Coaxial connector grounding inserts
A coaxial cable connector and a grounding insert extending between an elongated hollow post and a nut interior and providing an electrically conductive path therebetween.
Latest PerfectVision Manufacturing, Inc. Patents:
This application claims the benefit of U.S. Prov. Pat. App. No. 61/920,296 filed Dec. 23, 2013 and is a continuation of U.S. patent application Ser. No. 14/495,505 filed Sep. 24, 2014 which is a continuation-in-part of U.S. patent application Ser. No. 14/047,956 filed on Oct. 7, 2013 (now U.S. Pat. No. 9,160,083 issued Oct. 13, 2015) which is a continuation of U.S. patent application Ser. No. 13/373,782 filed Nov. 30, 2011 (now U.S. Pat. No. 8,556,654 issued Oct. 15, 2013), all of which are incorporated herein in their entireties and for all purposes.
BACKGROUND OF THE INVENTIONField of the Invention
The present invention relates generally to coaxial cable connectors. More particularly, the present invention relates to coaxial F-connectors adapted to insure the establishment of a proper ground during installation. Known prior art is classified in United States Patent Class 439, Subclasses 241, 247, 322, 548, 553, 554, 585, and 587.
Discussion of the Related Art
Popular cable television systems and satellite television receiving systems depend upon coaxial cable for distributing signals. As is known in the satellite TV arts, coaxial cable in such installations is terminated by F-connectors that threadably establish the necessary signal wiring connections. The F-connector forms a “male” connection portion that fits to a variety of receptacles, forming the “female” portion of the connection.
F-connectors include a tubular post designed to slide over coaxial cable dielectric material and under the outer conductor at the prepared end of the coaxial cable. The exposed, conductive sheath is usually folded back over the cable jacket. The cable jacket and folded-back outer conductor extend generally around the outside of the tubular post and are typically coaxially received within the tubular connector. A continuity contact between the sheath and conductive portions of the connector is needed. Moreover, electrical contact must be made with the threaded head or nut of the connector that should contact the female socket to which the connection is made.
F-connectors have numerous advantages over other known fittings, such as RCA, BNC, and PL-259 connectors, in that no soldering is needed for installation, and costs are reduced as parts are minimized. For example, with an F-connector, the center conductor of a properly prepared coaxial cable fitted to it forms the “male” portion of the receptacle connection, and no separate part is needed. A wide variety of F-connectors are known in the art, including the popular compression type connector that aids in rapid assembly and installation. Hundreds of such connectors are seen in U.S. Patent Class 439, particularly Subclass 548.
However, the extremely high bandwidths and frequencies distributed in conjunction with modern satellite installations implicates a variety of strict quality control factors. For example, the electrical connection established by the F-connector must not add electrical resistance to the circuit. It must exhibit a proper surge impedance to maintain a wide bandwidth, in the order of several Gigahertz. Numerous physical design requirements exist as well. For example, connectors must maintain a proper seal against the environment, and they must function over long time periods through extreme weather and temperature conditions. Requirements exist governing frictional insertion and disconnection or withdrawal forces as well.
Importantly, since a variety of coaxial cable diameters exist, it is imperative that satisfactory F-connectors function with differently sized cables, such as RG-6 and RG-59 coaxial cables that are most popular in the satellite television art.
It is important to establish an effective electrical connection between the F-connector, the internal coaxial cable, and the terminal socket. Proper installation techniques require adequate torqueing of the connector head. In other words, it is desired that the installer appropriately tighten the connector during installation. A dependable electrical grounding path must be established through the connector body to the grounded shield or jacket of the coaxial cable. Threaded F-connector nuts should be installed with a wrench to establish reasonable torque settings. Critical tightening of the F nut to the threaded female socket or fixture applies enough pressure to the inner conductor of the coaxial cable to establish proper electrical connections. When fully tightened, the head of the tubular post of the connector directly engages the edge of the outer conductor of the appliance port, thereby making a direct electrical ground connection between the outer conductor of the appliance port and the tubular post; in turn, the tubular post is engaged with the outer conductor of the coaxial cable.
