Probe handle

- Angio Dynamics, Inc.
Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description

FIG. 1 is an overall perspective view of a probe handle as seen from the front, top and right side.

FIG. 2 is an enlarged perspective view of the probe handle of FIG. 1.

FIG. 3 is an enlarged right side elevation view of the probe handle of FIG. 1.

FIG. 4 is an enlarged front elevation view of the probe handle of FIG. 1.

FIG. 5 is an enlarged rear elevation view of the probe handle of FIG. 1.

FIG. 6 is an enlarged left side elevation view of the probe handle of FIG. 1.

FIG. 7 is an enlarged top plan view of the probe handle of FIG. 1.

FIG. 8 is an enlarged bottom plan view of the probe handle of FIG. 1.

FIG. 9 is an overall perspective view of a second embodiment of a probe handle as seen from the front, top and right side.

FIG. 10 is an enlarged perspective view of the probe handle of FIG. 9.

FIG. 11 is an enlarged right side elevation view of the probe handle of FIG. 9.

FIG. 12 is an enlarged front elevation view of the probe handle of FIG. 9.

FIG. 13 is an enlarged rear elevation view of the probe handle of FIG. 9.

FIG. 14 is enlarged left side elevation view of the probe handle of FIG. 9.

FIG. 15 is an enlarged top plan view of the probe handle of FIG. 9; and,

FIG. 16 is an enlarged bottom plan view of the probe handle of FIG. 9.

The outer most broken lines immediately adjacent the shaded areas and the claimed areas represent the bounds of the claimed design while all other broken lines are directed to environment, and are for illustrative purposes only; the broken lines form no part of the claimed design.

Claims

The ornamental design for a probe handle, substantially as shown and described.

