Adjustable headpiece with anatomical markers

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description

This invention was made with government support under 5R44NS080632 awarded by the National Institute of Neurological Disorders and Stroke (NINDS) of the National Institute of Health (NIH). The government has certain rights in the invention.

FIG. 1 illustrates a front side perspective view of an adjustable headpiece with anatomical markers in accordance with the present invention;

FIG. 2 illustrates a back side perspective view of the adjustable headpiece with anatomical markers of FIG. 1;

FIG. 3 illustrates a front side view of the adjustable headpiece with anatomical markers of FIG. 1;

FIG. 4 illustrates a back side view of the adjustable headpiece with anatomical markers of FIG. 1;

FIG. 5 illustrates a left side view of the adjustable headpiece with anatomical markers of FIG. 1;

FIG. 6 illustrates a right side view of the adjustable headpiece with anatomical markers of FIG. 1;

FIG. 7 illustrates a top side view of the adjustable headpiece with anatomical markers of FIG. 1; and,

FIG. 8 illustrates a bottom side view of the adjustable headpiece with anatomical markers of FIG. 1.

The broken lines in the drawings illustrate portions of the adjustable headpiece with anatomical markers that form no part of the claimed design.

Claims

The ornamental design for an adjustable headpiece with anatomical markers, as shown and described.

