Modules”, 1996 IEEE, 25th PVSC, May 13-17, 1996, pp. 1235-1238, Washington, DC.
  • Alonso, et al., “Cascaded H-Bridge Multilevel Converter for Grid Connected Photovoltaic Generators with Independent Maximum Power Point Tracking of Each Solor Array”, 2003 IEEE 34th, Annual Power Electronics Specialists Conference, Acapulco, Mexico, Jun. 15-19, 2003, pp. 731-735, vol. 2.
  • Myrzik, et al., “String and Module Integrated Inverters for Single-Phase Grid Connected Photovoltaic Systems—A Review”, Power Tech Conference Proceedings, 2003 IEEE Bologna, Jun. 23-26, 2003, p. 8, vol. 2.
  • Chen, et al., “Predictive Digital Current Programmed Control”, IEEE Transactions on Power Electronics, vol. 18, Issue 1, Jan. 2003.
  • Wallace, et al., “DSP Controlled Buck/Boost Power Factor Correction for Telephony Rectifiers”, Telecommunications Energy Conference 2001, INTELEC 2001, Twenty-Third International, Oct. 18, 2001, pp. 132-138.
  • Alonso, “A New Distributed Converter Interface for PV Panels”, 20th European Photovoltaic Solar Energy Conference, Jun. 6-10, 2005, Barcelona, Spain, pp. 2288-2291.
  • Alonso, “Experimental Results of Intelligent PV Module for Grid-Connected PV Systems”, 21st European Photovoltaic Solar Energy Conference, Sep. 4-8, 2006, Dresden, Germany, pp. 2297-2300.
  • Enslin, “Integrated Photovoltaic Maximum Power Point Tracking Converter”, IEEE Transactions on Industrial Electronics, vol. 44, No. 6, Dec. 1997, pp. 769-773.
  • Lindgren, “Topology for Decentralised Solar Energy Inverters with a Low Voltage AC-Bus”, Chalmers University of Technology, Department of Electrical Power Engineering, EPE '99—Lausanne.
  • Nikraz, “Digital Control of a Voltage Source Inverter in a Photovoltaic Applications”, 2004 35th Annual IEEE Power Electronics Specialists Conference, Aachen, Germany, 2004, pp. 3266-3271.
  • Orduz, “Evaluation Test Results of a New Distributed MPPT Converter”, 22nd European Photovoltaic Solar Energy Conference, Sep. 3-7, 2007, Milan, Italy.
  • Palma, “A Modular Fuel Cell, Modular DC-DC Converter Concept for High Performance and Enhanced Reliability”, IEEE 2007, pp. 2633-2638.
  • Quaschning, “Cost Effectiveness of Shadow Tolerant Photovoltaic Systems”, Berlin University of Technology, Institute of Electrical Energy Technology, Renewable Energy Section. EuroSun '96, pp. 819-824.
  • Roman, “Intelligent PV Module for Grid-Connected PV Systems”, IEEE Transactions on Industrial Electronics, vol. 52, No. 4, Aug. 2006, pp. 1066-1073.
  • Roman, “Power Line Communications in Modular PV Systems”, 20th European Photovoltaic Solar Energy Conference, Jun. 6-10, 2005, Barcelona, Spain, pp. 2249-2252.
  • Uriarte, “Energy Integrated Management System for PV Applications”, 20th European Photovoltaic Solar Energy Conference, Jun. 6-10, 2005, Barcelona, Spain, pp. 2292-2295.
  • Walker, “Cascaded DC-DC Converter Connection of Photovoltaic Modules”, IEEE Transactions on Power Electronics, vol. 19, No. 4, Jul. 2004, pp. 1130-1139.
  • Matsui, et al., “A New Maximum Photovoltaic Power Tracking Control Scheme Based on Power Equilibrium at DC Link”, IEEE, 1999, pp. 804-809.
  • Hou, et al., Application of Adaptive Algorithm of Solar Cell Battery Charger, Apr. 2004.
  • Stamenic, et al., “Maximum Power Point Tracking for Building Integrated Photovoltaic Ventilation Systems”, 2000.
  • International Preliminary Report on Patentability for PCT/IB2008/055092 dated Jun. 8, 2010.
  • International Search Report for PCT/IB2008/055092 dated Sep. 8, 2009.