Referenced Cited
U.S. Patent Documents
1653819 December 1927 Northcott et al.
D191088 August 1961 Anderson
3730238 May 1973 Butler
4016886 April 12, 1977 Doss
4226246 October 7, 1980 Fragnet
4262672 April 21, 1981 Kief
4407943 October 4, 1983 Cole et al.
D294519 March 1, 1988 Hardy, Jr.
4810963 March 7, 1989 Blake-Coleman et al.
4907601 March 13, 1990 Frick
4946793 August 7, 1990 Marshall, III
5019034 May 28, 1991 Weaver et al.
5052391 October 1, 1991 Silberstone et al.
5058605 October 22, 1991 Slovak
5098843 March 24, 1992 Calvin
5134070 July 28, 1992 Casnig
5137517 August 11, 1992 Loney et al.
D329496 September 15, 1992 Wotton
5173158 December 22, 1992 Schmukler
5193537 March 16, 1993 Freeman
5273525 December 28, 1993 Hofmann
5283194 February 1, 1994 Schmukler
5318563 June 7, 1994 Malis et al.
5328451 July 12, 1994 Davis et al.
5389069 February 14, 1995 Weaver
5403311 April 4, 1995 Abele et al.
5425752 June 20, 1995 Vu'Nguyen
5439440 August 8, 1995 Hofmann
5458625 October 17, 1995 Kendall
5533999 July 9, 1996 Hood et al.
5536240 July 16, 1996 Edwards et al.
5575811 November 19, 1996 Reid et al.
5626146 May 6, 1997 Barber et al.
5634899 June 3, 1997 Shapland et al.
5674267 October 7, 1997 Mir et al.
5702359 December 30, 1997 Hofmann
5720921 February 24, 1998 Meserol
5778894 July 14, 1998 Dorogi et al.
5782882 July 21, 1998 Lerman et al.
5800378 September 1, 1998 Edwards et al.
5810762 September 22, 1998 Hofmann
5836897 November 17, 1998 Sakurai et al.
5836905 November 17, 1998 Lemelson et al.
5843026 December 1, 1998 Edwards et al.
5873849 February 23, 1999 Bernard
5919142 July 6, 1999 Boone et al.
5947889 September 7, 1999 Hehrlein
5983131 November 9, 1999 Weaver et al.
5991697 November 23, 1999 Nelson et al.
5999847 December 7, 1999 Elstrom
6009347 December 28, 1999 Hofmann
6010613 January 4, 2000 Walters et al.
6016452 January 18, 2000 Kasevich
6041252 March 21, 2000 Walker et al.
6055453 April 25, 2000 Hofmann et al.
6068650 May 30, 2000 Nanda et al.
6085115 July 4, 2000 Weaver et al.
6090016 July 18, 2000 Goble et al.
6102885 August 15, 2000 Bass
6106521 August 22, 2000 Blewett et al.
6109270 August 29, 2000 Mah et al.
6122599 September 19, 2000 Mehta
6132419 October 17, 2000 Hofmann
6159163 December 12, 2000 Strauss et al.
6208893 March 27, 2001 Hofmann
6210402 April 3, 2001 Olsen et al.
6212433 April 3, 2001 Behl
6216034 April 10, 2001 Hofmann
6219577 April 17, 2001 Brown et al.
D443360 June 5, 2001 Haberland
6241702 June 5, 2001 Lundquist et al.
6261831 July 17, 2001 Agee
6278895 August 21, 2001 Bernard
6300108 October 9, 2001 Rubinsky
6326177 December 4, 2001 Schoenbach et al.
6347247 February 12, 2002 Dev et al.
6349233 February 19, 2002 Adams
6351674 February 26, 2002 Silverstone
6387671 May 14, 2002 Rubinsky et al.
6403348 June 11, 2002 Rubinsky et al.
6470211 October 22, 2002 Ideker et al.
6482619 November 19, 2002 Rubinsky et al.
6493592 December 10, 2002 Leonard et al.
6500173 December 31, 2002 Underwood et al.
6526320 February 25, 2003 Mitchell
6562604 May 13, 2003 Rubinsky et al.
6607529 August 19, 2003 Jones et al.
6611706 August 26, 2003 Avrahami et al.
6613211 September 2, 2003 McCormick et al.
6627421 September 30, 2003 Unger et al.
6653091 November 25, 2003 Dunn et al.
6669691 December 30, 2003 Taimisto
6692493 February 17, 2004 McGovern et al.
6697669 February 24, 2004 Dev et al.
6697670 February 24, 2004 Chornenky et al.
6702808 March 9, 2004 Kreindel
6795728 September 21, 2004 Chornenky et al.
