Systems and methods for a digital image sensor
A system, method, and computer program product are provided for generating an image stack. In use, one or more exposure parameters for an image stack are configured. Next, a capture command is received. Further, a pixel array is initialized within an image sensor of the camera module. Moreover, one or more ambient images are sampled within one or more corresponding analog storage planes. Next, if it is determined whether a strobe unit is enabled, where, if it is determined that the strobe unit is enabled, one or more strobe images are sampled within the corresponding analog storage planes.
Latest Duelight LLC Patents:
- System and method for sharing data based on a combined bandwidth consumption
- Image sensor apparatus and method for obtaining multiple exposures with zero interframe time
- Systems and methods for adjusting focus based on focus target information
- Systems and methods for digital photography
- System, method, and computer program for capturing an image with correct skin tone exposure
The present application is a continuation of and claims priority to U.S. patent application Ser. No. 13/999,678, titled “SYSTEMS AND METHODS FOR A DIGITAL IMAGE SENSOR,” filed Mar. 14, 2014, which claims priority to U.S. Provisional Application No. 61/852,427, titled “DIGITAL IMAGE SENSOR,” filed Mar. 15, 2013, both of which are hereby incorporated by reference for all purposes.
FIELD OF THE INVENTIONEmbodiments of the present invention relate generally to digital photographic systems, and more specifically to systems and methods for a digital image sensor.
BACKGROUNDA typical digital camera focuses an optical image of a scene onto an image sensor, which samples the optical image to generate an electronic representation of the scene. The electronic representation is then processed and stored as a digital photograph. A conventional image sensor is configured to generate a two-dimensional array of color pixels from the optical image. Each color pixel typically includes an independent intensity value for standard red, green, and blue wavelengths. A properly generated digital photograph will have a natural appearance, resembling direct observation of the scene by a human observer. To generate digital photographs having a natural appearance, digital cameras attempt to mimic certain aspects of human visual perception.
One aspect of human visual perception that digital cameras mimic is dynamic adjustment to scene intensity. The human eye is able to adjust to a wide range of light intensity in the same scene. Digital cameras dynamically adjust to scene intensity by selecting a shutter speed, sampling sensitivity (“ISO” sensitivity associated with sensor sensitivity), and aperture to yield a good overall exposure level when generating the digital photograph. However, for a given exposure setting, a typical scene may include areas spanning a dynamic range that exceeds the dynamic range of a conventional image sensor, leading to overexposure, underexposure, or a combination of both in the same scene. The scene may also include important visual detail at intensities that are poorly quantized by the image sensor when configured for a specific exposure level, leading to quantization error, which appears as “banding” or unwanted “posterization.”
Techniques known in the art as high dynamic range (HDR) photography provide for sampling and representing image information having a high dynamic range substantially representative of dynamic range within a given scene. HDR photography conventionally involves sampling a set of digital photographs, referred to as an image stack, at different exposure levels for the same scene to capture image detail at different dynamic range levels. Images comprising an image stack may be combined to synthesize a single digital photograph that represents contrast and image detail depicting the full dynamic range of the scene. In certain scenarios, the full dynamic range is mapped to a reduced dynamic range for display on a conventional display device, such as a liquid crystal display (LCD). The digital photographs comprising the image stack are assumed to contain substantially consistent content that is sampled at different exposures. The digital photographs are conventionally sampled sequentially, with an inter-sample time separating the capture of each digital photograph.
During sequential sampling, the digital camera may move, such as from hand motion or vibration. During sequential sampling, the scene may also change, such as from people, animals, or objects moving in the scene. As a consequence of such motion or change, each digital photograph within the set of digital photographs needs to be aligned to the other digital photographs to provide spatial consistency prior to a combination operation. As inter-sample time increases, the likelihood of uncorrectable misalignment among the digital photographs increases, as does the likelihood of uncorrectable divergent content within the digital photographs. Examples of divergent content include birds flying in a landscape scene, and people talking or otherwise moving in a social scene. A common example of uncorrectable divergent content arises when a person is moving their head, such that the first digital photograph in the set of digital photographs captures the person's face, while a second digital photograph captures the side of the person's head. Conventional alignment techniques are computationally intense and still cannot adequately correct for content changes, such as aligning a face with the side of a head. Furthermore, conventional image capture techniques typically require significant inter-sample time, which may be greater than a thirtieth of one second. Significant inter-sample time commonly leads to capturing uncorrectable divergent content or digital photographs that cannot be properly aligned within the image stack, thereby visibly and negatively impacting the quality of synthetic digital photographs generated from the image stack.
As the foregoing illustrates, there is a need for addressing this and/or other related issues associated with the prior art.
SUMMARYA system, method, and computer program product are provided for generating an image stack. In use, one or more exposure parameters for an image stack are configured. Next, a capture command is received. Further, a pixel array is initialized within an image sensor of the camera module. Moreover, one or more ambient images are sampled within one or more corresponding analog storage planes. Next, it is determined whether a strobe unit is enabled, where, if it is determined that the strobe unit is enabled, one or more strobe images are sampled within the corresponding analog storage planes.
So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
Embodiments of the present invention enable a digital photographic system to capture an image stack for a photographic scene. Exemplary digital photographic systems include, without limitation, digital cameras and mobile devices such as smart phones that are configured to include a digital camera module. A given photographic scene is a portion of an overall scene sampled by the digital photographic system. Two or more images are sampled by the digital photographic system to generate an image stack.
A given image stack comprises images of the photographic scene sampled with potentially different exposure, different strobe illumination, or a combination thereof. For example, each image within the image stack may be sampled according to a different exposure time, exposure sensitivity, or a combination thereof. A given image within the image stack may be sampled in conjunction with or without strobe illumination added to the photographic scene. Images comprising an image stack should be sampled over an appropriately short span of time to reduce visible differences or changes in scene content among the images. In one embodiment, images comprising a complete image stack are sampled within one second. In another embodiment, images comprising a complete image stack are sampled within a tenth of a second.
In one embodiment, two or more images are captured according to different exposure levels during overlapping time intervals, thereby reducing potential changes in scene content among the two or more images. In other embodiments, the two or more images are sampled sequentially under control of an image sensor circuit to reduce inter-image time. In certain embodiments, at least one image of the two or more images is sampled in conjunction with a strobe unit being enabled to illuminate a photographic scene. Image sampling may be controlled by the image sensor circuit to reduce inter-image time between an image sampled using only ambient illumination and an image sampled in conjunction with strobe illumination. The strobe unit may comprise a light-emitting diode (LED) configured to illuminate the photographic scene.
In one embodiment, each pixel of an image sensor comprises a set of photo-sensitive cells, each having specific color sensitivity. For example, a pixel may include a photo-sensitive cell configured to be sensitive to red light, a photo-sensitive cell configured to be sensitive to blue light, and two photo-sensitive cells configured to be sensitive to green light. Each photo-sensitive cell is configured to include two or more analog sampling circuits. A set of analog sampling circuits comprising one analog sampling circuit per photo-sensitive cell within the image sensor may be configured to sample and store a first image. Collectively, one set of analog sampling circuits forms a complete image plane and is referred to herein as an analog storage plane. A second set of substantially identically defined analog sampling circuits within the image sensor may be configured to sample and store a second image. A third set of substantially identically defined storage elements within the image sensor may be configured to sample and store a third image, and so forth. Hence an image sensor may be configured to sample and simultaneously store multiple images within analog storage planes.