Referenced Cited
U.S. Patent Documents
2830578 April 1958 Degroff et al.
2838672 June 1958 Leah et al.
3285242 November 1966 Wallace
D209116 October 1967 Treutelaar
3464416 September 1969 Williams
3735756 May 1973 Richards et al.
3822708 July 1974 Zilber
4305402 December 15, 1981 Katims
4503863 March 12, 1985 Katims
4535785 August 20, 1985 van den Honert et al.
4611596 September 16, 1986 Wasserman
4641633 February 10, 1987 Delgado
4672951 June 16, 1987 Welch
4709700 December 1, 1987 Hyrman
4723536 February 9, 1988 Rauscher et al.
4759377 July 26, 1988 Dykstra
4805636 February 21, 1989 Barry et al.
4889526 December 26, 1989 Rauscher et al.
4923437 May 8, 1990 Gordon
4989605 February 5, 1991 Rossen
5014699 May 14, 1991 Pollack et al.
5061234 October 29, 1991 Chaney
5113859 May 19, 1992 Funke
5277694 January 11, 1994 Leysieffer et al.
5300093 April 5, 1994 Koestner et al.
5476438 December 19, 1995 Edrich et al.
5479934 January 2, 1996 Imran
5545124 August 13, 1996 Krause et al.
5551953 September 3, 1996 Lattin et al.
5569591 October 29, 1996 Kell et al.
5575761 November 19, 1996 Hajianpour
5582586 December 10, 1996 Tachibana et al.
5713922 February 3, 1998 King
5738625 April 14, 1998 Gluck
5776170 July 7, 1998 MacDonald et al.
5776171 July 7, 1998 Peckham et al.
D398403 September 15, 1998 Bishop
5893883 April 13, 1999 Torgerson et al.
5895416 April 20, 1999 Barreras, Sr. et al.
5925070 July 20, 1999 King et al.
5975085 November 2, 1999 Rise
6021348 February 1, 2000 James
6035236 March 7, 2000 Jarding et al.
6066084 May 23, 2000 Edrich et al.
6066163 May 23, 2000 John
6081744 June 27, 2000 Loos
6091992 July 18, 2000 Bourgeois et al.
6094598 July 25, 2000 Elsberry et al.
6102875 August 15, 2000 Jones
6110080 August 29, 2000 Niv
6128537 October 3, 2000 Rise
6161030 December 12, 2000 Levendowski
6161048 December 12, 2000 Sluijter et al.
6169403 January 2, 2001 Hebrank et al.
6205356 March 20, 2001 Holcomb
D441111 April 24, 2001 Van Der Bel
6221908 April 24, 2001 Kilgard et al.
D441886 May 8, 2001 Beck
6231527 May 15, 2001 Sol
6231604 May 15, 2001 von Ilberg
6234953 May 22, 2001 Thomas et al.
6275735 August 14, 2001 Jarding et al.
6275737 August 14, 2001 Mann
6330476 December 11, 2001 Ben-Haim et al.
6375666 April 23, 2002 Mische
6390995 May 21, 2002 Ogden et al.
6393325 May 21, 2002 Mann et al.
6408211 June 18, 2002 Powell
6432070 August 13, 2002 Talish et al.
6463328 October 8, 2002 John
6468274 October 22, 2002 Alleyne et al.
6491039 December 10, 2002 Dobak, III
6520903 February 18, 2003 Yamashiro
6520911 February 18, 2003 Wen
6535767 March 18, 2003 Kronberg
6536440 March 25, 2003 Dawson
6546290 April 8, 2003 Shloznikov
6567702 May 20, 2003 Nekhendzy et al.
6584357 June 24, 2003 Dawson
6591138 July 8, 2003 Fischell et al.
6615080 September 2, 2003 Unsworth et al.
6645144 November 11, 2003 Wen et al.
6654642 November 25, 2003 North et al.
6681131 January 20, 2004 Kandori et al.
6685729 February 3, 2004 Gonzalez
6692490 February 17, 2004 Edwards
6721603 April 13, 2004 Zabara et al.
6729337 May 4, 2004 Dawson
6764498 July 20, 2004 Mische
6824515 November 30, 2004 Suorsa et al.
6836685 December 28, 2004 Fitz
6858000 February 22, 2005 Schukin et al.
6866678 March 15, 2005 Shenderova et al.
6871099 March 22, 2005 Whitehurst et al.
6887239 May 3, 2005 Elstrom et al.
6889085 May 3, 2005 Dawson
6921413 July 26, 2005 Mahadevan-Jansen et al.
6934580 August 23, 2005 Osorio et al.
6937906 August 30, 2005 Terry et al.
6941171 September 6, 2005 Mann et al.
6964643 November 15, 2005 Hovland et al.
6970744 November 29, 2005 Shelchuk
6976998 December 20, 2005 Rizzo et al.
7002790 February 21, 2006 Hossick-Schott et al.
7003352 February 21, 2006 Whitehurst
7013177 March 14, 2006 Whitehurst et al.
7058447 June 6, 2006 Hill et al.
7104947 September 12, 2006 Riehl
7120497 October 10, 2006 Ben-Haim et al.
7146210 December 5, 2006 Palti
7173130 February 6, 2007 Tsien et al.
7283861 October 16, 2007 Bystritsky
D630766 January 11, 2011 Harbin
7894903 February 22, 2011 John
8197409 June 12, 2012 Foley et al.
8718758 May 6, 2014 Wagner et al.
8929979 January 6, 2015 Wagner et al.
D750264 February 23, 2016 Guarraia
D750794 March 1, 2016 Guarraia
20010051774 December 13, 2001 Littrup et al.
20040131998 July 8, 2004 Marom et al.
20050003380 January 6, 2005 Cohen et al.
20050043726 February 24, 2005 McHale et al.
20050043762 February 24, 2005 Echt et al.
20050202489 September 15, 2005 Cho et al.
20060004422 January 5, 2006 De Ridder
20060017749 January 26, 2006 McIntyre et al.
20060247104 November 2, 2006 Grabiner et al.
20060257893 November 16, 2006 Takahashi et al.
20070060974 March 15, 2007 Lozano
20070156180 July 5, 2007 Jaax et al.
20070299370 December 27, 2007 Bystritsky
20080039895 February 14, 2008 Fowler et al.
20080046053 February 21, 2008 Wagner et al.
20080077199 March 27, 2008 Shefi
20080124726 May 29, 2008 Monforte
20080228110 September 18, 2008 Berme
20090018599 January 15, 2009 Hastings et al.
20090240170 September 24, 2009 Rowley et al.
20100070006 March 18, 2010 Wagner et al.
20100125190 May 20, 2010 Fadem
20100268287 October 21, 2010 Celnik
20110245734 October 6, 2011 Wagner et al.
20110275927 November 10, 2011 Wagner et al.
20120143020 June 7, 2012 Bordoley
20120289869 November 15, 2012 Tyler
20140249385 September 4, 2014 Wada
20150112153 April 23, 2015 Nahum
20150133718 May 14, 2015 Schneider
20150257674 September 17, 2015 Jordan
20150282760 October 8, 2015 Badower
Foreign Patent Documents
2006/027757 March 2006 WO
2007/149811 December 2007 WO
2010/009141 January 2010 WO
2010/017392 February 2010 WO
2012/101093 August 2012 WO
2013/054257 April 2013 WO
Other references
  • Advanced Development for Defense Science and Technology, Apr. 5, 2010, 93 pages.
  • Allen, E.A., et al., Transcranial magnetic stimulation elicits coupled neural and hemodynamic consequences. Science, 2007. 317(5846): p. 1918-21.