6801804 October 5, 2004 Miller et al.
6865416 March 8, 2005 Dev et al.
6892099 May 10, 2005 Jaafar et al.
6912417 June 28, 2005 Bernard et al.
6927049 August 9, 2005 Rubinsky et al.
6962587 November 8, 2005 Johnson et al.
6972014 December 6, 2005 Eum et al.
6994706 February 7, 2006 Chornenky et al.
7053063 May 30, 2006 Rubinsky et al.
7063698 June 20, 2006 Whayne et al.
7097612 August 29, 2006 Bertolero et al.
7130697 October 31, 2006 Chornenky et al.
7211083 May 1, 2007 Chornenky et al.
D549332 August 21, 2007 Matsumoto et al.
7267676 September 11, 2007 Chornenky et al.
7341558 March 11, 2008 de la Torre et al.
D575399 August 19, 2008 Matsumoto et al.
D575402 August 19, 2008 Sandor
20010044596 November 22, 2001 Jaafar
20020010491 January 24, 2002 Schoenbach
20020055731 May 9, 2002 Atala et al.
20020077676 June 20, 2002 Schroeppel et al.
20020099323 July 25, 2002 Dev et al.
20020138117 September 26, 2002 Son
20020193831 December 19, 2002 Smith, III
20030009110 January 9, 2003 Tu et al.
20030060856 March 27, 2003 Chornenky et al.
20030088199 May 8, 2003 Tu et al.
20030130711 July 10, 2003 Pearson et al.
20030170898 September 11, 2003 Gundersen et al.
20030208200 November 6, 2003 Palanker et al.
20030225360 December 4, 2003 Eppstein et al.
20040019371 January 29, 2004 Jaafar et al.
20040059389 March 25, 2004 Chornenky et al.
20040146877 July 29, 2004 Diss et al.
20040153057 August 5, 2004 Davison
20040243107 December 2, 2004 Mackoviak
20040267189 December 30, 2004 Mavor et al.
20050043726 February 24, 2005 McHale et al.
20050049541 March 3, 2005 Behar et al.
20050165393 July 28, 2005 Eppstein
20050171523 August 4, 2005 Rubinsky et al.
20050171574 August 4, 2005 Rubinsky et al.
20050182462 August 18, 2005 Chornenky et al.
20050261672 November 24, 2005 Deem et al.
20050288730 December 29, 2005 Deem et al.
20060015147 January 19, 2006 Persson et al.
20060025760 February 2, 2006 Podhajsky
20060079883 April 13, 2006 Elmouelhi et al.
20060121610 June 8, 2006 Rubinsky et al.
20060212078 September 21, 2006 Demarais et al.
20060217703 September 28, 2006 Chornenky et al.
20060264752 November 23, 2006 Rubinsky et al.
20070043345 February 22, 2007 Davalos et al.
20070118069 May 24, 2007 Persson et al.
20080052786 February 28, 2008 Lin et al.
20090281477 November 12, 2009 Mikus et al.
20090326570 December 31, 2009 Brown
Foreign Patent Documents
863111 January 1953 DE
4000893 July 1991 DE
0378132 July 1990 EP
0935482 May 2005 EP
9639531 December 1996 WO
0020554 April 2000 WO
0107583 February 2001 WO
0107584 February 2001 WO
0107585 February 2001 WO
0181533 November 2001 WO
04037341 May 2004 WO
Other references
  • Amasha, et al., Quantitative Assessment of Impedance Tomography for Temperature Measurements in Microwave Hyperthermia, Clin. Phys. Physiol. Meas., 1998, Suppl. A, 49-53.
  • Andreason, Electroporation as a Technique for the Transfer of Macromolecules into Mammalian Cell Lines, J. Tiss. Cult. Meth., 15:56-62, 1993.
  • Baker, et al., Calcium-Dependent Exocytosis in Bovine Adrenal Medullary Cells with Leaky Plasma Membranes, Nature, vol. 276, pp. 620-622, 1978.
  • Barber, Electrical Impedance Tomography Applied Potential Tomography, Advances in Biomedical Engineering, Beneken and Thevenin, eds., IOS Press, 1993.