Each analog sampling circuit may be independently coupled to a photodiode within the photo-sensitive cell, and independently read. In one embodiment, the first set of analog sampling circuits are coupled to corresponding photodiodes for a first time interval to sample a first image having a first corresponding exposure time. A second set of analog sampling circuits are coupled to the corresponding photodiodes for a second time interval to sample a second image having a second corresponding exposure time. In certain embodiments, the first time duration overlaps the second time duration, so that the first set of analog sampling circuits and the second set of analog sampling circuits are coupled to the photodiode concurrently during an overlap time. In one embodiment, the overlap time is within the first time duration. Current generated by the photodiode is split over the number of analog sampling circuits coupled to the photodiode at any given time. Consequently, exposure sensitivity varies as a function how many analog sampling circuits are coupled to the photodiode at any given time and how much capacitance is associated with each analog sampling circuit. Such variation needs to be accounted for in determining exposure time for each image.
Method 100 begins in step 110, where the camera module configures exposure parameters for an image stack to be sampled by the camera module. Configuring the exposure parameters may include, without limitation, writing registers within an image sensor comprising the camera module that specify exposure time for each participating analog storage plane, exposure sensitivity for one or more analog storage planes, or a combination thereof. Exposure parameters may be determined prior to this step according to any technically feasible technique, such as well-known techniques for estimating exposure based on measuring exposure associated with a sequence of test images sampled using different exposure parameters.
In step 112, the camera module receives a capture command. The capture command directs the camera module to sample two or more images comprising the image stack. The capture command may result from a user pressing a shutter release button, such as a physical button or a user interface button. In step 114, the camera module initializes a pixel array within the image sensor. In one embodiment, initializing the pixel array comprises driving voltages on internal nodes of photo-sensitive cells within one or more analog storage planes to a reference voltage, such as a supply voltage or a bias voltage. In step 116, the camera module enables analog sampling circuits within two or more analog storage planes to simultaneously integrate (accumulate) an image corresponding to a photographic scene. In one embodiment, integrating an image comprises each analog sampling circuit within an analog storage plane integrating a current generated by a corresponding photodiode. In step 118, analog sampling circuits within enabled analog storage planes integrate a respective image during a sampling interval. Each sampling interval may comprise a different time duration.
If, in step 120, the camera module should sample another image, then the method proceeds to step 122, where the camera module disables sampling for one analog storage plane within the image sensor. Upon disabling sampling for a given analog storage plane, an image associated with the analog storage plane has been sampled completely for an appropriate exposure time.
Returning to step 120, if the camera module should not sample another image then the method terminates. The camera module should not sample another image after the last sampling interval has lapsed and sampling of the last image has been completed.
Reading an image from a corresponding analog storage plane may proceed using any technically feasible technique.
Method 102 begins in step 140, where the camera module configures exposure parameters for an image stack to be sampled by the camera module. Configuring the exposure parameters may include, without limitation, writing registers within an image sensor comprising the camera module that specify exposure time for each participating analog storage plane, exposure sensitivity for one or more analog storage planes, or a combination thereof. Exposure parameters may be determined prior to this step according to any technically feasible technique, such as well-known techniques for estimating exposure based on measuring exposure associated with a sequence of test images sampled using different exposure parameters.
In step 142, the camera module receives a capture command. The capture command directs the camera module to sample two or more images comprising the image stack. The capture command may result from a user pressing a shutter release button, such as a physical button or a user interface button. In step 144, the camera module initializes a pixel array within the image sensor. In one embodiment, initializing the pixel array comprises driving voltages on internal nodes of photo-sensitive cells within one or more analog storage planes to a reference voltage, such as a supply voltage or a bias voltage.
In step 146, the camera module samples one or more ambient images within corresponding analog storage planes. In one embodiment, step 146 implements steps 116 through 122 of method 100 of
In step 150, the camera module determines that a strobe unit, such as strobe unit 336 of
In step 152, the camera module samples one or more strobe images within corresponding analog storage planes. In one embodiment, step 152 implements steps 116 through 122 of method 100 of
In certain embodiments, the camera module is configured to store both ambient images and strobe images concurrently within analog storage planes. In other embodiments, the camera module offloads one or more ambient images prior to sampling a strobe image.
An image blend operation 240 generates synthetic image 250 from image stack 200. As depicted here, synthetic image 250 includes overall image detail, as well as image detail from high brightness region 220 and low brightness region 222. Image blend operation 240 may implement any technically feasible operation for blending an image stack. For example, any high dynamic range (HDR) blending technique may be implemented to perform image blend operation 240. Exemplary blending techniques known in the art include bilateral filtering, global range compression and blending, local range compression and blending, and the like.
To properly perform a blend operation, Images 210, 212, 214 need to be aligned to so that visible detail in each image is positioned in the same location in each image. For example, feature 225 in each image should be located in the same position for the purpose of blending images 210, 212, 214 to generate synthetic image 250. Misalignment can result in blurring or ghosting in synthetic image 250. Various techniques are known in the art for aligning images that may have been taken from a slightly different camera position. However, if scene content changes, then alignment may fail, leading to a poor quality synthetic image 250. Scene content may change in a conventional camera system because inter-sample time between images 210, 212, and 214 is sufficiently long so as to capture discernible movement of subjects comprising scene content for images comprising an image stack. In many typical scenarios, ten milliseconds or more of inter-sample time is sufficiently long to result in discernible movement of common photographic subject matter. Furthermore, in certain scenarios, camera shake introduces discernible blur into synthetic image 250.
Embodiments of the present invention serve to reduce or eliminate inter-sample time for two or more images comprising an image stack. In one embodiment, an image stack is captured by a digital photographic system, described below in greater detail. A strobe unit may be enabled to provide illumination in conjunction with sampling one or more images within the image stack.
Digital camera 302 may include a strobe unit 336, and may include a shutter release button 315 for triggering a photographic sample event, whereby digital camera 302 samples two or more images comprising an image stack. Any other technically feasible shutter release command may trigger the photographic sample event, such as a timer trigger or remote control receiver configured to generate a shutter release command.
Embodiments of the present invention advantageously enable the camera module 330 to sample images comprising the image stack with lower inter-sample time than conventional techniques. In certain embodiments, the images are sampled during overlapping time intervals, which may reduce the inter-sample time to zero. In other embodiments, the camera module 330 samples images in coordination with the strobe unit 336 to reduce inter-sample time between an image sampled without strobe illumination and an image sampled subsequently with strobe illumination.
In one embodiment, the touch entry display system 311 is disposed on the opposite side of mobile device 304 from camera module 330. In certain embodiments, the mobile device 304 includes a user-facing camera module 331 and may include a user-facing strobe unit (not shown). The user-facing camera module 331 and user-facing strobe unit are configured to sample an image stack in accordance with method 100 of
The digital camera 302 and the mobile device 304 may each generate and stores a synthetic image based on an image stack sampled by camera module 330. In one embodiment, the image stack includes a set of related images sampled under only ambient lighting. In another embodiment, the image stack includes at least one image sampled with strobe illumination, such as from strobe unit 336.
In one embodiment, strobe unit 336 is integrated into digital photographic system 300 and configured to provide strobe illumination 350 during an image sample event performed by digital photographic system 300. In an alternative embodiment, strobe unit 336 is implemented as an independent device from digital photographic system 300 and configured to provide strobe illumination 350 during an image sample event performed by digital photographic system 300. Strobe unit 336 may comprise one or more LED devices. In certain embodiments, two or more strobe units are configured to synchronously generate strobe illumination in conjunction with sampling an image.