  • Aydin-Abidin, S., et al., Effects of repetitive TMS on visually evoked potentials and EEG in the anesthetized cat: dependence on stimulus frequency and train duration. J Physiol, 2006:443-455.
  • Benabid, A.L., et al., Deep brain stimulation of the corpus luysi (subthalamic nucleus) and other targets in Parkinson's disease. Extension to new indications such as dystonia and epilepsy. J Neurol, 2001. 248 Suppl 3: p. III37-47.
  • Bindman LJ, L.O., Redfearn JW. , Long-lasting changes in the level of the electrical activity of the cerebral cortex produced by polarizing currents. Nature 1962. 196:584-85.
  • Bindman, L.J., O.C. Lippold, and J.W. Redfearn, The Action of Brief Polarizing Currents on the Cerebral Cortex of the Rat (1) During Current Flow and (2) in the Production of Long-Lasting after-Effects. J Physiol, 1964. 172:369-82.
  • Bostock, H., The strength-duration relationship for excitation of myelinated nerve: computed dependence on membrane parameters. J Physiol, 1983. 341: p. 59-74.
  • Boyden, E.S., et al., Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci, 2005. 8(9):1263-8.
  • Brice, J. and L. McLellan, Suppression of intention tremor by contingent deep-brain stimulation. Lancet, 1980. 1(8180):1221-2.
  • Britten, K.H. and R.J. van Wezel, Electrical microstimulation of cortical area MST biases heading perception in monkeys. Nat Neurosci, 1998. 1(1):59-63.
  • Brown, J.A., et al., Motor cortex stimulation for the enhancement of recovery from stroke: a prospective, multicenter safety study. Neurosurgery, 2006. 58(3): p. 464-73.
  • Butovas, S. and C. Schwarz, Spatiotemporal effects of microstimulation in rat neocortex: a parametric study using multielectrode recordings. J Neurophysiol, 2003. 90(5):3024-39.
  • Butson CR, McIntyre CC (2005) Tissue and electrode capacitance reduce neural activation volumes during deep brain stimulation. Clin Neurophysiol 116:2490-2500.
  • Butson, C.R. and C.C. McIntyre, Role of electrode design on the volume of tissue activated during deep brain stimulation. J Neural Eng, 2006. 3(1): p. 1-8.
  • Butson, C.R. And C.C. McIntyre. Deep brain Stimulation of the the subthalamic nucleus: model-based analysis of the effects of electrode capacitance on the volume of activation. in 2nd International IEEE EMBS Conference on Neural Engineerin. 2005. Arlington, VA: IEEE.
  • Carbunaru, R. and D.M. Durand, Toroidal coil models for transcutaneous magnetic stimulation of nerves. IEEE Trans Biomed Eng, 2001. 48(4):434-41.
  • Chew, W.C. and P.N. Sen, Dielectric enhancement due to an electrochemical double layer: thin double layer approximation. J. Chem. Phys., 1982. 77:4683.
  • Chew, W.C., 1983, Dielectric enhancement and electrophoresis due to electrochmical double layer: A uniform approximation. J Chem Phys. 80(9):4541-4552.
  • Clement, G.T. and K. Hynynen, A non-invasive method for focusing ultrasound through the human skull. Phys Med Biol, 2002. 47(8):1219-36.
  • Clement, G.T., et al., A magnetic resonance imaging-compatible, large-scale array for trans-skull ultrasound surgery and therapy. J Ultrasound Med, 2005. 24(8):1117-25.
  • Clement, G.T., Perspectives in clinical uses of high-intensity focused ultrasound. Ultrasonics, 2004. 42(10):1087-93.
  • Cohen, D. and B.N. Cuffin, Developing a more focal magnetic stimulator. Part 1: some basic principles. Journal of Clinical Neurophysiology, 1991. 8:102-111.
  • Cohen, L.G., et al., Effects of coil design on delivery of focal magnetic stimulation. Technical considerations. Electroencephalogr Clin Neurophysiol, 1990. 75(4):350-7.
  • Cohen, M.R. and W.T. Newsome, What electrical microstimulation has revealed about the neural basis of cognition. Curr Opin Neurobiol, 2004. 14(2):169-77.
  • Connor, C.W. and K. Hynynen, Patterns of Thermal Deposition in the Skull During Transcranial Focused Ultrasound Surgery. IEEE Trans Biomed Eng, 2004. 51(10):1693-1706.