  • Beebe, S.J., et al., Nanosecond pulsed electric field (nsPEF) effects on cells and tissues: apoptosis induction and tumor growth inhibition. PPPS-2001 Pulsed Power Plasma Science 2001, 28th IEEE International Conference on Plasma Science and 13th IEEE International Pulsed Power Conference, Digest of Technical Papers (Cat. No. 01CH37251). IEEE, Part vol. I, 2001, pp. 211-215, vol. 1, Piscataway, NJ, USA.
  • Blad, et al., Impedance Spectra of Tumour Tissue in Comparison with Normal Tissue; a Possible Clinical Application for Electrical Impedance Tomography, Physiol. Meas. 17 (1996) A105-A115.
  • Brown, S.G., Phototherapy of tumors. World J. Surgery, 1983. 7: p. 700-9.
  • BPH Management Strategies: Improving Patient Satisfaction, Urology Times, May 2001, vol. 29, Supplement 1.
  • Brown, et al., Blood Flow Imaging Using Electrical Impedance Tomography, Clin. Phys. Physiol. Meas., 1992, vol. 13, Suppl. A, 175-179.
  • Chandrasekar, et al., Transurethral Needle Ablation of the Prostate (Tuna)—a Propsective Study, Six Year Follow Up, (Abstract), Presented at 2001 National Meeting, Anaheim, CA, Jun. 5, 2001.
  • Coates, C.W.,et al., “The Electrical Discharge of the Electric Eel, Electrophorous Electricus,” Zoologica, 1937, 22(1), pp. 1-32.
  • Cook, et al., ACT3: A High-Speed, High-Precision Electrical Impedance Tomograph, IEEE Transactions on Biomedical Engineering, vol. 41, No. 8, Aug. 1994.
  • Cowley, Good News for Boomers, Newsweek, Dec. 30, 1996/Jan. 6, 1997.
  • Cox, et al., Surgical Treatment of Atrial Fibrillation: A Review, Europace (2004) 5, S20-S-29.
  • Crowley, Electrical Breakdown of Biomolecular Lipid Membranes as an Electromechanical Instability, Biophysical Journal, vol. 13, pp. 711-724, 1973.
  • Davalos, et al., Tissue Ablation with Irreversible Electroporation, Annals of Biomedical Engineering, vol. 33, No. 2, Feb. 2005.
  • Davalos, et al ., Theoretical Analysis of the Thermal Effects During In Vivo Tissue Electroporation, Bioelectrochemistry, vol. 61, pp. 99-107, 2003.
  • Davalos, et al., A Feasibility Study for Electrical Impedance Tomography as a Means to Monitor T issue Electroporation for Molecular Medicine, IEEE Transactions on Biomedical Engineering, vol. 49, No. 4, Apr. 2002.
  • Davalos, Real-Time Imaging for Molecular Medicine through Electrical Impedance Tomography of Electroporation, Dissertation for Ph.D. in Engineering-Mechanical Engineering, Graduate Division of University of California, Berkeley, 2002.
  • Dean, Nonviral Gene Transfer to Skeletal, Smooth, and Cardiac Muscle in Living Animals, Am J. Physiol Cell Physiol 289: 233-245, 2005.
  • Dev, et al., Sustained Local Delivery of Heparin to the Rabbit Arterial Wall with an Electroporation Catheter, Catheterization and Cardiovascular Diagnosis, Nov. 1998, vol. 45, No. 3, pp. 337-343.
  • Dev, et al., Medical Applications of Electroporation, IEEE Transactions of Plasma Science, vol. 28, No. 1, pp. 206-223, Feb. 2000.
  • Duraiswami, et al., Boundary Element Techniques for Efficient 2-D and 3-D Electrical Impedance Tomography, Chemical Engineering Science, vol. 52, No. 13, pp. 2185-2196, 1997.
  • Duraiswami, et al., Efficient 2D and 3D Electrical Impedance Tomography Using Dual Reciprocity Boundary Element Techniques, Engineering Analysis with Boundary Elements 22, (1998) 13-31.
  • Duraiswami, et al., Solution of Electrical Impedance Tomography Equations Using Boundary Element Methods, Boundary Element Technology XII, 1997, pp. 226-237.
  • Edd, J., et al., In-Vivo Results of a New Focal Tissue Ablation Technique: Irreversible Electroporaton, IEEE Trans. Biomed. Eng. 53 (2006) p. 1409-1415.