In one embodiment, strobe unit 336 is directed through a strobe control signal 338 to either emit strobe illumination 350 or not emit strobe illumination 350. The strobe control signal 338 may implement any technically feasible signal transmission protocol. Strobe control signal 338 may indicate a strobe parameter, such as strobe intensity or strobe color, for directing strobe unit 336 to generate a specified intensity and/or color of strobe illumination 350. Strobe control signal 338 may be generated by processor complex 310, camera module 330, or by any other technically feasible combination thereof. In one embodiment, strobe control signal 338 is generated by a camera interface unit 386 within the processor complex 310 and transmitted via an interconnect 334 to both the strobe unit 336 and the camera module 330. In another embodiment, strobe control signal 338 is generated by camera module 330 and transmitted to strobe unit 336 via interconnect 334.
Optical scene information 352, which may include strobe illumination 350 reflected from objects in the photographic scene, is focused as an optical image onto an image sensor 332, within camera module 330. Image sensor 332 generates an electronic representation of the optical image. The electronic representation comprises spatial color intensity information, which may include different color intensity samples, such as for red, green, and blue light. The spatial color intensity information may also include samples for white light. The electronic representation is transmitted to processor complex 310 via interconnect 334, which may implement any technically feasible signal transmission protocol.
Input/output devices 314 may include, without limitation, a capacitive touch input surface, a resistive tablet input surface, one or more buttons, one or more knobs, light-emitting devices, light detecting devices, sound emitting devices, sound detecting devices, or any other technically feasible device for receiving user input and converting the input to electrical signals, or converting electrical signals into a physical signal. In one embodiment, input/output devices 314 include a capacitive touch input surface coupled to display unit 312.
Non-volatile (NV) memory 316 is configured to store data when power is interrupted. In one embodiment, NV memory 316 comprises one or more flash memory devices. NV memory 316 comprises a non-transitory computer-readable medium, which may be configured to include programming instructions for execution by one or more processing units within processor complex 310. The programming instructions may implement, without limitation, an operating system (OS), UI modules, image processing and storage modules, one or more modules for sampling an image stack through camera module 330, one or more modules for presenting the image stack or synthetic image generated from the image stack through display unit 312. The programming instructions may also implement one or more modules for merging images or portions of images within the image stack, aligning at least portions of each image within the image stack, or a combination thereof. In one embodiment, the programming instructions are configured to implement method 100 or
Sensor devices 342 may include, without limitation, an accelerometer to detect motion and/or orientation, an electronic gyroscope to detect motion and/or orientation, a magnetic flux detector to detect orientation, a global positioning system (GPS) module to detect geographic position, or any combination thereof.
Wireless unit 340 may include one or more digital radios configured to send and receive digital data. In particular, wireless unit 340 may implement wireless standards known in the art as “WiFi” based on Institute for Electrical and Electronics Engineers (IEEE) standard 802.11, and may implement digital cellular telephony standards for data communication such as the well-known “3G” and “4G” suites of standards. Wireless unit 340 may further implement standards and protocols known in the art as LTE (long term evolution). In one embodiment, digital photographic system 300 is configured to transmit one or more digital photographs, sampled according to techniques taught herein, to an online or “cloud-based” photographic media service via wireless unit 340. The one or more digital photographs may reside within either NV memory 316 or volatile memory 318. In such a scenario, a user may possess credentials to access the online photographic media service and to transmit the one or more digital photographs for storage and presentation by the online photographic media service. The credentials may be stored or generated within digital photographic system 300 prior to transmission of the digital photographs. The online photographic media service may comprise a social networking service, photograph sharing service, or any other network-based service that provides storage and transmission of digital photographs. In certain embodiments, one or more digital photographs are generated by the online photographic media service based on an image stack sampled according to techniques taught herein. In such embodiments, a user may upload source images comprising an image stack for processing by the online photographic media service.
In one embodiment, digital photographic system 300 comprises a plurality of camera modules 330. Such an embodiment may also include at least one strobe unit 336 configured to illuminate a photographic scene, sampled as multiple views by the plurality of camera modules 330. The plurality of camera modules 330 may be configured to sample a wide angle view (greater than forty-five degrees of sweep among cameras) to generate a panoramic photograph. The plurality of camera modules 330 may also be configured to sample two or more narrow angle views (less than forty-five degrees of sweep among cameras) to generate a stereoscopic photograph.
Display unit 312 is configured to display a two-dimensional array of pixels to form an image for display. Display unit 312 may comprise a liquid-crystal display, an organic LED display, or any other technically feasible type of display. In certain embodiments, display unit 312 is able to display a narrower dynamic range of image intensity values than a complete range of intensity values sampled over a set of two or more images comprising a given image stack. Here, images comprising the image stack may be merged according to any technically feasible HDR blending technique to generate a synthetic image for display within dynamic range constraints of display unit 312. In one embodiment, the limited dynamic range specifies an eight-bit per color channel binary representation of corresponding color intensities. In other embodiments, the limited dynamic range specifies a twelve-bit per color channel binary representation.
Processor subsystem 360 may include, without limitation, one or more central processing unit (CPU) cores 370, a memory interface 380, input/output interfaces unit 384, and a display interface unit 382, each coupled to an interconnect 374. The one or more CPU cores 370 may be configured to execute instructions residing within memory subsystem 362, volatile memory 318, NV memory 316, or any combination thereof. Each of the one or more CPU cores 370 may be configured to retrieve and store data through interconnect 374 and memory interface 380. Each of the one or more CPU cores 370 may include a data cache, and an instruction cache. Two or more CPU cores 370 may share a data cache, an instruction cache, or any combination thereof. In one embodiment, a cache hierarchy is implemented to provide each CPU core 370 with a private cache layer, and a shared cache layer.
Processor subsystem 360 may further include one or more graphics processing unit (GPU) cores 372. Each GPU core 372 comprises a plurality of multi-threaded execution units that may be programmed to implement graphics acceleration functions. GPU cores 372 may be configured to execute multiple thread programs according to well-known standards such as OpenGL™, OpenCL™, CUDA™, and the like. In certain embodiments, at least one GPU core 372 implements at least a portion of a motion estimation function, such as a well-known Harris detector or a well-known Hessian-Laplace detector. Such a motion estimation function may be used for aligning images or portions of images within the image stack.
Interconnect 374 is configured to transmit data between and among memory interface 380, display interface unit 382, input/output interfaces unit 384, CPU cores 370, and GPU cores 372. Interconnect 374 may implement one or more buses, one or more rings, a cross-bar, a mesh, or any other technically feasible data transmission structure or technique. Memory interface 380 is configured to couple memory subsystem 362 to interconnect 374. Memory interface 380 may also couple NV memory 316, volatile memory 318, or any combination thereof to interconnect 374. Display interface unit 382 is configured to couple display unit 312 to interconnect 374. Display interface unit 382 may implement certain frame buffer functions such as frame refresh. Alternatively, display unit 312 may implement frame refresh. Input/output interfaces unit 384 may be configured to couple various input/output devices to interconnect 374.
In certain embodiments, camera module 330 is configured to store exposure parameters for sampling each image in an image stack. When directed to sample an image stack, the camera module 330 samples the images comprising the image stack according to the stored exposure parameters. A software module comprising programming instructions executing within processor complex 310 may generate and store the exposure parameters prior to directing the camera module 330 to sample the image stack.
In one embodiment, exposure parameters associated with images comprising the image stack are stored within a parameter data structure. The camera interface unit 386 is configured to read exposure parameters from the parameter data structure and to transmit the exposure parameters to the camera module 330 in preparation of sampling an image stack. After the camera module 330 is configured according to the exposure parameters, the camera interface unit 386 directs the camera module 330 to sample an image stack. The data structure may be stored within the camera interface unit 386, within a memory circuit within processor complex 310, within volatile memory 318, within NV memory 316, or within any other technically feasible memory circuit. A software module executing within processor complex 310 may generate and store the data structure.