  • Connor, C.W., G.T. Clement, and K. Hynynen, A unified model for the speed of sound in cranial bone based on genetic algorithm optimization. Phys Med Biol, 2002. 47(22):3925-44.
  • Cramer, S.C., et al., Use of functional MRI to guide decisions in a clinical stroke trial. Stroke, 2005. 36(5):e50-2.
  • Deuschl, G., et al., Deep brain stimulation: postoperative issues. Mov Disord, 2006. 21 Suppl 14:S219-37.
  • Di Lazzaro, V., et al., The physiological basis of transcranial motor cortex stimulation in conscious humans. Clin Neurophysiol, 2004. 115(2):255-66.
  • Diamond, A. and J. Jankovic, The effect of deep brain stimulation on quality of life in movement disorders. J Neurol Neurosurg Psychiatry, 2005. 76(9):1188-93.
  • Diokno, A.C., P.B. Leu, and D.B. Konstandt, A simplified method of implanting a neuromodulator device. J Urol, 2003. 169(4):1466-9.
  • Dissado, L.A., A fractal interpertation of the dielectric response of animal tissues. Phys. Med. Biol., 1990. 35(11):1487-1503.
  • Ditterich, J., M.E. Mazurek, and M.N. Shadlen, Microstimulation of visual cortex affects the speed of perceptual decisions. Nat Neurosci, 2003. 6(8):891-8.
  • Donald I. McRee, Howard Wachtel, Pulse Microwave Effects on Nerve Vitality, Radiation Research, vol. 91, No. 1, (1982):212-218.
  • Duck, F.A., Medical and non-medical protection standards for ultrasound and infrasound. Prog Biophys Mol Biol, 2007. 93(1-3):176-91.
  • Durand, D. and M. Bikson, Suppression and control of epileptiform activity by electrical stimulation: a review. Proceedings of the IEEE, 2001. 89(7):1065-1082.
  • Eaton, H., Electric field induced in a spherical volume conductor from arbitrary coils: applications to magnetic stimulation and MEG. Medic Biol Eng Comput, 1992:433-440.
  • Esselle, K. and M. Stuchly, Neural stimulation with magnetic fields: analysis of induced electrical fields. IEEE Transactions on Biomedical Engineering, 1992. 39:693-700.
  • Extended European Search Report for Application No. 12826175.7 dated Mar. 9, 2015 (6 pages).
  • Extended Supplementary European Search Report for Application No./Patent No. 12752660.6 dated Jul. 9, 2014 (6 pages).
  • Fields, J.A., et al., Neuropsychological and quality of life outcomes 12 months after unilateral thalamic stimulation for essential tremor. J Neurol Neurosurg Psychiatry, 2003. 74(3):305-11.
  • Fixman, M., Charged macromolecules in external fields. I. The sphere. J Chem Phys, 1980. 72(9):5177-5186.
  • Fixman, M., Thin double layer approximation for electrophoresis and dielectric respons. J Chem Phys, 1982. 78(3):1483-1492.
  • FralexTherapeutics, Fralex Provides Update on Relief Trial. 2008: Toronto, (Downloaded from the Internet May 25 , 2013).
  • Fregni, F. and A. Pascual-Leone, Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS. Nat Clin Pract Neurol, 2007. 3(7):383-93.
  • Fry WJ, W.V., Tucker D, Fry FJ, Physical factors involved in ultrasonically induced changes in living systems: I. Identification of non-temperature effects. J Acoust Soc Am 1950. 22:867-876.
  • Fry, E.J., An ultrasonic projector design for a wide range of research applications. Rev Sci Instrum, 1950. 21(11):940-1.
  • Fry, W. J., Electrical Stimulation of Brain Localized Without Probes—Theoretical Analysis of a Proposed Method, J Acoust Soc AM 44(4):919-31 (1968).
  • Fry, W.J., Use of intense ultrasound in neurological research. Am J Phys Med, 1958. 37(3):143-7.
  • Gabriel, C., S. Gabriel, and E. Corthout, The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol, 1996. 41(11):2231-49.
  • Thomas, A.W., D.J. Drost, and F.S. Prato, Human subjects exposed to a specific pulsed (200 microT) magnetic field: effects on normal standing balance. Neurosci Lett, 2001. 297(2):121-4.
  • Tofts, P.S., The distribution of induced currents in magnetic stimulation of the nervous system. Physical Medicine and Biology, 1990. 35:1119-1128.