  • Erez, et al., Controlled Destruction and Temperature Distributions in Biological Tissues Subjected to Monoactive Electrocoagulation, Transactions of the ASME: Journal of Mechanical Design, vol. 102, Feb. 1980.
  • Foster, R.S., et al., High-intensity focused ultrasound in the treatment of prostatic disease. Eur. Urol., 1993. 23: 44-7).
  • Fox, et al., Sampling Conductivity Images via MCMC, Mathematics Department, Auckland University, New Zealand, May 1997.
  • Gauger, et al., A Study of Dielectric Membrane Breakdown in the Fucus Egg, J. Membrane Biol., vol. 48, No. 3, pp. 249-264, 1979.
  • Gehl, et al., In Vivo Electroporation of Skeletal Muscle: Threshold, Efficacy and Relation to Electric Field Distribution, Biochimica et Biphysica Acta 1428, 1999, pp. 233-240.
  • Gençer, et al., Electrical Impedance Tomography: Induced-Current Imaging Achieved with a Multiple Coil System, IEEE Transactions on Biomedical Engineering, vol. 43, No. 2, Feb. 1996.
  • Gilbert, et al., Novel Electrode Designs for Electrochemotherapy, Biochimica et Biophysica Acta 1334, 1997, pp. 9-14.
  • Gilbert, et al., The Use of Ultrasound Imaging for Monitoring Cryosurgery, Proceedings 6th Annual Conference, IEEE Engineering in Medicine and Biology, 107-111, 1984.
  • Glidewell, et al., The Use of Magnetic Resonance Imaging Data and the Inclusion of Anisotropic Regions in Electrical Impedance Tomography, Biomed, Sci. Instrum. 1993; 29: 251-7.
  • Gothelf, et al., Electrochemotherapy: Results of Cancer Treatment Using Enhanced Delivery of Bleomycin by Electroporation, Cancer Treatment Reviews 2003: 29: 371-387.
  • Griffiths, et al., A Dual-Frequency Electrical Impedance Tomography System, Phys. Med. Biol., 1989, vol. 34, No. 10, pp. 1465-1476.
  • Griffiths, The Importance of Phase Measurement in Electrical Impedance Tomography, Phys. Med. Biol., 1987, vol. 32, No. 11, pp. 1435-1444.
  • Griffiths, Tissue Spectroscopy with Electrical Impedance Tomography: Computer Simulations, IEEE Transactions on Biomedical Engineering, vol. 42, No. 9, Sep. 1995.
  • Gumerov, et al., The Dipole Approximation Method and Its Coupling with the Regular Boundary Element Method for Efficient Electrical Impedance Tomography, Boundary Element Technology XIII, 1999.
  • Hapala, Breaking the Barrier: Methods for Reversible Permeabilization of Cellular Membranes, Critical Reviews in Biotechnology, 17(2): 105-122, 1997.
  • Heller, et al., Clinical Applications of Electrochemotherapy, Advanced Drug Delivery Reviews, vol. 35, pp. 119-129, 1999.
  • Ho, et al., Electroporation of Cell Membranes: A Review, Critical Reviews in Biotechnology, 16(4): 349-362, 1996.
  • Holder, et al., Assessment and Calibration of a Low-Frequency System for Electrical Impedance Tomography (EIT), Optimized for Use in Imaging Brain Function in Ambulant Human Subjects, Annals of the New York Academy of Science, vol. 873, Issue 1, Electrical BI, pp. 512-519, 1999.
  • Huang, et al., Micro-Electroporation: Improving the Efficiency and Understanding of Electrical Permeabilization of Cells, Biomedical Microdevices, vol. 2, pp. 145-150, 1999.
  • Hughes, et al., An Analysis of Studies Comparing Electrical Impedance Tomography with X-Ray Videofluoroscopy in the Assessment of Swallowing, Physiol. Meas. 15, 1994, pp. A199-A209.
  • Issa, et al., The Tuna Procedure for BPH: Review of the Technology: The Tuna Procedure for BPH: Basic Procedure and Clinical Results, Reprinted from Infections in Urology, Jul./Aug. 1998 and Sep./Oct. 1998.