Many connector installations, however, are not properly completed. It is a simple fact in the satellite and cable television industries that many F-connectors are not appropriately tightened by the installer. The common installation technique is to torque the F-connector with a small wrench during installation. In some cases installers only partially tighten the F-connector. Some installations are only hand-tightened. As a consequence, proper electrical continuity may not be achieved. Such F-connectors will not be properly “grounded,” and the electrical grounding path can be compromised and can become intermittent. An appropriate low resistance, low loss connection to the female target socket, and the equipment connected to it, will not be established. Unless an alternate ground path exists, poor signal quality, and RFI leakage, will result. This translates to signal loss or degradation to the customer.
U.S. Pat. No. 3,678,445 issued Jul. 18, 1972 discloses a shield for eliminating electromagnetic interference in an electrical connector. A conductive shielding member having a spring portion snaps into a groove for removably securing the shield. A second spring portion is yieldable to provide electrical contact between the first shell member and a second movable shell member.
U.S. Pat. No. 3,835,443 issued Sep. 10, 1974 discloses an electromagnetic interference shield for an electrical connector comprising a helically coiled conductive spring interposed between mating halves of the connector. The coiled spring has convolutions slanted at an oblique angle to the center axis of the connector. Mating of the connector members axially flattens the spring to form an almost continuous metal shield between the connector members.
U.S. Pat. No. 3,439,046 issued Jun. 12, 1973 discloses a coaxial connector with an internal, electrically conductive coil spring is mounted between adjacent portions of connector. As an end member is rotatably threaded toward the housing, an inwardly directed annular bevel engages the spring and moves it inwardly toward an electrically shielded portion of the cable. The spring is compressed circumferentially so that its inner periphery makes electrical grounding contact with the shielded portion of the cable.
U.S. Pat. No. 5,066,248 issued Nov. 19, 1991 discloses coaxial cable connector comprising a housing sleeve, a connector body, a locking ring, and a center post. A stepped annular collar on the connector body ensures metal-to-metal contact and grounding.
U.S. Pat. No. 4,106,839 issued Aug. 15, 1978 shows a coaxial connector with a resilient, annular insert between abutting connector pieces for grounding adjacent parts. A band having a cylindrical surface is seated against an internal surface. Folded, resilient fingers connected with the band are biased into contact. The shield has tabs for mounting, and a plurality of folded integral, resilient fingers for establishing a ground.
U.S. Pat. No. 4,423,919 issued Jan. 3, 1984 discloses a connector with having a cylindrical shell with radial flange, a longitudinal key, and a shielding ring fitted over the shell and adjacent to the flange. The shielding ring comprises a detent having end faces configured to abut connector portions when the detent fits within the keyway, whereby the shell is prevented from rotating.
U.S. Pat. No. 4,330,166 issued May 18, 1982 discloses an electrical connector substantially shielded against EMP and EMI energy with an internal, conductive spring washer seated in the plug portion of the connector. A wave washer made from beryllium copper alloy is preferred.
U.S. Pat. No. 6,406,330 issued Jun. 18, 2002 employs an internal, beryllium copper clip ring for grounding. The clip ring forms a ground circuit between a male member and a female member of the electrical connector. The clip ring includes an annular body having an inner wall and an outer wall comprising a plurality of circumferentially spaced slots.
U.S. Pat. No. 7,114,990 issued Oct. 3, 2006 discloses a coaxial cable connector with an internal grounding clip establishing a grounding path between an internal tubular post and the connector. The grounding clip comprises a C-shaped metal clip with an arcuate curvature that is non-circular. U.S. Pat. No. 7,479,035 issued Jan. 20, 2009 shows a similar F-connector grounding arrangement.
U.S. Pat. No. 7,753,705 issued Jul. 13, 2010 discloses an RF seal for coaxial connectors. The seal comprises a flexible brim, a transition band, and a tubular insert with an insert chamber defined within the seal. In a first embodiment the flexible brim is angled away from the insert chamber, and in a second embodiment the flexible brim is angled inward toward the insert chamber. A flange end of the seal makes a compliant contact between the port and connector faces when the nut of a connector is partially tightened, and becomes sandwiched firmly between the ground surfaces when the nut is properly tightened. U.S. Pat. No. 7,892,024 issued Feb. 22, 2011 shows a similar grounding insert for F-connectors.