  • International Search Report and Opinion of International Patent Application WO2009136358 (PCT/IB2009/051831), dated Sep. 16, 2009.
  • Informal Comments to the International Search Report dated Dec. 3, 2009.
  • PCT/IB2010/052287 International Search Report and Written Opinion dated Sep. 2, 2010.
  • UK Intellectual Property office, Combined Search and Examination Report for GB1100450.4 under Sections 17 and 18(3), Jul. 14, 2011.
  • Jain, et al., “A Single-Stage Grid Connected Inverter Topology for Solar PV Systems with Maximum Power Point Tracking”, IEEE Transactions on Power Electronics, vol. 22, No. 5, Sep. 2007, pp. 1928-1940.
  • Lynch, et al., “Flexible DER Utility Interface System: Final Report”, Sep. 2004-May 2006, Northern Power Systems, Inc., Waitsfield, Vermont B. Kroposki, et al., National Renewable Energy Laboratory Golden, Colorado Technical Report NREL/TP-560-39876, Aug. 2006.
  • QT Technical Application Papers, “ABB Circuit-Breakers for Direct current Applications”, ABB SACE S.p.A., An ABB Group Coupany, L.V. Breakers, via Baioni, 35, 24123 Bergamo-Italy, Tel.: +39 035.395.111—Telefax: +39 035.395.306-433, Sep. 2007.
  • Combined Search and Examination Report for GB1018872.0 dated Apr. 15, 2011, 2 pages.
  • International Search Report and Opinion of International Patent Application PCT/2009/051221, dated Oct. 19, 2009.
  • Gow Ja A et al: “A Modular DC-DC Converter and Maximum Power Tracking Controller Formedium to Large Scale Photovoltaic Generating Plant” 8<SUP>th </SUP> European Conference on Power Electronics and Applications. Lausaane, CH, Sep. 7-9, 1999, EPE. European Conference on Power Electronics and Applications, Brussls: EPE Association, BE, vol. Conf. 8, Sep. 7, 1999, pp. 1-8, XP000883026.
  • Chihchiang Hua et al: “Comparative Study of Peak Power Tracking Techniques for Solar Storage System” Applied Power Electronics Conference and Exposition, 1998. APEC '98. Conference Proceedings 1998, Thirteenth Annual Anaheim, CA USA Feb. 15-19, 1998, New York, NY, USA, IEEE, US, Feb. 15, 1998, pp. 679-685, XP010263666.
  • Matsuo H et al: “Novel Solar Cell Power Supply System Using the Miltiple-input DC-DC Converter” 20<SUP>th</SUP> International telecommunications Energy Conference. Intelec '98 San Francisco, CA, Oct. 4-8, 1998, Intelec International Telecommunications Energy Conference, New York, NY: IEEE, US, Oct. 4, 1998, pp. 797-802, XP000896384.
  • Chihchiang Hua et al: “DSP-based controller application in battery storage of photovoltaic system” Industrial Electronics, Control, and Instrumentation, 1996, Proceedings of the 1996 IEEE IECON 22<SUP>nd</SUP> International Conference on Taipei, Taiwan Aug. 5-10, 1996, New York, NY, USA, IEEE, US, Aug. 5, 1996, pp. 1705-1710, XP010203239.
  • Hua C et al: “Implementation of a DSP-Controlled Photovoltaic System with Peak Power Tracking”IEEE Transactions on industrial Electronics, IEEE, Inc. New York, US, vol. 45, No. 1, Feb. 1, 1998, pp. 99-107, XP000735209.
  • I. Weiss et al.: “A new PV system technology—the development of a magnetic power transmission from the PV module to the power bus” 16th European Photovoltaic Solar Energy Conference, vol. III, May 1-5, 2000, pp. 2096-2099, XP002193468 Glasgow,UK cited in the application.
  • European Patent Application No. 08845104.2, Extended Search Report, Jul. 31, 2014.
  • European Patent Application No. 11772811.3, Extended Search Report, Dec. 15, 2014.
  • International Patent Application No. PCT/US2008/082935, International Search Report and Written Opinion, Jun. 25, 2009.
  • Basso, Tim, “IEEE Standard for Interconnecting Distributed Resources With the Electric Power System,” IEEE PES Meeting, Jun. 9, 2004.