  • Tranchina, D. and C. Nicholson, A model for the polarization of neurons by extrinsically applied electric fields. Biophys J, 1986. 50(6):1139-56.
  • Traub RD, (1977), Motorneurons of different geometry and the size principle. Biol Cybern 25:163-176.
  • Troster, A.I., et al., Neuropsychological deficits in essential tremor: an expression of cerebello-thalamo-cortical pathophysiology? Eur J Neurol, 2002. 9(2):143-51.
  • Tyler, W.J., et al., Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound. PLoS One, 2008. 3(10):e3511.
  • Ueno, S., T. Tashiro, and K. Harada, Localised stimulation of neural tissues in the brain by means of a paired configuration of time-varying magnetic fields. J. Appl. Phys., 1988. 64:5862-5864.
  • Wagner T, Valero-Cabre A, Pascual-Leone A, (2007), Noninvasive Human Brain Stimulation. Annu Rev Biomed Eng., 7.1:19.1-19.39.
  • Wagner TA, Zahn M, Grodzinsky AJ, Pascual-Leone A, (2004), Three-dimensional head model simulation of transcranial magnetic stimulation. IEEE Trans Biomed Eng 51:1586-1598.
  • Wagner, T., et al., Biophysical foundations underlying TMS: Setting the stage for an effective use of neurostimulation in the cognitive neurosciences. Cortex 45, 2008:1025-1034.
  • Wagner, T., et al., Transcranial direct current stimulation: a computer-based human model study. Neuroimage, 2007. 35(3):1113-24.
  • Wagner, T., et al., Transcranial magnetic stimulation and brain atrophy: a computer-based human brain model study. Exp Brain Res 189, 2008:539-550.
  • Wagner, T., et al., Transcranial magnetic stimulation and stroke: a computer-based human model study. Neuroimage, 2006. 30(3):857-70.
  • Wagner, T., Field distributions within the human cortex induced by transcranial magnetic stimulation, in EECS. 2001, Massachusetts Institute of Technology: Cambridge., Chapters 1 and 2, (126 pages).
  • Warman, E.N., W.M. Grill, and D. Durand, Modeling the effects of electric fields on nerve fibers: determination of excitation thresholds. IEEE Trans Biomed Eng, 1992. 39(12):1244-54.
  • Wichmann, T. and M.R. Delong, Deep brain stimulation for neurologic and neuropsychiatric disorders. Neuron, 2006. 52(1):197-204.
  • Wininger, F.A., J.L. Schei, and D.M. Rector, Complete optical neurophysiology: toward optical stimulation and recording of neural tissue. Appl Opt, 2009. 48(10):D218-24.
  • Wobschall, D., Bilayer Membrane Elasticity and Dynamic Response. Journal of Colloid and Interface Science, 1971. 36(3):385-396.
  • Wobschall, D., Voltage Dependence of Bi!ayer Membrane Capacitance. Journal of Colloid and Interface Science, 1972. 40(3):417-423.
  • Wongsarnpigoon, A. and W.M. Grill, Computational modeling of epidural cortical stimulation. J Neural Eng, 2008. 5(4):443-54
  • Zangen, A., et al., Transcranial magnetic stimulation of deep brain regions: evidence for efficacy of the H-coil. Clin Neurophysiol, 2005. 116(4):775-9.
  • Gabriel, S., R.W. Lau, and C. Gabriel, The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol, 1996. 41(11):2251-69.
  • Gabriel, S., R.W. Lau, and C. Gabriel, The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys Med Biol, 1996. 41(11):2271-93
  • Gielen, F. Deep Brain Stimulation: Current Practice and Challenges for the Future. in 1st International IEEE EMBS Conference on Neural Engineering. 2003. Capri Island, Italy: IEEE.
  • Graziano, M.S., C.S. Taylor, and T. Moore, Complex movements evoked by microstimulation of precentral cortex. Neuron, 2002. 34(5):841-51.
  • Grill, W.M., et al., Temporal excitation properties of paresthesias evoked by thalamic microstimulation. Clin Neurophysiol, 2005. 116(5):1227-34.
  • Grill, W.M., S.E. Norman, and R.V. Bellamkonda, Implanted neural interfaces: biochallenges and engineered solutions. Annu Rev Biomed Eng, 2009. 11:1-24.
  • Grosse, C., Permitivity of suspension of charged particles in electolyte solution. J. Chem. Phys., 1987. 91:3073.
  • Gusev, V., et al., Imaging With the Ultrasonic Vibration Potential: A Theory for Current Generation. Ultrasound in Med. & Biol., 2005. vol. 31, No. 2:273-278.