U.S. Pat. No. 7,824,216 issued Nov. 2, 2010 discloses a coaxial connector comprising a body, a post including a flange having a tapered surface, and a nut having an internal lip with a tapered surface which oppositely corresponds to the tapered surface of the post when is assembled, and a conductive O-ring between the post and the nut for grounding or continuity. Similar U.S. Pat. No. 7,845,976 issued Dec. 7, 2010 and U.S. Pat. No. 7,892,005 issued Feb. 22, 2011 use conductive, internal O-rings for both grounding and sealing.
U.S. Pat. No. 6,332,815 issued Dec. 25, 2001 and U.S. Pat. No. 6,406,330 issued Jun. 18, 2002 utilize clip rings made of resilient, conductive material such as beryllium copper for grounding. The clip ring forms a ground between a male member and a female member of the connector.
U.S. Pat. No. 6,716,062 issued Apr. 6, 2004 discloses a coaxial cable F connector with an internal coiled spring that establishes continuity. The spring biases the nut toward a rest position wherein not more than three revolutions of the nut are necessary to bring the post of the connector into contact.
SUMMARY OF THE INVENTIONThe present invention provides coaxial cable connectors. In an embodiment, a connector ground continuity method includes the steps of: providing a coaxial cable connector including a threaded nut; providing an elongated, hollow post, the post including a portion that abuts a nut interior for rotatably coupling said post to said nut; coaxially disposing a tubular body over said post, the body having opposed forward and trailing portions, the forward portion engaging the post; slidably coupling the body trailing portion and a tubular end cap; and, providing a continuously curved springform insert having a wall defining inner and outer surfaces; providing plural tabs extending from the insert inner surface toward an insert axis of revolution; the insert tabs engaging a periphery of the post; and, the insert outer surface engaging an interior of the nut; wherein the insert completes an electrical path between the nut and the post by simultaneously contacting and grasping the post with said inner side while contacting the nut interior with said outer side.
Our coaxial cable connectors are of the compressible type. The connectors comprise a rigid nut with a faceted drive head adapted to be torqued during installation of a fitting. The head has an internally threaded, tubular stem, for threadably mating with a typical socket or receptacle. An elongated post coupled to the nut includes a shank, which can be barbed, that engages the prepared end of a coaxial cable. An elongated, tubular body is coupled to the post. When the device is compressed, an end cap is press fitted to the body, coaxially engaging a body shank portion and closing the fitting.
In known F-connector designs the internal post establishes electrical contact between the coaxial cable sheath and metallic parts of the coaxial fitting, such as the nut. Also, the elongated, tubular shank extends from the post to engage the coaxial cable, making contact with the metallic, insulative sheath.
However, since improper or insufficient tightening of the nut during F-connector installation is so common, and since continuity and/or electrical grounding suffer as a result, our design includes internal grounding inserts that remedy the problem. All embodiments of our grounding insert include means for contacting and grasping the post, and means for contacting the nut, to establish a redundant grounding path between the nut, the post, and the coaxial cable to which the fitting is fastened.
A preferred grounding insert comprises a circular band, preferably made of beryllium copper alloy. In assembly, the grounding insert band coaxially engages the post. Multiple radially spaced spring clips defined around the band securely grasp a flange portion of the post. The band is seated within a ring groove within the nut, making electrical contact.
An alternative grounding insert comprises a tubular band for contacting and grasping the post flange. The band is integral with a flared, projecting skirt having a polygonal cross section. The skirt comprises a plurality of vertices and a plurality of facets therebetween. In assembly the band yieldably grasps the periphery of the post flange to establish electrical contact. Skirt vertices abut the nut's internal ring groove. Electrical contact between the insert, the post, the nut, and the coaxial cable is thus insured, despite insufficient tightening of the nut.
Thus the primary object of our invention is to provide suitable grounding within an F-connector to overcome electrical connection problems associated with improper installation. More particularly, an object of our invention is to provide dependable electrical connections between coaxial connectors, especially F-connectors, and female connectors or sockets.
Another object of the present invention is to provide internal coaxial cable structure for establishing a grounding path in an improperly-tightened coaxial cable connector. A similar object is to provide a proper ground, even though required torque settings have been ignored.