In one embodiment, the camera interface unit 386 transmits exposure parameters and commands to camera module 330 through interconnect 334. In certain embodiments, the camera interface unit 386 is configured to directly control the strobe unit 336 by transmitting control commands to the strobe unit 336 through strobe control signal 338. By directly controlling both the camera module 330 and the strobe unit 336, the camera interface unit 386 may cause the camera module 330 and the strobe unit 336 to perform their respective operations in precise time synchronization. In one embodiment, precise time synchronization is defined to be less than five hundred microseconds of event timing error.
In other embodiments, a software module executing within processor complex 310 directs the operation and synchronization of camera module 330 and the strobe unit 336, with potentially reduced performance, such as event timing error of more than one millisecond.
In one embodiment, camera interface unit 386 is configured to accumulate statistics while receiving image data from the camera module 330. In particular, the camera interface unit 386 may accumulate exposure statistics for a given image while receiving image data for the image through interconnect 334. Exposure statistics may include an intensity histogram, a count of over-exposed pixels, a counter of under-exposed pixels, an intensity-weighted sum of pixel intensity, or any combination thereof. The camera interface unit 386 may present the exposure statistics as memory-mapped storage locations within a physical or virtual address space defined by a processor, such as a CPU core 370, within processor complex 310. In one embodiment, the exposure statistics are mapped in a memory-mapped register space, which may be accessed through interconnect 334. In other embodiments, the exposure statistics are transmitted in conjunction with transmitting pixel data for a captured image. For example, the exposure statistics for a given image may be transmitted as in-line data, following transmission of pixel intensity data for the image. Exposure statistics may be cached within camera interface 386, after being received from camera module 330.
In certain embodiments, camera interface unit 386 accumulates color statistics for estimating scene white-balance. Any technically feasible color statistics may be accumulated for estimating white balance, such as a sum of intensities for different color channels comprising red, green, and blue color channels. The sum of color channel intensities may then be used to perform a white-balance color correction on an associated image, according to a white-balance model such as a gray-world white-balance model. In other embodiments, curve-fitting statistics are accumulated for a linear or a quadratic curve fit used for implementing white-balance correction on an image. In one embodiment, camera interface unit 386 accumulates spatial color statistics for performing color-matching between or among images, such as between or among an ambient image and one or more images sampled with strobe illumination. As with the exposure statistics, the color statistics may be presented as memory-mapped storage locations within processor complex 310. In one embodiment, the color statistics are mapped in a memory-mapped register space, which may be accessed through interconnect 334. In other embodiments, the color statistics are transmitted in conjunction with transmitting pixel data for a captured image. For example, the color statistics for a given image may be transmitted as in-line data, following transmission of pixel intensity data for the image. Color statistics may be cached within camera interface 386 after being received from camera module 330.
In one embodiment, camera module 330 transmits strobe control signal 338 to strobe unit 336, enabling strobe unit 336 to generate illumination while the camera module 330 is sampling an image. In another embodiment, camera module 330 samples an image illuminated by strobe unit 336 upon receiving an indication from camera interface unit 386 that strobe unit 336 is enabled. In yet another embodiment, camera module 330 samples an image illuminated by strobe unit 336 upon detecting strobe illumination within a photographic scene via a rapid rise in scene illumination. In still yet another embodiment, camera module 330 enables strobe unit 336 to generate strobe illumination while sampling one image and disables strobe unit 336 while sampling a different image.
Pixel array 410 comprises a two-dimensional array of pixels 440 configured to sample focused optical image information and generate a corresponding electrical representation. Each pixel 440 samples intensity information for locally incident light and stores the intensity information within associated analog sampling circuits. In one embodiment, the intensity information comprises a color intensity value for each of a red, a green, and a blue color channel. Row logic 412 includes logic circuits configured to drive row signals associated with each row of pixels. The row signals may include, without limitation, a reset signal, a row select signal, and at least two independent sample control signals. One function of a row select signal is to enable switches associated with analog sampling circuits within a row of pixels to couple analog signal values (e.g., analog current values or analog voltage values) to a corresponding column output signal, which transmits the analog signal value to column read out circuit 420. Column read out circuit 420 may be configured to multiplex the column output signals to a smaller number of column sample signals, which are transmitted to analog-to-digital unit 422. Column read out circuit 420 may multiplex an arbitrary ratio of column output signals to column sample signals. Analog-to-digital unit 422 quantizes the column sample signals for transmission to interconnect 334 via input/output interface 426.
In one embodiment, the analog signal values comprise analog currents, and the analog-to-digital unit 422 is configured to convert an analog current to a corresponding digital value. In other embodiments, column read out circuit 420 is configured to convert analog current values to corresponding analog voltage values (e.g. through a transimpedance amplifier or TIA), and the analog-to-digital unit 422 is configured to convert the analog voltage values to corresponding digital values. In certain embodiments, column read out circuit 420 implements an analog gain function, which may be configured according to a digital gain value.
In one embodiment, control unit 414 is configured to generate detailed timing control signals for coordinating operation of row logic 412, column read out circuit 420, analog-to-digital unit 422, input output interface unit 426, and statistics unit 416.
In one embodiment, statistics unit 416 is configured to monitor pixel data generated by analog-to-digital unit 422 and, from the monitored pixel data, generate specified image statistics. The image statistics may include, without limitation, histogram arrays for individual pixel color channels for an image, a histogram array for intensity values derived from each pixel intensity value for an image, intensity sum values for each color channel taken over an image, a median intensity value for an image, an exposure value (EV) for an image, and the like. Image statistics may further include, without limitation, a pixel count for pixels meeting certain defined criteria, such as a pixel count for pixels brighter than a high threshold intensity, a pixel count for pixels darker than a low threshold intensity, a weighted pixel sum for pixels brighter than a high threshold intensity, a weighted pixel sum for pixels darker than a low threshold intensity, or any combination thereof. Image statistics may further include, without limitation, curve fitting parameters, such as least squares parameters, for linear fits, quadratic fits, non-quadratic polynomial fits, exponential fits, logarithmic fits, and the like.
Image statistics may further include, without limitation, one or more parameters computed from one or more specified subsets of pixel information sampled from pixel array 410. One exemplary parameter defines a subset of pixels to be a two-dimensional contiguous region of pixels associated with a desired exposure point. Here, an exposure parameter may be computed, for example, as a median intensity value for the region, or as a count of pixels exceeding a threshold brightness for the region. For example, a rectangular region corresponding to an exposure point may be defined within an image associated with the pixel array, and a median intensity may be generated for the rectangular region, given certain exposure parameters such as exposure time and ISO sensitivity.
Image statistics may be accumulated and computed as digital samples become available from pixel array 410. For example, image statistics may be accumulated as digital samples are generated by the analog-to-digital unit 422. In certain embodiments, the samples may be accumulated during transmission through interconnect 334. In one embodiment, the image statistics are mapped in a memory-mapped register space, which may be accessed through interconnect 334. In other embodiments, the image statistics are transmitted in conjunction with transmitting pixel data for a captured image. For example, the image statistics for a given image may be transmitted as in-line data, following transmission of pixel intensity data for the image.
In one embodiment, image statistics are computed using a fixed-function logic circuit comprising statistics unit 416. In other embodiments, image statistics are computed via a programmable processor comprising statistics unit 416. In certain embodiments, programming instructions may be transmitted to the programmable processor via interconnect 334.
In one embodiment, control unit 414 is configured to adjust exposure parameters for pixel array 410 based on images statistics for a previous image. In this way, image sensor 332 may advantageously determine proper exposure parameters per one or more specified exposure points without burdening processor resources within processor complex 310, and without incurring concomitant latencies. The proper exposure parameters may be determined by sampling sequential images and adjusting the exposure parameters for each subsequent image based on exposure parameters for a corresponding previous image. The exposure parameters for a given captured image may be read by camera interface unit 386 and stored as metadata for the image.