  • Boostbuck.com, “The Four Boostbuck Topologies,” located at http://www.boostbuck.com/TheFourTopologies.html, 2003.
  • Gautam, Nalin K. et al., “An Efficient Algorithm to Simulate the Electrical Performance of Solar Photovoltaic Arrays,” Energy, vol. 27, No. 4, pp. 347-361, 2002.
  • Nordmann, T. et al., “Performance of PV Systems Under Real Conditions,” European Workshop on Life Cycle Analysis and Recycling of Solar Modules, The “Waste” Challenge, Brussels, Belgium, Mar. 18-19, 2004.
  • Wiles, John, “Photovoltaic Power Systems and the National Electrical Code: Suggested Practices,” Sandia National Laboratories, document No. SAND2001-0674, Mar. 2001.
  • Hewes, J. “Relays,” located at http://web.archive.org/web/20030816010159/www.kpsec.freeuk.com/components/relay.htm, Aug. 16, 2003.
  • Advanced Energy Group, “The Basics of Solar Power Systems,” located at http://web.archive.org/web/20010331044156/http://www.solar4power.com/solar-power-basics.html, Mar. 31, 2001.
  • International Patent Application No. PCT/AU2005/001017, International Search Report and Written Opinion, Aug. 18, 2005.
  • Baek, Ju-Won et al., “High Boost Converter using Voltage Multiplier,” 2005 IEEE Conference, IECON 05, pp. 567-572, Nov. 2005.
  • Wikimedia Foundation, Inc., “Electric Power Transmission,” located at http://web.archive.org/web/20041210095723/en.wikipedia.org/wiki/Electric-power-transmission, Nov. 17, 2004.
  • Jacobsen, K.S., “Synchronized Discrete Multi-Tone (SDMT) Modulation for Cable Modems: Making the Most of the Scarce Reverse Channel Bandwidth,” Conference Proceedings of Wescon/97, pp. 374-380, Nov. 4, 1997.
  • Loyola, L. et al., “A Multi-Channel Infrastructure based on DCF Access Mechanism for Wireless LAN Mesh Networks Compliant with IEEE 802.11,” 2005 Asia-Pacific Conference on Communications, pp. 497-501, Oct. 5, 2005.
  • Storfer, Lior, “Enhancing Cable Modem TCP Performance,” Texas Instruments Inc. white paper, Jul. 2003.
  • International Preliminary Report on Patentability Issued in corresponding international application No. PCT/US04/16668, filed May 27, 2004.
  • International Application No. PCT/US13/27965, International Preliminary Examination Report, Sep. 2, 2014.
  • International Patent Application PCT/US13/027965, International Search Report and Written Opinion, Jun. 2, 2013.
  • International Application No. PCT/US12/44045, International Preliminary Examination Report, Jan. 28, 2014.
  • International Patent Application No. PCT/US2012/044045, International Search Report and Written Opinion, Jan. 2, 2013.
  • International Patent Application No. PCT/US2009/047734, International Search Report and Written Opinion, May 4, 2010.
  • Linares, Leonor et al., “Improved Energy Capture in Series String Photovoltaics via Smart Distributed Power Electronics,” 24th Annual IEEE Applied Power Electronics Conference and Exposition, pp. 904-910, Feb. 15, 2009.
  • International Patent Application No. PCT/US2010/029929, International Search Report and Written Opinion, Oct. 27, 2010.
  • International Patent Application No. PCT/US2011/020591, International Search Report and Written Opinion, Aug. 8, 2011.
  • International Patent Application No. PCT/US2011/033544, International Search Report and Written Opinion, Nov. 24, 2011.
  • J. Keller and B. Kroposki, titled, “Understanding Fault Characteristics of Inverter-Based Distributed Energy Resources”, in a Technical Report NREL/TP-550-46698, published Jan. 2010, pp. 1 through 48.
  • International Patent Application No. PCT/US2008/081827, International Search Report and Written Opinion, Jun. 24, 2009.
  • International Patent Application No. PCT/US2010/046274 International Search Report and Written Opinion, Apr. 22, 2011.
  • International Patent Application No. PCT/US2011/033658, International Search Report and Written Opinion, Jan. 13, 2012.
  • International Patent Application No. PCT/US2011/029392, International Search Report and Written Opinion, Oct. 24, 2011.