  • Haar, G.t., Accoustic Surgery: Bursts of focused ultrasound energy three orders of magnitude more intense than diagnostic ultrasound are emerging as a noninvasive option for treating cancer and other medical procedures., Physics Today, 2001:29-34.
  • Hart FX, Toll RB, Berner NJ, Bennett NH, (1996), The low frequency dielectric properties of octopus arm muscle measured in vivo. Phys Med Biol 41:2043-2052.
  • Hart, F.X. and W.R. Dunfree, In vivo measurements of low frequency dielectric spectra of a frog skeletal muscle. Phys. Med. Biol., 1993, 38:1099-1112.
  • Hatanaka, N., et al., Input-output organization of jaw movement-related areas in monkey frontal cortex. J Comp Neurol, 2005. 492(4):401-25.
  • Heller L, Hulsteyn DBv, (1992), Brain stimulation using electromagnetic sources: theoretical aspects. Biophysical Journal 63:129-138.
  • Hinch, E.J., et al., Dielectric response of a dilute suspension of spheres with thin double layers in an asymmetric electrolyte. J Chem Soc, Farady Tans., 1983. 80:535-551.
  • Holdefer, R.N., R. Sadleir, and M.J. Russell, Predicted current densities in the brain during transcranial electrical stimulation. Clin Neurophysiol, 2006. 117(6):1388-97.
  • Hole, S. and T. Ditchi, Non-destructive Methods for Space Charge Distribution Measurements: What are the Differences? IEEE EMBS, 2003. 10(4):670-677.
  • Hsiao, I. and V. Lin, Improved coil design for functional magnetic stimulation of expiratory muscles. IEEE Trans Biomed Eng, 2001. 48(6):684-694.
  • Hsu KH and D. DM., A 3-D differential coil design for localized magnetic stimulation. IEEE Trans Biomed Eng, 2001. 48(10):1162-8.
  • Jones KE, Bawa P, (1997), Computer simulation of the responses of human motoneurons to composite 1A EPSPS: effects of background firing rate. J Neurophysiol 77:405-420.
  • Kanai, R., et al., Frequency-dependent electrical stimulation of the visual cortex. Curr Biol, 2008. 18(23):1839-43.
  • Kanner, A.M., Deep brain stimulation for intractable epilepsy: which target and for which seizures? Epilepsy Curr, 2004. 4(6):231-2.
  • Kaufman, E.F. and A.C. Rosenquist, Efferent projections of the thalamic intralaminar nuclei in the cat. Brain Res, 1985. 335(2):257-79.
  • Khachaturian, M.H., et al., Focal reversible deactivation of cerebral metabolism affects water diffusion. Magn Reson Med, 2008. 60(5):1178-89.
  • Khraiche, M.L., et al., Ultrasound induced increase in excitability of single neurons. Conf Proc IEEE Eng Med Biol Soc, 2008. 2008: p. 4246-9.
  • Kleim, J.A., T.A. Jones, and T. Schallert, Motor enrichment and the induction of plasticity before or after brain injury. Neurochem Res, 2003. 28(11):1757-69.
  • Komissarow, L., et al., Triple stimulation technique (TST) in amyotrophic lateral sclerosis. Clin Neurophysiol, 2004. 115(2):356-60.
  • Kraus, K.H., et al., The use of a cap-shaped coil for transcranial magnetic stimulation of the motor cortex. J Clin Neurophysiol, 1993. 10(3):353-62.
  • Kumar, K., C. Toth, and R.K. Nath, Deep brain stimulation for intractable pain: a 15-year experience. Neurosurgery, 1997. 40(4):736-46; Discussion 746-7.
  • Larkin, J., et al., Combined electric field and ultrasound therapy as a novel anti-tumour treatment. European Journal of Cancer 41 (2005):1339-1348.
  • Lemay, M.A., et al., Endpoint forces obtained during intraspinal microstimulation of the cat lumbar spinal cord—experimental and biomechanical model results. in IEEE 28th Annual Northeast Bioengineering Conference, 2002, IEEE.
  • Li, D.L., et al. Finite element analysis of transcranial electrical stimulation for intraoperative monitoring. in Bioengineering Conference, Proceedings of the IEEE 31st Annual Northeast 2005, IEEE.
  • Lin, V., I. Hsiao, and V. Dhaka, Magnetic coil design considerations for functional magnetic stimulation. IEEE Trans Biomed Eng, 2000. 47(5):600-610.