In one embodiment, input/output interface unit 426 is configured to modify pixel intensity data associated with a captured frame based on certain image statistics. In one implementation, input/output interface unit 426 adjusts white balance of an image during transmission of image data through interconnect 334. Red, green, and blue components of each pixel may be scaled based on previously computed image statistics. Such image statistics may include a sum of red, green, and blue components. With these sums, input/output interface unit 426 may be configured to perform a conventional gray world white balance correction. Alternatively, the image statistics may include quadratic curve fit parameters. With quadratic fit components, input/output interface unit 426 may be configured to perform a quadratic white balance mapping. Additional embodiments provide for illuminator identification via selecting for pixels above a lower threshold and below an upper threshold for consideration in determining white balance. Still further embodiments provide for color temperature identification by mapping selected samples to a color temperature snap-point. Mapping color temperature to a snap-point thereby applies an assumption that scene illumination is provided by an illuminator having a standard color temperature. In each example, image statistics may be optionally applied to adjust pixel information prior to transmission via interconnect 334.
In an alternative embodiment, statistics unit 416, as well as pixel modification functions discussed herein with respect to input/output interface unit 426 are instead implemented within sensor interface 386, residing within processor complex 310. In such an embodiment, power and heat dissipation associated with statistics unit 416 and related pixel modification functions is shifted away from pixel array 410, which may incorporate circuitry that is sensitive to heat. In another alternative embodiment, statistics unit 416, as well as pixel modification functions discussed herein with respect to input/output interface unit 426 are instead implemented within a separate die disposed within camera module 330. In such an embodiment, related power and heat dissipation is also shifted away from pixel array 410. In this embodiment, camera module 330 is configured to offer statistics and pixel modification functions in conjunction with a conventional processor complex 310, which may be configured to include a conventional sensor interface.
FET 520 is configured to provide a path to charge node 529 to a voltage associated with voltage supply V2 when reset0 530 is active (e.g., low). FET 522 provides a path for the photodiode current to discharge node 529 in proportion to an intensity of incident light 512, thereby integrating incident light 512, when sample 534 is active (e.g., high). The resulting charge associated with capacitor C 528 is an integrated electrical signal that is proportional to the intensity of incident light 512 during the exposure time. The resulting charge provides a voltage potential associated with node 529 that is also proportional to the intensity of incident light 512 during the exposure time.
When row select 536 is active (e.g., high), FET 526 provides a path for an output signal current from voltage source V1 through FET 524, to out 538. FET 524 converts a voltage on node 529, into a corresponding output current signal through node out 538. During normal operation, incident light sampled for an exposure time corresponding to an active time for sample 534 is represented as a charge on capacitor C 528. This charge may be coupled to output signal out 538 and read as a corresponding current value. This circuit topology facilitates non-destructive reading of charge on node 529.
Node C 610 represents one node of a capacitor that includes gate capacitance for FET 624 and diffusion capacitance for FETs 622 and 628. Node C 610 may also be coupled to additional circuit elements (not shown) such as, without limitation, a distinct capacitive structure, such as a metal-oxide stack, a poly capacitor, a trench capacitor, or any other technically feasible capacitor structures. Node C 640 represents one node of a capacitor that includes gate capacitance for FET 654 and diffusion capacitance for FETs 652 and 658. Node C 640 may also be coupled to additional circuit elements (not shown) such as, without limitation, a distinct capacitive structure, such as a metal-oxide stack, a poly capacitor, a trench capacitor, or any other technically feasible capacitor structures.
When reset1 630 is active (low), FET 628 provides a path from voltage source V2 to node C 610, causing node C 610 to charge to the potential of V2. When sample1 632 is active, FET 622 provides a path for node C 610 to discharge in proportion to a photodiode current (I_PD) generated by photodiode 620 in response to incident light 621. In this way, photodiode current I_PD is integrated for a first exposure time when sample1 632 is active, resulting in a corresponding voltage on node C 610. When row select 634 is active, FET 626 provides a path for a first output current from V1 to output outA 612. The first output current is generated by FET 624 in response to the voltage on C 610. When row select 634 is active, the output current at outA 612 is therefore proportional to the integrated intensity of incident light 621 during the first exposure time.
When reset2 660 is active (low), FET 658 provides a path from voltage source V2 to node C 640, causing node C 640 to charge to the potential of V2. When sample2 662 is active, FET 652 provides a path for node C 640 to discharge according to a photodiode current (I_PD) generated by photodiode 620 in response to incident light 621. In this way, photodiode current I_PD is integrated for a second exposure time when sample2 662 is active, resulting in a corresponding voltage on node C 640. When row select 664 is active, FET 656 provides a path for a second output current from V1 to output outB 642. The second output current is generated by FET 654 in response to the voltage on C 640. When row select 664 is active, the output current at outB 642 is therefore proportional to the integrated intensity of incident light 621 during the second exposure time.
Photo-sensitive cell 600 includes independent reset signals reset1 630 and reset2 660, independent sample signals sample1 632 and sample2 662, independent row select signals row select1 634 and row select2 664, and independent output signals outA 612 and outB 642. In one embodiment, column signals 432 of
A given row of instances of photo-sensitive cell 600 may be selected to drive respective outA 612 signals through one set of column signals 432. The row of instances of photo-sensitive cell 600 may also be selected to independently drive respective outB 642 signals through a second, parallel set of column signals 432. In one embodiment, reset1 630 is coupled to reset2 660, and both are asserted together.
Summarizing the operation of photo-sensitive cell 600, two different samples of incident light 621 may be captured and stored independently on node C 610 and node C 640. An output current signal corresponding to the first sample of the two different samples may be coupled to output outA 612 when row select1 634 is active. Similarly, an output current signal corresponding to the second of the two different samples may be coupled to output outB 642 when row select2 664 is active.
Although photo-sensitive cell 600, photo-sensitive cell 602, and photo-sensitive cell 604 are each shown to include two analog sampling circuits 601, persons skilled in the art will recognize that these circuits can be configured to instead include an arbitrary number of analog sampling circuits 601, each able to generate an independent sample. Furthermore, layout area for a typical cell is dominated by photodiode 620, and therefore adding additional analog sampling circuits 601 to a photo-sensitive cell has a relatively modest marginal impact on layout area.
In general, sample1 632 and sample2 662 may be asserted to an active state independently. In certain embodiments, sample1 632 and sample2 662 are asserted to an active state sequentially, with only one analog sampling circuit 601 sourcing current to the photodiode 620 at a time. In other embodiments, sample1 632 and sample2 662 are asserted to an active state simultaneously to generate images that are sampled substantially concurrently, but with each having a different effective exposure time.
When both sample1 632 and sample2 662 are asserted simultaneously, photodiode current I_PD will be divided between discharging node C 610 and node C 640. For example, if sample1 632 and sample2 662 are both initially asserted, then I_PD is split initially between discharging node C 610 and discharging node C 640, each at an initial discharge rate. A short time later, if sample2 662 is unasserted (set to inactive), then C 610 is discharged at a faster rate than the initial discharge rate. In such a scenario, C 640 may be used to capture a color component of a pixel within a first image having a less sensitive exposure (shorter effective exposure time), while C 610 may be used to capture a corresponding color component of a pixel within a second image having a more sensitive exposure (longer effective exposure time). While both of the above color components were exposed according to different effective and actual exposure times, both color components were also captured substantially coincidentally in time, reducing the likelihood of any content change between the first image and the second image.