  • European Patent Application No. 09829487.9, Extended Search Report, Apr. 21, 2011.
  • International Patent Application No. PCT/US2009/062536, International Search Report and Written Opinion, Jun. 17, 2010.
  • International Patent Application No. PCT/US2010/022915, International Search Report and Written Opinion, Aug. 23, 2010.
  • International Patent Application No. PCT/US2010/046272, International Search Report and Written Opinion, Mar. 31, 2011.
  • International Patent Application No. PCT/US2010/029936, International Search Report and Written Opinion, Nov. 12, 2010.
  • International Patent Application No. PCT/US08/75127, International Search Report and Written Opinion, Apr. 28, 2009.
  • International Patent Application No. PCT/US09/35890, International Search Report and Written Opinion, Oct. 1, 2009.
  • Rodriguez, C., and G. A. J. Amaratunga. “Dynamic stability of grid-connected photovoltaic systems.” Power Engineering Society General Meeting, 2004. IEEE, pp. 2194-2200.
  • Kikuchi, Naoto, et al. “Single phase amplitude modulation inverter for utility interaction photovoltaic system.” Industrial Electronics Society, 1999. IECON'99 Proceedings. The 25th Annual Conference of the IEEE. vol. 1. IEEE, 1999.
  • Nonaka, Sakutaro, et al. “Interconnection system with single phase IGBT PWM CSI between photovoltaic arrays and the utility line.” Industry Applications Society Annual Meeting, 1990., Conference Record of the 1990 IEEE.
  • Calais, Martina, et al. “Inverters for single-phase grid connected photovoltaic systems—an overview.” Power Electronics Specialists Conference, 2002. pesc 02. 2002 IEEE 33rd Annual. vol. 4. IEEE, 2002.
  • Marra, Enes Goncalves, and José Antenor Pomilio. “Self-excited induction generator controlled by a VS-PWM bidirectional converter for rural applications.” Industry Applications, IEEE Transactions on 35.4 (1999): 877-883.
  • Xiaofeng Sun, Weiyang Wu, Xin Li, Qinglin Zhao: A Research on Photovoltaic Energy Controlling System with Maximum Power Point Tracking:; Proceedings of the Power Conversion Conference—Osaka 2002 (Cat. No. 02TH8579) IEEE—Piscataway, NJ, USA, ISBN 0-7803-7156-9, vol. 2, p. 822-826, XP010590259: the whole document.
  • International Search Report for corresponding PCT/GB2005/050198 completed Jun. 28, 2006 by C. Wirner of the EPO.
  • Brunello, Gustavo, et al., “Shunt Capacitor Bank Fundamentals and Protection,” 2003 Conference for Protective Relay Engineers, Apr. 8-10, 2003, pp. 1-17, Texas A&M University, College Station, TX, USA.
  • Cordonnier, Charles-Edouard, et al., “Application Considerations for Sensefet Power Devices,” PCI Proceedings, May 11, 1987, pp. 47-65.
  • Kotsopoulos, Andrew, et al., “Predictive DC Voltage Control of Single-Phase PV Inverters with Small DC Link Capacitance,” IEEE International Symposium, Month Unknown, 2003, pp. 793-797.
  • Meinhardt, Mike, et al., “Multi-String-Converter with Reduced Specific Costs and Enhanced Functionality,” Solar Energy, May 21, 2001, pp. 217-227, vol. 69, Elsevier Science Ltd.
  • Kimball, et al.: “Analysis and Design of Switched Capacitor Converters”; Grainger Center for Electric Machinery and Electromechanics, University of Illinois at Urbana—Champaign, 1406 W. Green St, Urbana, IL 61801 USA, © 2005 IEEE; pp. 1473-1477.
  • Martins, et al.: “Interconnection of a Photovoltaic Panels Array to a Single-Phase Utility Line From a Static Conversion System”; Power Electronics Specialists Conference, 2000. PESC 00. 2000 IEEE 31st Annual; Jun. 18, 2000-Jun. 23, 2000; ISSN: 0275-9306; pp. 1207-1211, vol. 3.
  • International Search Report for corresponding PCT/GB2005/050197, completed Dec. 20, 2005 by K-R Zettler of the EPO.