Another related object of the present invention to provide a reliable ground connection between a connector and a target socket or port, even if the connector is not fully tightened.
It is another object of the present invention to provide such a coaxial cable connector which establishes and maintains a reliable ground path.
It is still another object of the present invention to provide such a coaxial connector that can be manufactured economically.
Another object of our invention is to provide a connector of the character described that establishes satisfactory EMP, EMI, and RFI shielding.
A related object is to provide a connector of the character described that establishes a decent ground during installation of the male connector to the various types of threaded female connections even though applied torque may fail to meet specifications.
Another essential object is to establish a proper ground electrical path with a socket even where the male connector is not fully torqued to the proper settings.
Another important object is to minimize resistive losses in a coaxial cable junction.
A still further object is to provide a connector suitable for use with demanding large, bandwidth systems approximating three GHz.
A related object is to provide an F-connector ideally adapted for home satellite systems distributing multiple high definition television channels.
Another important object is to provide a connector of the character described that is weather proof and moisture resistant.
Another important object is to provide a compression F-connector of the character described that can be safely and properly installed without deformation of critical parts during final compression.
These and other objects and advantages of the present invention, along with features of novelty appurtenant thereto, will appear or become apparent in the course of the following descriptive sections.
The present invention is described with reference to the accompanying figures. These figures, incorporated herein and forming part of the specification, illustrate embodiments of the invention and, together with the description, further serve to explain its principles enabling a person skilled in the relevant art to make and use the invention.
Coaxial cable F-connectors are well known in the art. The basic constituents of the coaxial connector of
Referring initially to
Connector 20 comprises a rigid, tubular, metallic nut 24 with a conventional faceted, preferably hexagonal drive head 26 integral with a protruding, coaxial stem 28. Nut 24 is torqued during installation. Conventional, internal threads 30 are defined in the stem interior for rotatably, threadably mating with a suitably-threaded socket. The open, tubular front end 21 connects through the open interior to a reduced diameter rear passageway 34 at the back of nut 24. Circular passageway 34 concentrically borders an annular, non-threaded, internal ring groove 36 that borders an internal shoulder 37 (see
An elongated post 40 rotatably, coaxially passes through the hex headed nut 24. In most F-connector designs the metallic post 40 establishes electrical contact between the braid of the coax and the metallic nut 24. The tubular post 40 defines an elongated shank 41 with a coaxial, internal passageway 42 extending between its front 43 and rear 44. Shank 41 may or may not have barbs formed on it for engaging coaxial cable. A front, annular flange 46 (
The rear tapered end 44 of post shank 41 penetrates the prepared end of the coaxial cable, such that the inner, insulated coaxial cable conductor penetrates passageway 42 and enters the front 21 of the nut 24. Also, the braided shield of the coax is positioned around the exterior of post shank 41, making electrical contact, and hopefully establishing a good ground, or continuity between the coaxial cable sheath, the post 40, and the nut 24.
An elongated, hollow, tubular body 60, normally molded from plastic, is coupled to the post 40. Body 60 preferably comprises a tubular stop ring 62 that is integral with a reduced diameter body shank 64. The elongated, outer periphery 66 of shank 64 is smooth and cylindrical. The larger diameter stop ring 62 has an annular, rear wall 68 that is coaxial with shank 64. Ring 62 defines an internal passageway 70 through which the post 40 is inserted. In assembly, the barbed post collar 54 is frictionally seated within body passageway 70.