  • Ivanu{hacek over (s)}a, et al., MRI Macromolecular Contrast Agents as Indicators of Changed Tumor Blood Flow, Radiol. Oncol. 2001; 35(2): 139-47.
  • Jaroszeski, et al., In Vivo Gene Delivery by Electroporation, Advanced Drug Delivery Review, vol. 35, pp. 131-137, 1999.
  • Kinosita, et al., Hemolysis of Human Erythrocytes by a Transient Electric Field, Proc. Natl. Acad. Sci. USA, vol. 74, No. 5, pp. 1923-1927, 1977.
  • Liu, et al., Measurement of Pharyngeal Transit Time by Electrical Impedance Tomography, Clin. Phys. Physiol. Meas., 1992, vol. 13, Suppl. A, pp. 197-200.
  • Lundqvist, et al., Altering the Biochemical State of Individual Cultured Cells and Organelles with Ultramicroelectrodes, Proc. Natl. Acad. Sci. USA, vol. 95, pp. 10356-10360, Sep. 1998.
  • Lurquin, Gene Transfer by Electroporation, Molecular Biotechnology, vol. 7, 1997.
  • Lynn, et al., A New Method for the Generation and Use of Focused Ultrasound in Experimental Biology, The Journal of General Physiology, vol. 26, 179-193, 1942.
  • Miklav{hacek over (c)}i{hacek over (c)}, et al., A Validated Model of an in Vivo Electric Field Distribution in Tissues for Electrochemotherapy and for DNA Electrotransfer for Gene Therapy, Biochimica et Biophysica Acta 1523 (2000), pp. 73-83.
  • Miklav{hacek over (c)}i{hacek over (c)}, et al., The Importance of Electric Field Distribution for Effective in Vivo Electroporation of Tissues, Biophysical Journal, vol. 74, May 1998, pp. 2152-2158.
  • Miller, L., et al., Cancer cells ablation with irreversible electroporation, Technology in Cancer Research and Treatment 4 (2005) 699-706.
  • Mir, Therapeutic Perspectives of In Vivo Cell Electropermeabilization, Bioelectrochemistry, vol. 53, pp. 1-10, 2000.
  • Mir, L.M., et al., Electric Pulse-Mediated Gene Delivery to Various Animal Tissues, in Advances in Genetics, Academic Press, 2005, p. 83-114.
  • Mir, L.M. And Orlowski, S., The basis of electrochemotherapy, in Electrochemotherapy, electrogenetherapy, and transdermal drug delivery: electrically mediated delivery of molecules to cells, M.J. Jaroszeski, R. Heller, R. Gilbert, Editors, 2000, Humana Press, p. 99-118.
  • Mir, et al., Effective Treatment of Cutaneous and Subcutaneous Malignant Tumours by Electrochemotherapy, British Journal of Cancer, vol. 77, No. 12, pp. 2336-2342, 1998.
  • Mir, et al., Electrochemotherapy Potentiation of Antitumour Effect of Bleomycin by Local Electric Pulses, European Journal of Cancer, vol. 27, No. 1, pp. 68-72, 1991.
  • Mir, et al., Electrochemotherapy, a Novel Antitumor Treatment: First Clinical Trial, C.R. Acad. Sci. Paris, Ser. III, vol. 313, pp. 613-618, 1991.
  • Narayan, et al., Establishment and Characterization of a Human Primary Prostatic Adenocarcinoma Cell Line (ND-1), The Journal of Urology, Vol. 148, 1600-1604, Nov. 1992.
  • Naslund, Michael J., Transurethral Needle Ablation of the Prostate, Urology, vol. 50, No. 2, Aug. 1997.
  • Naslund, Cost-Effectiveness of Minimally Invasive Treatments and Transurethral Resection (TURP) in Benign Prostatic Hyperplasia (BPH), (Abstract), Presented at 2001 AUA National Meeting,, Anaheim, CA, Jun. 5, 2001.
  • Neumann, et al., Gene Transfer into Mouse Lyoma Cells by Electroporation in High Electric Fields, J. Embo., vol. 1, No. 7, pp. 841-845, 1982.
  • Neumann, et al., Permeability Changes Induced by Electric Impulses in Vesicular Membranes, J. Membrane Biol., vol. 10, pp. 279-290, 1972.