  • Kjaer, Soeren Baekhoej, et al., “Design Optimization of a Single Phase Inverter for Photovoltaic Applications,” IEEE 34th Annual Power Electronics Specialist Conference, Jun. 15-19, 2003, pp. 1183-1190, vol. 3, IEEE.
  • Shimizu, Toshihisa, et al., “A Flyback-type Single Phase Utility Interactive Inverter with Low-frequency Ripple Current Reduction on the DC Input for an AC Photovoltaic Module System,” IEEE 33rd Annual Power Electronics Specialist Conference, Month Unknown, 2002, pp. 1483-1488, vol. 3, IEEE.
  • Written Opinion of PCT/GB2005/050197, Feb. 14, 2006 (mailing date), Enecsys Limited.
  • Yatsuki, Satoshi, et al., “A Novel AC Photovoltaic Module System based on the Impedance-Admittance Conversion Theory,” IEEE 32nd Annual Power Electronics Specialists Conference, Month Unknown, 2001, pp. 2191-2196, vol. 4, IEEE.
  • International Search Report for corresponding PCT/GB2004/001965, completed Aug. 16, 2004 by A. Roider.
  • Naik et al., A Novel Grid Interface for Photovoltaic, Wind-Electric, and Fuel-Cell Systems With a Controllable Power Factor or Operation, IEEE, 1995, pp. 995-998.
  • Petkanchin, Processes following changes of phase angle between current and voltage in electric circuits, Aug. 1999, Power Engineering Review, IEEE vol. 19, Issue 8, pp. 59-60.
  • Mumtaz, Asim, et al., “Grid Connected PV Inverter Using a Commercially Available Power IC,” PV in Europe Conference, Oct. 2002, 3 pages, Rome, Italy.
  • Koutroulis, Eftichios, et al., “Development of a Microcontroller-Based, Photovoltaic Maximum Power Point Tracking Control System,” IEEE Transactions on Power Electronics, Jan. 2001, pp. 46-54, vol. 16, No. 1, IEEE.
  • Extended European Search Report—EP 13152967.9—Mailing date: Aug. 28, 2014.
  • Extended European Search Report—EP 14159696—Mailing Date: Jun. 20, 2014.
  • Chinese Office Action—CN Appl. 201280006369.2—dated Aug. 4, 2015.
  • Chinese Office Action—CN Appl. 201210253614.1—dated Aug. 18, 2015.
  • European Office Action—EP Appl. 09725443.7—dated Aug. 18, 2015.
  • European Search Report—EP App. 14159457.2—mailed Jun. 12, 2015.
  • European Search Report and Written Opinion—EP Appl. 12150819.6—dated Jul. 6, 2015.
  • Alonso, O. et al. “CASCADED H-Bridge Multilevel Converter for Grid Connected Photovoltaic Generators With Independent Maximum Power Point Tracking of Each Solar Array.” IEEE 34th Annual Power Electronics Specialists Conference. vol. 2, Jun. 15, 2003.
  • Chinese Office Action—CN Appl. 201110349734.7—dated Oct. 13, 2015.
  • Chinese Office Action—CN Appl. 201210007491.3—dated Nov. 23, 2015.
  • European Office Action—EP Appl. 12176089.6—dated Dec. 16, 2015.
  • Chinese Office Action—CN Application 201210334311.2—dated Jan. 20, 2016.
Patent History
Patent number: 9325166
Type: Grant
Filed: Dec 9, 2011
Date of Patent: Apr 26, 2016
Patent Publication Number: 20120175961
Assignee: SOLAREDGE TECHNOLOGIES LTD (Hod Hasharon)
Inventors: Liron Har-Shai (Haifa), Alon Zohar (Netanya), Yoav Galin (Raanana), Meir Adest (Modiin)
Primary Examiner: Jared Fureman
Assistant Examiner: Jagdeep Dhillon
Application Number: 13/315,754
Classifications
Current U.S. Class: Including An Electronic Tube Or A Three Or More Terminal Semiconductive Device In Control Circuit (323/257)
International Classification: H02J 1/00 (20060101); H02J 3/00 (20060101); H02H 7/20 (20060101); H01L 31/042 (20140101); H01L 31/02 (20060101); H02H 3/16 (20060101); H02H 3/33 (20060101); H02J 3/38 (20060101);