  • Lomber, S.G., The advantages and limitations of permanent or reversible deactivation techniques in the assessment of neural function. J Neurosci Methods, 1999. 86(2):109-17.
  • Lozano, A.M., et al., Deep brain stimulation for Parkinson's disease: disrupting the disruption. Lancet Neurol, 2002. 1(4):225-31.
  • Luber, B., et al., Remediation of sleep-deprivation-induced working memory impairment with fMRI-guided transcranial magnetic stimulation. Cereb Cortex, 2008. 18(9):2077-85.
  • McCreery D, Agnew W, (1990), Neuronal and axonal injury during functional electrical stimulation; a review of the possible mechanisms. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, p. 1489:IEEE.
  • McCreery, D., et al., Accessing the Tonotopic Organization of the Ventral Cochlear Nucleus by Intranuclear Microstimulation. IEEE Trans Rehabil Eng, 1998. 6(4):391-399.
  • McCreery, D., et al., Charge Density and Charge Per Phase as Cofactors in Neural Injury Induced by Electrical Stimulation. IEEE Trans Biomed Eng, 1990. 37(10):996-1001.
  • McIntyre, C.C. and W.M. Grill, Excitation of central nervous system neurons by nonuniform electric fields. Biophys J, 1999. 76(2):878-88.
  • McIntyre, C.C. and W.M. Grill, Extracellular stimulation of central neurons: influence of stimulus waveform and frequency on neuronal output. J Neurophysiol, 2002. 88(4):1592-604.
  • McIntyre, C.C., et al., Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition. J Neurophysiol, 2004. 91(4):1457-69.
  • McIntyre, C.C., et al., Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus. Clin Neurophysiol, 2004. 115(3):589-95.
  • McNeal DR, (1976), Analysis of a model for excitation of myelinated nerve. IEEE Trans Biomed Eng 23:329-337.
  • McRee, D.I. and H. Wachtel, Elimination of microwave effects on the vitality of nerves after blockage of active transport Radiat Res, 1986. 108(3):260-8.
  • McRee, D.I. and H. Wachtel, Pulse microwave effects on nerve vitality. Radiat Res, 1982. 91(1):212-8.
  • McRee, D.I. and H. Wachtel, The effects of microwave radiation on the vitality of isolated frog sciatic nerves. Radiat Res, 1980. 82(3):536-46.
  • Medtronic, Activa® PC Implant Manual, Medtronic, Editor. 2007, Medtronic: Minneapolis.
  • Mihran, R.T., et al., Temporally-Specific Modification of Myelinated Axon Excitability In Vitro Following a Single Ultrasound Pulse. Ultrasound in Med. & Biol., 1990, vol. 16, No. 3:297-309.
  • Miocinovic, S. and W.M. Grill, Sensitivity of temporal excitation properties to the neuronal element activated by extracellular stimulation. J Neurosci Methods, 2004. 132(1):91-9.
  • Miranda, P.C., M. Hallett, and P.J. Basser, The electric field induced in the brain by magnetic stimulation: a 3-D finite-element analysis of the effect of tissue heterogeneity and anisotropy. IEEE Trans Biomed Eng, 2003. 50(9):1074-85.
  • Miranda, P.C., M. Lomarev, and M. Hallett, Modeling the current distribution during transcranial direct current stimulation. Clin Neurophysiol, 2006. 117(7):1623-9.
  • Montalibet, A., et al., Electric current generated by ultrasonically induced Lorentz force in biological media. Med. Biol. Eng. Comput., 2001, vol. 39:15-20.
  • Mouchawar, G., et al., Magnetic Stimulation of excitable tissue: calculation of induced eddy currents with a three-dimensional finite-element model. IEEE Transactions on Magnetics, 1993. 29(6):3355-3357.
  • Murasugi, C.M., C.D. Salzman, and W.T. Newsome, Microstimulation in visual area MT: effects of varying pulse amplitude and frequency. J Neurosci, 1993. 13(4):1719-29.
  • Mushahwar, V.K. and K.W. Horch, Selective activation of muscle groups in the feline hindlimb through electrical microstimulation of the ventral lumbo-sacral spinal cord. IEEE Trans Rehabil Eng, 2000. 8(1):11-21.
  • Nadeem, M., et al., Computation of electric and magnetic stimulation in human head using the 3-D impedance method. IEEE Transactions on Biomedical Engineering, 2003. 50(7):900-907.