An end cap 76 is pressed unto body 60, coaxially engaging the body shank 64. The rigid, preferably metallic end cap 76 smoothly, frictionally grips body shank 64, with maximum travel or displacement limited by stop ring 62. In other words, when the end cap 76 is compressed unto the body 60, and the connector 20 assumes a closed position (i.e.,
In most F-connectors, grounding or continuity is established by mechanical and electrical contact points between abutting, conductive, metallic parts. Noting
Therefore our electrical grounding inserts have been proposed. The first embodiment of our insert is generally designated by the reference numeral 100 (
Ground insert 100 comprises an annular, circular band 102 of beryllium copper alloy. Means are provided for contacting and grasping the post flange, and for contacting the nut interior. Insert ends 103 and 104 border one another across a gap 105. As best viewed in
In assembly, the grounding insert 100 coaxially surmounts the post 40. Specifically, the band 102 coaxially seats upon post flange 46 which is securely grasped at multiple points by the clips 112. Insert resilience is provided by a combination of the natural “springiness” of the beryllium copper alloy, the gap 105, and the multiple clips 112 that yieldably grasp the periphery of post flange 46. Electrical contact between the insert and the post is thus insured by clips 112. Electric contact between the insert 100 and the nut 24 is insured by the band 102 coaxially seated within annular ring groove 36 (
The alternative embodiment is seen in
Ground insert 130 comprises means for contacting and grasping the post flange, and for contacting the nut interior. Insert 130 comprises a tubular band 132 of beryllium copper alloy for contacting and grasping the post flange. The cross section of insert 130 is circular. Ends 133 and 134 border one another across a gap 135. Band 132 is integral with a flared, skirt 138 characterized by a polygonal cross section (
Preferably, band 132 is provided with a plurality of radially, spaced apart clips 112B like clips 112 previously described that are defined around insert 100. In assembly, clips 112B make contact with the post flange 46 within the ring groove 36B.
In assembly (
Further electrical continuity is established by skirt contact with the socket or terminal to which the connector is coupled. Referencing
Insert resilience is provided by a combination of the natural “springiness” of the beryllium copper alloy, the gap 135, and the multiple facets 142 and vertices 140 of the skirt configuration. Electrical contact between the insert 130 and the post 40 is thus insured. Electric contact between the insert 130 and the nut 24 is also maintained.
Turning now to
This first polygonal grounding insert 1402 has three (3) or more sides (six are shown), each side being formed between adjacent corners such as rounded or angular corners. For example, a side 1410 is located between adjacent corners 1405, 1407 and each side includes outer and inner side surface 1404, 1406. In some embodiments, the insert cross-section is broken 1408, for example broken at a corner (as shown). And, in some embodiments the insert cross-section is continuous with no break (not shown).
Referring also to
As skilled artisans will appreciate, electrically conductive inserts provide a ground path between the post and the nut when portion(s) of the insert contact the nut and the post. For example, one or more of insert inner surfaces 1406 and edges 1441, 1451 contact the post 401 and one or more of insert outer surfaces 1404 and edges 1441, 1451 contact the nut 241 completing an electrical circuit between the post and the nut. In various embodiments, insert corners 1405 contact the nut such as contact with a nut cylindrical inner face 361 adjacent to a nut inner annular shoulder 371. As shown, some embodiments provide for insert end 1431, 1432 contact with the nut, for example at the nut groove 361.
In another embodiment,
This first polygonal grounding insert 1502 has three (3) or more sides together with an open side 1508 (five sides plus an open side are shown). Each side is formed between adjacent corners such as rounded or angular corners. For example, a side 1510 is located between adjacent corners 1505, 1507 and each side includes outer and inner side surface 1504, 1506.
As skilled artisans will appreciate, electrically conductive inserts provide a ground path between the post and the nut when portion(s) of the insert contact the nut and the post. For example, one or more of insert inner surfaces 1506 and edges 1541, 1551 contact the post 401 and one or more of insert outer surfaces 1504 and edges 1541, 1551 contact the nut 241 completing an electrical circuit between the post and the nut. In various embodiments, insert corners 1505 contact the nut such as contact with a nut cylindrical inner face 361 adjacent to a nut inner annular shoulder 371. As shown, some embodiments provide for insert end 1531, 1532 contact with the nut, for example at the nut groove 361.