In one exemplary system, three substantially identical analog sampling circuits 601 are instantiated within a photo-sensitive cell. In a first sampling interval lasting one half of a unit of time, all three analog sampling currents are configured to source current (sample signal active) into the photodiode 620, thereby splitting photodiode current I_PD substantially equally three ways. In a second sampling interval, lasting one unit of time, a first of the three analog sampling circuits 601 is configured to not continue sampling and therefore not source current into the photodiode 620. In a third sampling interval, lasting two units of time, a second of the three analog sampling circuits 601 is configured to not continue sampling and therefore not source current into the photodiode 620.
In this example, the first analog sampling circuit 601 is able to integrate one quarter of the photodiode current multiplied by time as the second analog sampling circuit 601, which was able to integrate one quarter of the photodiode current multiplied by time as the third analog sampling circuit 601. The second analog sampling circuit 601 may be associated with a proper exposure (0 EV), while the first analog sampling circuit 601 is therefore associated with a two-stop under exposure (−2 EV), and the third analog sampling circuit 601 is therefore associated with a two-stop over exposure (+2 EV). In one embodiment, digital photographic system 300 of
These three exposure levels (−2, 0, +2 EV) for images comprising an image stack are suitable candidates for HDR blending techniques, including a variety of conventional and well-known techniques. In certain embodiments, conventional techniques may be implemented to determine exposure parameters, including a mid-range exposure time, for a given scene associated with a proper exposure (0 EV). Continuing the above example, the first sampling interval would implement an exposure time of half the mid-range exposure time. The second sampling interval would implement the mid-range exposure time, and the third sampling interval would implement an exposure time of twice the mid-range exposure time.
In other embodiments, the analog sampling circuits 601 are not substantially identical. For example, one of the analog sampling circuits 601 may include twice or one half the storage capacitance (such as the capacitance associated with node C 610 of
In one embodiment, image sensor 332 comprising pixels 440 fabricated to include two or more instances of analog sampling circuits 601 is configured to sample one or more ambient image and sequentially sample one or more images with strobe illumination.
In one embodiment, column signals 432 are routed vertically between photo-sensitive cells 442 and 443, and between photo-sensitive cells 444 and 445. Row control signals 430 are shown herein as running between photo-sensitive cells 442 and 444, and between photo-sensitive cells 443 and 445. In one embodiment, layout for cells 442, 443, 444, and 445 is reflected substantially symmetrically about an area centroid of pixel 440. In other embodiments, layout for the cells 442, 443, 444, and 445 is instantiated without reflection, or with different reflection than shown here.
A first sample enable signal (S1) enables a first analog sampling circuit comprising a first analog storage plane to integrate a signal from an associated photodiode. A second sample enable signal (S2) enables a second analog sampling circuit comprising a second analog storage place to integrate the signal from the photodiode. In one embodiment, both reset1 630 and reset2 660 correspond to reset signal RST, sample1 632 corresponds to S1, and sample2 662 corresponds to S2. Furthermore, row select1 634 corresponds to RS1 and row select 664 corresponds to RS2. In certain embodiments, RST is asserted briefly during each assertion of S1 and S2 to bias the photodiode prior to sampling the photodiode current. In certain other embodiments, each photodiode is coupled to a FET that is configured to provide a reset bias signal to the photodiode independent of the RST signal. Such biasing may be implemented in
An Out signal depicts an analog signal being driven from an analog sampling circuit 601. The Out signal may represent outA 612, outB 642, or Out 613, depending on a particular selection of analog sampling circuit 601. For example, in an embodiment that implements photo-sensitive cell 602, RS1 and RS2 are asserted mutually exclusively and the Out signal corresponds to Out 613.
A strobe enable signal (STEN) corresponds in time to when a strobe unit is enabled. In one embodiment, camera module generates STEN to correspond in time with S1 being de-asserted at the conclusion of sampling an ambient image (Amb1).
While row select signals (RS1, RS2) are shown in
While various embodiments have been described above with respect to a digital camera 202 and a mobile device 204, any device configured to perform the method 100 of
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
Claims
1. A camera, comprising:
- circuitry configured to: set one or more exposure parameters for an image stack, including specifying exposure time for each of at least two corresponding analog storage planes, wherein each of the at least two corresponding analog storage planes comprises analog sampling circuits that form an image plane within an image sensor of the camera; receive a capture command; initialize a pixel array comprising the at least two corresponding analog storage planes within the image sensor; sample one or more ambient images within the at least two corresponding analog storage planes; determine that a strobe circuit is enabled; and sample one or more strobe images within the at least two corresponding analog storage planes.
2. The camera of claim 1, wherein the image stack comprises one ambient image stored in a first analog storage plane of the at least two corresponding analog storage planes and one strobe image stored in a second analog storage plane of the at least two corresponding analog storage planes.
3. The camera of claim 1, wherein to set the one or more exposure parameters, the circuitry is configured to at least write one or more registers within the image sensor that specifies the exposure time for each of at least two corresponding analog storage plane, or write one or more registers within the image sensor that specifies exposure sensitivity for each of the at least two corresponding analog storage planes, or write one or more registers within the image sensor that specifies the exposure time and the exposure sensitivity for each of the at least two corresponding analog storage planes.
4. The camera of claim 1, wherein the camera is at least one of a digital camera, or a mobile device.
5. The camera of claim 1, wherein to initialize the pixel array, the circuitry is configured to drive voltages on internal nodes of photo-sensitive cells within the at least two corresponding analog storage planes to a reference voltage.
6. The camera of claim 1, wherein to determine that the strobe circuit is enabled, the circuitry is configured to directly enable the strobe circuit.
7. The camera of claim 1, wherein to determine that the strobe circuit is enabled, the circuitry is configured to detect that the strobe circuit has been enabled.
8. The camera of claim 1, wherein the camera is configured to store both the one or more ambient images and the one or more strobe images concurrently within the at least two corresponding analog storage planes.
9. The camera of claim 1, wherein the camera is configured to offload at least one of the one or more ambient images prior to sampling the one or more strobe images within the at least two corresponding analog storage planes.
10. The camera of claim 1, wherein the circuitry is further configured to enable simultaneous integration of a photographic scene for the at least two corresponding analog storage planes.
11. The camera of claim 10, wherein two or more of the analog sampling circuits within the at least two corresponding analog storage planes each integrate a respective image during a sampling interval.
12. The camera of claim 1, wherein the circuitry is further configured to:
- enable integration to proceed during a first sampling interval for at least two different analog storage planes of the at least two corresponding analog storage planes;
- disable integration for at least one first analog storage plane of the at least two different analog storage planes; and
- enable integration to proceed during a second sampling interval for at least one second analog storage plane of the at least two different analog storage planes.
13. The camera of claim 12, wherein the camera is configured to transmit image data corresponding to each of the at least two different analog storage planes to a processing unit.
14. The camera of claim 13, wherein the processing unit is configured to generate the one or more exposure parameters.
15. The camera of claim 1, wherein to sample the one or more ambient images, the circuitry is configured to:
- enable integration of a first signal from photodiode within a first analog sampling circuit of the analog sampling circuits to generate an ambient sample within a first analog storage plane of the at least two corresponding analog storage planes; and
- disable integration of the first signal within the first analog sampling circuit.
16. The camera of claim 15, wherein the circuitry is further configured to reset the photodiode after disabling integration of the first signal on the first analog sampling circuit of the analog sampling circuits.
17. The camera of claim 1, wherein to sample the one or more strobe images, the circuitry is configured to:
- store an ambient sample within a first analog storage plane of the at least two corresponding analog storage planes;
- enable integration of a first signal from photodiode within a first analog sampling circuit of the analog sampling circuits, to generate a first strobe sample within a second analog storage plane of the at least two corresponding analog storage planes,
- disable integration of the first signal on the first analog sampling circuit of the analog sampling circuits,
- wherein the first analog storage plane comprises ambient samples forming a first ambient image and the second analog storage plane comprises strobe samples forming a first strobe image of the one or more strobe images.