  • Okino, et al., Effects of High-Voltage Electrical Impulse and an Anticancer Drug on In Vivo Growing Tumors, Japanese Journal of Cancer Research, vol. 78, pp. 1319-1321, 1987.
  • Onik, et al., Sonographic Monitoring of Hepatic Cryosurgery in an Experimental Animal Model, AJR American J. of Roentgenology, vol. 144, pp. 1043-1047, May 1985.
  • Onik, et al., Ultrasonic Characteristics of Frozen Liver, Cryobiology, vol. 21, pp. 321-328, 1984.
  • Organ, L.W., Electrophysiological principles of radiofrequency lesion making, Apply. Neurophysiol., 1976. 39: p. 69-76.
  • Piñero, et al., Apoptotic and Necrotic Cell Death Are Both Induced by Electroporation in HL60 Human Promyeloid Leukaemia Cells, Apoptosis, vol. 2, No. 3, 330-336, Aug. 1997.
  • Precision Office Tuna System, When Patient Satisfaction is Your Goal.
  • Rols, M.P., et al., Highly Efficient Transfection of Mammalian Cells by Electric Field Pulses: Application to Large Volumes of Cell Culture by Using a Flow System, Eur. J. Biochem. 1992, 206, pp. 115-121.
  • Rubinsky, B., ed, Cryosurgery. Annu Rev. Biomed. Eng. vol. 2 2000. 157-187.
  • Schmukler, Impedance Spectroscopy of Biological Cells, downloaded from IEEE Xplore website.
  • Sersa, et al., Reduced Blood Flow and Oxygenation in SA-1 Tumours after Electrochemotherapy with Cisplatin, British Journal of Cancer, 87, 1047-1054, 2002.
  • Sersa, et al., Tumour Blood Flow Modifying Effects of Electrochemotherapy: a Potential Vascular Targeted Mechanism, Radiol. Oncol., 37(1): 43-8, 2003.
  • Sharma, et al., Poloxamer 188 Decreases Susceptibility of Artificial Lipid Membranes to Electroporation, Biophysical Journal, vol. 71, No. 6, pp. 3229-3241, Dec. 1996.
  • Shiina, S., et al, Percutaneous ethanol injection therapy for hepatocellular carcinoma: results in 146 patients. AJR, 1993, 160: p. 1023-8.
  • Thompson, et al., To determine whether the temperature of 2% lignocaine gel affects the initial discomfort which may be associated with its instillation into the male urethra, BJU International (1999), 84, 1035-1037.
  • Tuna—Suggested Local Anesthesia Guidelines.
  • Vidamed, Inc., Transurethral Needle Ablation (Tuna): Highlights from Worldwide Clinical Studies, Vidamed's Office Tuna System.
  • Weaver, Electroporation: A General Phenomenon for Manipulating Cells and Tissues, Journal of Cellular Biochemistry, 51: 426-435, 1993.
  • Weaver, et al., Theory of Electroporation: A Review, Bioelectrochemistry and Bioenergetics, vol. 41, pp. 136-160, 1996.
  • Zimmermann, et al., Dielectric Breakdown of Cell Membranes, Biophysical Journal, vol. 14, No. 11, pp. 881-899, 1974.
  • Zlotta, et al., Possible Mechanisms of Action of Transurethral Needle Ablation of the Prostate on Benign Prostatic Hyperplasia Symptoms: a Neurohistochemical Study, Reprinted from Journal of Urology, vol. 157, No. 3, Mar. 1997, pp. 894-899.
  • Zlotta, et al., Long-Term Evaluation of Transurethral Needle Ablation of the Prostate (Tuna) for Treatment of Benign Prostatic Hyperplasia (BPH): Clinical Outcome After 5 Years. (Abstract) Presented at 2001 AUA National Meeting, Anaheim, CA—Jun. 5, 2001.
Patent History
Patent number: D630321
Type: Grant
Filed: Jun 10, 2009
Date of Patent: Jan 4, 2011
Assignee: Angio Dynamics, Inc. (Latham, NY)
Inventor: William C. Hamilton, Jr. (Queensbury, NY)
Primary Examiner: Bridget L Eland
Attorney: Tara L. Custer
Application Number: 29/338,391
Classifications