As shown, a forward end of the post includes a first stepped flange 1572 and a spaced apart second flange 1570, and a post groove 1571 therebetween. A nut rear annular wall 1568 engages the stepped flange and spans across the post groove. In some embodiments, a leading right angle corner of the nut annular wall 1575 is adjacent to and/or abuts a sloped flange step 1573. Electrical conductivity between the nut and the post is enhanced by use of an electrically conductive grounding insert that contacts both the nut and the post. For example, as described in connection with
As shown, a forward end of the post includes a stepped flange 1592. A nut internal annular wall 1588 engages the stepped flange and a nut trailing hood 1589 overhangs a body end shoulder 1591 to form a cavity 1590, for example a cavity for locating a seal such as an O-Ring seal 1587 that seals between the nut hood and the body shoulder. In some embodiments, a leading right angle corner of the nut annular wall 1595 is adjacent to and/or abuts a sloped flange step 1593. Embodiments enhance electrical conductivity between the nut and the post using an electrically conductive grounding insert that contacts both the nut and the post. For example, as described in connection with
As skilled artisans will appreciate, the connectors of
In another embodiment,
This first cylindrical grounding insert 1602 has a width w3 a height h3, and includes a plurality of transverse tabs 1660 (four shown). As shown in
As shown in
As shown, the insert tabs 1660 extend toward the x-x axis. While generally rectangular tabs are shown, any suitable shape may be selected. For example, a tab shape may be selected to mate with a particular post shape such as a generally cylindrical post flange peripheral face 471. As shown, a rectangular tab 1660 shape is formed when the rectangular tab is severed from adjacent material along three sides leaving a fourth un-severed side or bend line 1669 that supports the tab.
Tabs 1660 may be evenly spaced or irregularly spaced around the insert 1602 circumference. Tab width w4 is limited by insert width w3 while tab height h4 is influenced by required tab deflection 1671 and resilience given insert material geometry and properties. In the embodiment of
Referring to
As skilled artisans will appreciate, electrically conductive inserts provide a ground path between the post and the nut when portion(s) of the insert contact the nut and the post. For example, one or more of tabs 1660 contact the post 401 and while insert outer surface(s) 1684 contact the nut 241 and complete an electrical circuit between the post and the nut. In some embodiments, insert edges 1641, 1651 contact one or more parts of the connector such as the nut inner shoulder 371 adjacent to the nut inner groove 361. And, in some embodiments, insert ends 1631 and 1632 contact the nut as shown in
In another embodiment,
This first cylindrical grounding insert 1702 has outer and inner sides 1784, 1786, a width w5, a height h5, and includes a plurality of transverse tabs 1760 (four shown). As shown in
As shown, the insert tabs 1760 extend toward the x-x axis. While generally rectangular tabs are shown, any suitable shape may be selected. For example, a tab shape may be selected to mate with a particular post shape such as a generally cylindrical post flange peripheral face 471. As shown, a rectangular tab 1760 shape is formed when the rectangular tab is severed from adjacent material along three sides leaving a fourth un-severed side or bend line 1769 that supports the tab.
Tabs 1760 may be evenly spaced or irregularly spaced around the insert 1702 circumference. Tab width w6 is limited by insert width w5 while tab height h6 is influenced by required tab deflection 1771 and resilience given insert material geometry and properties. In the embodiment of
Referring to
As skilled artisans will appreciate, electrically conductive inserts provide a ground path between the post and the nut when portion(s) of the insert contact the nut and the post. For example, one or more of tabs 1760 contact the post 401 and while insert outer surface(s) 1784 contact the nut 241 and complete an electrical circuit between the post and the nut. In some embodiments, insert edges 1741, 1751 contact one or more parts of the connector such as the nut inner shoulder 371 adjacent to the nut inner groove 361.
As the figures show, the tab wipers 1851-1855 slidingly engage flanges of respective posts 1831-1835. In particular, the wipers 1851-1855 engage respective post radial peripheries 1821-1825.
As skilled artisans will appreciate, the post engagement designs of
In another embodiment,
This first cylindrical grounding insert 1902 has a width w7 a height h7, and includes a plurality of parallel tabs 1960. As shown in
As shown, the insert tabs 1960 extend toward the x-x axis. While generally rectangular tabs are shown, any suitable shape may be selected. For example, a tab shape may be selected to mate with a particular post shape such as a generally cylindrical post flange peripheral face 471. As shown, a rectangular tab 1960 shape is formed when the rectangular tab is severed from adjacent material along three sides leaving a fourth un-severed side or bend line 1969 that supports the tab.