18. The camera of claim 1, wherein to sample the one or more ambient images and the one or more strobe images, the circuitry is configured to:
- enable, during a first time interval and a second time interval, integration of first signal from photodiode within a first analog sampling circuit of the analog sampling circuits, to generate a first ambient sample of a first analog storage plan and a second analog sampling circuit of the analog sampling circuits to generate a second ambient sample of a second analog storage plane,
- disable, after the first time interval, integration of the first signal from the photodiode within the first analog sampling circuit of the analog sampling circuits;
- disable, after the second time interval, integration of the first signal within the second analog sampling circuit of the analog sampling circuits;
- determine that the strobe circuit is enabled after the second time interval; and
- enable integration of a second signal on a third analog sampling circuit of the analog sampling circuits, to generate a first strobe sample of a third analog storage plane,
- wherein the first analog storage plane comprises ambient samples forming a first ambient image of the one or more ambient images, the second analog storage plane comprises ambient samples forming a second ambient image of the one or more ambient images, and the third analog storage plane comprises strobe samples forming a first strobe image of the one or more strobe images.
19. A system, comprising:
- a camera, configured to sample a photographic scene;
- a processing unit in communication with the camera and configured to: configure one or more exposure parameters for an image stack, including specifying exposure time for each of at least two corresponding analog storage planes, wherein each of the at least two corresponding analog storage planes comprises analog sampling circuits that form an image plane within an image sensor of the camera; receive a capture command; initialize a pixel array comprising the at least two corresponding analog storage planes within the image sensor; cause the camera to sample one or more ambient images within the at least two corresponding analog storage planes; determine that a strobe circuit is enabled; and cause the camera to sample one or more strobe images within the at least two corresponding analog storage planes.
20. A method, comprising:
- configuring one or more exposure parameters for an image stack, including specifying exposure time for each of at least one corresponding analog storage plane, wherein each of the at least two corresponding analog storage planes comprises analog sampling circuits that form an image plane within an image sensor of a camera;
- receiving a capture command;
- initializing a pixel array comprising the at least two corresponding analog storage planes within the image sensor;
- sampling one or more ambient images within at least two corresponding analog storage planes;
- determining that a strobe circuit is enabled; and
- sampling one or more strobe images within the at least two corresponding analog storage planes.
4873561 | October 10, 1989 | Wen |
5200828 | April 6, 1993 | Jang et al. |
5818977 | October 6, 1998 | Tansley |
5867215 | February 2, 1999 | Kaplan |
6115065 | September 5, 2000 | Yadid-Pecht et al. |
6243430 | June 5, 2001 | Mathe |
6365950 | April 2, 2002 | Sohn |
6498926 | December 24, 2002 | Ciccarelli et al. |
6788338 | September 7, 2004 | Dinev et al. |
7084905 | August 1, 2006 | Nayar et al. |
7098952 | August 29, 2006 | Morris et al. |
7206449 | April 17, 2007 | Raskar et al. |
7256381 | August 14, 2007 | Asaba |
7518645 | April 14, 2009 | Farrier |
7760246 | July 20, 2010 | Dalton et al. |
7999858 | August 16, 2011 | Nayar et al. |
8610789 | December 17, 2013 | Nayar et al. |
8723284 | May 13, 2014 | Hynecek |
8761245 | June 24, 2014 | Puri et al. |
8934029 | January 13, 2015 | Nayar et al. |
8976264 | March 10, 2015 | Rivard et al. |
9083905 | July 14, 2015 | Wan et al. |
9137455 | September 15, 2015 | Rivard et al. |
9154708 | October 6, 2015 | Rivard et al. |
9160936 | October 13, 2015 | Rivard et al. |
9167169 | October 20, 2015 | Rivard et al. |
9179062 | November 3, 2015 | Rivard et al. |
9179085 | November 3, 2015 | Rivard et al. |
9406147 | August 2, 2016 | Rivard et al. |
9531961 | December 27, 2016 | Rivard et al. |
9560269 | January 31, 2017 | Baldwin |
9807322 | October 31, 2017 | Feder et al. |
9819849 | November 14, 2017 | Rivard et al. |
20030015645 | January 23, 2003 | Brickell et al. |
20030142745 | July 31, 2003 | Osawa |
20040252199 | December 16, 2004 | Cheung et al. |
20050088570 | April 28, 2005 | Seo |
20050134723 | June 23, 2005 | Lee et al. |
20060050165 | March 9, 2006 | Amano |
20060181614 | August 17, 2006 | Yen et al. |
20060245014 | November 2, 2006 | Haneda |
20070025714 | February 1, 2007 | Shiraki |
20070030357 | February 8, 2007 | Levien et al. |
20070242900 | October 18, 2007 | Chen et al. |
20070248342 | October 25, 2007 | Tamminen et al. |
20080030592 | February 7, 2008 | Border et al. |
20080151097 | June 26, 2008 | Chen et al. |
20080158398 | July 3, 2008 | Yaffe et al. |
20080192064 | August 14, 2008 | Hong et al. |
20090002475 | January 1, 2009 | Jelley et al. |
20090066782 | March 12, 2009 | Choi et al. |
20090153245 | June 18, 2009 | Lee |
20090295941 | December 3, 2009 | Nakajima et al. |
20090309990 | December 17, 2009 | Levoy et al. |
20100073499 | March 25, 2010 | Gere |
20100118204 | May 13, 2010 | Proca et al. |
20100165178 | July 1, 2010 | Chou et al. |
20100165181 | July 1, 2010 | Murakami et al. |
20100194851 | August 5, 2010 | Pasupaleti et al. |
20100194963 | August 5, 2010 | Terashima |
20100201831 | August 12, 2010 | Weinstein |
20100208099 | August 19, 2010 | Nomura |
20100231747 | September 16, 2010 | Yim |
20100302407 | December 2, 2010 | Ayers et al. |
20110019051 | January 27, 2011 | Yin et al. |
20110090385 | April 21, 2011 | Aoyama et al. |
20110115971 | May 19, 2011 | Furuya et al. |
20110134267 | June 9, 2011 | Ohya |
20110194618 | August 11, 2011 | Gish et al. |
20110242334 | October 6, 2011 | Wilburn et al. |
20110279698 | November 17, 2011 | Yoshikawa |
20110280541 | November 17, 2011 | Lee |
20120002089 | January 5, 2012 | Wang et al. |
20120008011 | January 12, 2012 | Garcia Manchado |
20120033118 | February 9, 2012 | Lee et al. |
20120069213 | March 22, 2012 | Jannard et al. |
20120154627 | June 21, 2012 | Rivard et al. |
20120162465 | June 28, 2012 | Culbert et al. |
20120188392 | July 26, 2012 | Smith |
20120206582 | August 16, 2012 | DiCarlo et al. |
20120242844 | September 27, 2012 | Walker et al. |
20120262600 | October 18, 2012 | Velarde et al. |
20120274806 | November 1, 2012 | Mori |
20120314100 | December 13, 2012 | Frank |
20130010075 | January 10, 2013 | Gallagher et al. |
20130027580 | January 31, 2013 | Olsen et al. |
20130107062 | May 2, 2013 | Okazaki |
20130114894 | May 9, 2013 | Yadav et al. |
20130147979 | June 13, 2013 | McMahon |
20130176458 | July 11, 2013 | Van Dalen et al. |
20130223530 | August 29, 2013 | Demos |
20130271631 | October 17, 2013 | Tatsuzawa et al. |
20130279584 | October 24, 2013 | Demos |
20130301729 | November 14, 2013 | Demos |
20130335596 | December 19, 2013 | Demandolx et al. |
20140009636 | January 9, 2014 | Lee et al. |
20140063301 | March 6, 2014 | Solhusvik |
20140098248 | April 10, 2014 | Okazaki |
20140176757 | June 26, 2014 | Rivard et al. |
20140193088 | July 10, 2014 | Capata et al. |
20140211852 | July 31, 2014 | Demos |
20140244858 | August 28, 2014 | Okazaki |
20140247979 | September 4, 2014 | Roffet et al. |
20140300795 | October 9, 2014 | Bilcu et al. |
20150005637 | January 1, 2015 | Stegman et al. |
20150077581 | March 19, 2015 | Baltz et al. |
20150092852 | April 2, 2015 | Demos |
20150098651 | April 9, 2015 | Rivard et al. |
20150138366 | May 21, 2015 | Keelan et al. |
20150229819 | August 13, 2015 | Rivard et al. |
20160071289 | March 10, 2016 | Kobayashi et al. |
20160142610 | May 19, 2016 | Rivard et al. |
20160150147 | May 26, 2016 | Shioya |
20160248968 | August 25, 2016 | Baldwin |
20170048442 | February 16, 2017 | Cote et al. |
2015123455 | August 2015 | WO |
2015173565 | November 2015 | WO |
- Notice of Allowance from U.S. Appl. No. 13/573,252, dated Oct. 22, 2014.