Tabs 1960 may be evenly spaced or irregularly spaced around the insert 1902 circumference. Tab width w8 is limited by insert width w7 while tab height h8 is influenced by required tab deflection 1971 and resilience given insert material geometry and properties. In the embodiment of
Referring to
As skilled artisans will appreciate, electrically conductive inserts provide a ground path between the post and the nut when portion(s) of the insert contact the nut and the post. For example, one or more of tabs 1960 contact the post 401 and while insert outer surface(s) 1984 contact the nut 241 and complete an electrical circuit between the post and the nut. In some embodiments, insert edges 1941, 1951 contact one or more parts of the connector such as the nut inner shoulder 371 adjacent to the nut inner groove 361.
In another embodiment,
This first cylindrical grounding insert 2002 has a width w9 a height h9, and includes a plurality of parallel tabs 2060. As shown in
As shown, the insert tabs 2060 extend toward the x-x axis. While generally rectangular tabs are shown, any suitable shape may be selected. For example, a tab shape may be selected to mate with a particular post shape such as a generally cylindrical post flange peripheral face 471. As shown, a rectangular tab 2060 shape is formed when the rectangular tab is severed from adjacent material along three sides leaving a fourth un-severed side or bend line 2069 that supports the tab.
Tabs 2060 may be evenly spaced or irregularly spaced around the insert 2002 circumference. Tab width w10 is limited by insert width w9 while tab height h10 is influenced by required tab deflection 2071 and resilience given insert material geometry and properties. In the embodiment of
Referring to
As skilled artisans will appreciate, electrically conductive inserts provide a ground path between the post and the nut when portion(s) of the insert contact the nut and the post. For example, one or more of tabs 2060 contact the post 401 and while insert outer surface(s) 2084 contact the nut 241 and complete an electrical circuit between the post and the nut. In some embodiments, insert edges 2041, 2051 contact one or more parts of the connector such as the nut inner shoulder 371 adjacent to the nut inner groove 361.
As the figures show, tab wipers 2151-2155 slidingly engage respective post flanges 2131-2135. In particular, the wipers 2151-2155 engage respective post flange radial peripheries 2121-2125.
As skilled artisans will appreciate, the post engagement designs of
While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not limitation. It will be apparent to those skilled in the art that various changes in the form and details can be made without departing from the spirit and scope of the invention. As such, the breadth and scope of the present invention should not be limited by the above-described exemplary embodiments, but should be defined only in accordance with the following claims and equivalents thereof.
Claims
1. A coaxial connector comprising:
- a fastener including a sleeve and an annular wall at one end of the sleeve;
- a cylindrical post with a shank adjoining a flanged end, the post defining a hole therethrough;
- the post passing through the annular wall and rotatably coupled thereto via the flanged end;
- the post for passing a coaxial cable center conductor therethrough and the shank for insertion beneath ground conductors of a coaxial cable;
- a ring shaped space between a radial periphery of the flanged end and the fastener;
- a grounding insert inserted in the ring shaped space; and,
- the grounding insert completing an electrical circuit between the post and the fastener.
2. The connector of claim 1 further comprising:
- first and second rubbing surfaces selected from (i) a fastener surface, (ii) a grounding insert surface, and (iii) a flanged end surface; and,
- the first surface rubbing the second surface when the fastener is rotated relative to the post.
3. The connector of claim 2 wherein the first rubbing surface is a surface of the fastener and the second rubbing surface is a surface of the insert.
4. The connector of claim 3 wherein the fastener rubbing surface is a cylindrical surface inside the fastener.
5. The connector of claim 2 wherein the first rubbing surface is a surface of the flanged end and the second rubbing surface is a surface of the insert.
6. The connector of claim 5 wherein the insert rubbing surface is inside the insert.
7. The connector of claim 6 wherein the insert is fully within the ring shaped space.
8. The connector of claim 6 wherein the insert is not fully within the ring shaped space.
9. The connector of claim 2 wherein the insert includes 5 or more articulated sections.
10. The connector of claim 9 wherein the insert has first and second free ends with the articulated sections therebetween.
11. The connector of claim 10 wherein each of the sections has a length s and between the first and second free ends a gap of length greater than s/2 exists.
12. A rotary contact method of providing a coaxial connector with a reliable ground circuit, the method comprising the steps of:
- seating a rotary contact inside a fastener against a fastener wall;
- inserting a post in the fastener such that a post flange is inserted in the rotary contact;
- the fastener and post coaxially arranged about a connector centerline; and,
- rubbing post flange with an insert during rotation of the fastener relative to the post;
- wherein rotary contact during rubbing is for maintaining a ground path between the post and the fastener.
13. The method of claim 12 wherein a cylindrically shaped post flange surface coaxially arranged about the connector centerline is rubbed during rotation of the post relative to the fastener.
14. The method of claim 13 wherein radial contact between the insert and the fastener occurs at radial projections of the insert but not at portions of the insert between the radial projections.
15. The method of claim 14 wherein the insert radial projections are provided at intersections of insert sections.
16. The method of claim 15 wherein the insert is fully within a ring shaped space between the post flange and a portion of the fastener opposite the post flange.
17. The method of claim 13 wherein radial contact between the insert and the post flange occurs at radial projections of the insert but not at portions of the insert between the radial projections.
18. The method of claim 17 wherein the insert radial projections are provided by tabs punched out of a cylindrical insert band.
19. The method of claim 18 wherein the insert is fully within a ring shaped space between the post flange and a portion of the fastener opposite the post flange.
20. The method of claim 12 further comprising the step of:
- shaping a post flange radial periphery to conform with a bent or curved end of a radial insert projection.
2280728 | April 1942 | Streib |
2757351 | July 1956 | Klostermann |
3184706 | May 1965 | Atkins |
3292136 | December 1966 | Somerset |
3332052 | July 1967 | Rusinyak |
3448430 | June 1969 | Kelly |
3665371 | May 1972 | Cripps |
3671922 | June 1972 | Zerlin |
3678445 | July 1972 | Brancaleone |
3681739 | August 1972 | Komick |
3739076 | June 1973 | Schwartz |
3835443 | September 1974 | Arnold |
4106839 | August 15, 1978 | Cooper |
4128293 | December 5, 1978 | Oaoli |
4330166 | May 18, 1982 | Cooper |
4423919 | January 3, 1984 | Hills |
4426127 | January 17, 1984 | Kubota |
4531805 | July 30, 1985 | Werth |
4703988 | November 3, 1987 | Raux |
4808128 | February 28, 1989 | Werth |
4979911 | December 25, 1990 | Spencer |
5002503 | March 26, 1991 | Campbell |
5066248 | November 19, 1991 | Gaver, Jr. |
5083943 | January 28, 1992 | Tarrant |
5683263 | November 4, 1997 | Hsu |
5722856 | March 3, 1998 | Fuchs |
5769652 | June 23, 1998 | Wider |
5975951 | November 2, 1999 | Burris |
6332815 | December 25, 2001 | Bruce |
6406330 | June 18, 2002 | Bruce |
6716062 | April 6, 2004 | Palinkas |
7114990 | October 3, 2006 | Bence |
7479035 | January 20, 2009 | Bence |
7507117 | March 24, 2009 | Amidon |
7753705 | July 13, 2010 | Montena |
7845976 | December 7, 2010 | Matthews |
7892005 | February 22, 2011 | Haube |
7892024 | February 22, 2011 | Chen |
7955126 | June 7, 2011 | Bence |
8192237 | June 5, 2012 | Purdy et al. |
8313345 | November 20, 2012 | Purdy |
8323060 | December 4, 2012 | Purdy et al. |
8579658 | November 12, 2013 | Youtsey |
8888526 | November 18, 2014 | Burris |
9028276 | May 12, 2015 | Wilson |
9033730 | May 19, 2015 | Lu |
20090098770 | April 16, 2009 | Bence |
20110230091 | September 22, 2011 | Krenceski et al. |
20110306236 | December 15, 2011 | Addario et al. |
20130102189 | April 25, 2013 | Montena |
20160204556 | July 14, 2016 | Lin |
Type: Grant
Filed: Sep 10, 2016
Date of Patent: Oct 31, 2017
Patent Publication Number: 20170018862
Assignee: PerfectVision Manufacturing, Inc. (Little Rock, AR)
Inventors: Robert J. Chastain (Maumelle, AR), Glen David Shaw (Conway, AR), Charles Darwin Davidson, Jr. (Little Rock, AR)
Primary Examiner: Gary Paumen
Application Number: 15/261,926
International Classification: H01R 9/05 (20060101); H01R 24/40 (20110101); H01R 43/26 (20060101);