- Non-Final Office Action from U.S. Appl. No. 13/573,252, dated Jul. 10, 2014.
- Rivard, W. et al., U.S. Appl. No. 14/568,045, filed Dec. 11, 2014.
- Restriction Requirement from U.S. Appl. No. 14/568,045, dated Jan. 15, 2015.
- Rivard, W. et al., U.S. Appl. No. 14/534,068, filed Nov. 5, 2014.
- Non-Final Office Action from U.S. Appl. No. 14/534,068, dated Feb. 17, 2015.
- Feder et al., U.S. Appl. No. 13/999,678, filed Mar. 14, 2014.
- Rivard, W. et al., U.S. Appl. No. 14/534,079, filed Nov. 5, 2014.
- Non-Final Office Action from U.S. Appl. No. 14/534,079, dated Jan. 29, 2015.
- Rivard, W. et al., U.S. Appl. No. 14/534,089, filed Nov. 5, 2014.
- Non-Final Office Action from U.S. Appl. No. 14/534,089, dated Feb. 25, 2015.
- Rivard, W. et al., U.S. Appl. No. 14/535,274, filed Nov. 6, 2014.
- Non-Final Office Action from U.S. Appl. No. 14/535,274, dated Feb. 3, 2015.
- Rivard, W. et al., U.S. Appl. No. 14/535,279, filed Nov. 6, 2014.
- Non-Final Office Action from U.S. Appl. No. 14/535,279, dated Feb. 5, 2015.
- Rivard, W. et al., U.S. Appl. No. 14/535,282, filed Nov. 6, 2014.
- Non-Final Office Action from U.S. Appl. No. 14/535,282, dated Jan. 30, 2015.
- Non-Final Office Action from U.S. Appl. No. 14/536,524, dated Mar. 3, 2015.
- Rivard, W. et al., U.S. Appl. No. 14/536,524, filed Nov. 7, 2014.
- Non-Final Office Action from U.S. Appl. No. 14/568,045, dated Mar. 24, 2015.
- Rivard, W. et al., U.S. Appl. No. 14/702,549, filed May 1, 2015.
- Notice of Allowance from U.S. Appl. No. 14/534,079, dated May 11, 2015.
- Notice of Allowance from U.S. Appl. No. 14/535,274, dated May 26, 2015.
- Notice of Allowance from U.S. Appl. No. 14/534,089, dated Jun. 23, 2015.
- Notice of Allowance from U.S. Appl. No. 14/535,282, dated Jun. 23, 2015.
- Notice of Allowance from U.S. Appl. No. 14/536,524, dated Jun. 29, 2015.
- Notice of Allowance from U.S. Appl. No. 14/534,068, dated Jul. 29, 2015.
- Notice of Allowance from U.S. Appl. No. 14/535,279, dated Aug. 31, 2015.
- Final Office Action from U.S. Appl. No. 14/568,045, dated Sep. 18, 2015.
- Non-Final Office Action from U.S. Appl. No. 13/999,678, dated Aug. 12, 2015.
- International Search Report and Written Opinion from International Application No. PCT/US15/59348, dated Feb. 2, 2016.
- International Search Report and Written Opinion from International Application No. PCT/US15/59097, dated Jan. 4, 2016.
- Non-Final Office Action from U.S. Appl. No. 14/702,549, dated Jan. 25, 2016.
- Final Office Action from U.S. Appl. No. 13/999,678, dated Mar. 28, 2016.
- International Search Report and Written Opinion from International Application No. PCT/US2015/060476, dated Feb. 10, 2016.
- Notice of Allowance from U.S. Appl. No. 14/568,045, dated Apr. 26, 2016.
- International Search Report and Written Opinion from International Application No. PCT/US2015/058895, dated Apr. 11, 2016.
- Notice of Allowance from U.S. Appl. No. 14/568,045, dated Jan. 12, 2016.
- International Search Report and Written Opinion from International Application No. PCT/US2015/059103, dated Dec. 21, 2015.
- Final Office Action from U.S. Appl. No. 14/178,305, dated May 18, 2015.
- Non-Final Office Action from U.S. Appl. No. 14/178,305, dated Aug. 11, 2014.
- Non-Final Office Action from U.S. Appl. No. 14/823,993, dated Jul. 28, 2016.
- International Search Report and Written Opinion from International Application No. PCT/US2015/059105, dated Jul. 26, 2016.
- Notice of Allowance from U.S. Appl. No. 14/702,549, dated Aug. 15, 2016.
- International Search Report and Written Opinion from International Application No. PCT/US2015/058896, dated Aug. 26, 2016.
- International Search Report and Written Opinion from International Application No. PCT/US2015/058891, dated Aug. 26, 2016.
- International Search Report and Written Opinion from International Application No. PCT/US2016/050011, dated Nov. 10, 2016.
- Final Office Action from U.S. Appl. No. 14/823,993, dated Feb. 10, 2017.
- Wan et al., “CMOS Image Sensors With Multi-Bucket Pixels for Computational Photography,” IEEE Journal of Solid-State Circuits, vol. 47, No. 4, Apr. 2012, pp. 1031-1042.
- Notice of Allowance from U.S. Appl. No. 15/201,283, dated Mar. 23, 2017.
- Notice of Allowance from U.S. Appl. No. 14/823,993, dated Oct. 31, 2017.
- Notice of Allowance from U.S. Appl. No. 15/352,510, dated Oct. 17, 2017.
- International Search Report and Written Opinion from PCT Application No. PCT/US17/39946, dated Sep. 25, 2017.
Type: Grant
Filed: Nov 17, 2016
Date of Patent: Jan 2, 2018
Patent Publication Number: 20170070690
Assignee: Duelight LLC (Sunnyvale, CA)
Inventors: Adam Barry Feder (Mountain View, CA), William Guie Rivard (Menlo Park, CA), Brian J. Kindle (Sunnyvale, CA)
Primary Examiner: Mekonnen Dagnew
Application Number: 15/354,935
International Classification: H04N 5/355 (20110101); H04N 5/235 (20060101); H04N 5/3745 (20110101); H04N 5/262 (20060101); H04N 5/265 (20060101); H04N 5/225 (20060101); H04N 5/378 (20110101);