  • Nagarajan, S. and D.M. Durand, Analysis of magnetic stimulation of a concentric axon in a nerve bundle. IEEE Transactions on Biomedical Engineering, 1995. 42(9):926-933.
  • Nagarajan, S., D.M. Durand, and E.N. Warman, Effects of induced electric fields on finite neuronal structures: a simulation study. IEEE Transactions on Biomedical Engineering, 1993. 40(11):1175-1188.
  • Nagarajan, S., et al. Magnetic stimulation of finite neuronal structures. in Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 1991: IEEE.
  • Nathan, S.S., et al., Determination of current density distributions generated by electrical stimulation of the human cerebral cortex. Electroencephalogr Clin Neurophysiol, 1993. 86(3):183-92.
  • Neri Accornero et al., ‘Visual evoked potentials modulation during direct current cortical polarization’, Experimental Brain Research, Oct. 19, 2006, vol. 178, No. 2, pp. 261-266.
  • Nichols, M.J. and W.T. Newsome, Middle temporal visual area microstimulation influences veridical judgments of motion direction. J Neurosci, 2002. 22(21):9530-40.
  • Northstar Neuorsciences, Northstar Neuroscience Announces Primary Endpoint Results of Everest Clinical Trial. 2008: Seattle, (Downloaded from the Internet May 25, 2013).
  • Norton, 2003, Can ultrasound be used to stimulate nerve tissue, BioMedical Engineering OnLine 2(6):1-9.
  • O'Brien, W.D., Jr., Ultrasound-biophysics mechanisms. Prog Biophys Mol Biol, 2007. 93(1-3):212-55.
  • Pascual-Leone, A., D. Bartres-Faz, and J.P. Keenan, Transcranial magnetic stimulation: studying the brain-behaviour relationship by induction of ‘virtual lesions’. Philos Trans R Soc Lond B Biol Sci, 1999. 354(1387):1229-38.
  • Perlmutter, J.S. and J.W. Mink, Deep Brain Stimulation. Annu Rev Neurosci, 2006:229-257.
  • Pernot, M., et al., In vivo transcranial brain surgery with an ultrasonic time reversal mirror. J Neurosurg, 2007. 106(6):1061-6.
  • Plonsey R, Heppner DD, (1967), Considerations of quasi-stationarity in electrophysiological systems. Bull Math Biophys 29:657-664.
  • Priori, A., Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability. Clin Neurophysiol, 2003. 114(4):589-95.
  • Prochazka, A., V.K. Mushahwar, and D.B. McCreery, Neural prostheses. J Physiol, 2001. 533(Pt 1):99-109.
  • Purpura, D.P. and J.G. McMurtry, Intracellular Activities and Evoked Potential Changes During Polarization of Motor Cortex. J Neurophysiol, 1965. 28:166-85.
  • Ramos-Estebanez, C. et al., Visual phosphene perception modulated by subthreshold crossmodal sensory stimulation J Neurosci, 2007. 27(15):4178-81.
  • Ranck, J.B., Jr., Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res, 1975. 98(3):417-40.
  • Rattay, F., et al., Mechanisms of Electrical Stimulation with Neural Prostheses. Neuromodulation, 2003. 6(1):42-56.
  • Rezai, A.R., et al., Deep brain stimulation for Parkinson's disease: surgical issues. Mov Disord, 2006. 21 Suppl 14:S197-218.
  • Romo, R., et al., Somatosensory discrimination based on cortical microstimulation. Nature, 1998. 392(6674):387-90.
  • Rousche, P. and R. Normann, Chronic Intracortical Microstimulation (ICMS) of Cat Sensory Cortex Using the Utah Intracortical Electrode Array. IEEE Trans Rehabil Eng, 1999. 7(1):56-68.
  • Rush, S. and D.A. Driscoll, Current distribution in the brain from surface electrodes. Anesth Analg, 1968. 47(6):717-23.
  • Rutten, W.L.C., et al., The influence of ultrasound and ultrasonic focusing on magnetic and electric peripheral nerve stimulation., in Advances in Magnetic Stimulation: Mathematical modeling and clinical applications, J. Nilsson, M. Panizza, and F. Grandori, Editors. 1996: Pavia, Italy, (p. 152).
  • Salzman, C.D., et al., Microstimulation in visual area MT: effects on direction discrimination performance. J Neurosci, 1992. 12(6):2331-55.
  • Salzman, C.D., K.H. Britten, and W.T. Newsome, Cortical microstimulation influences perceptual judgements of motion direction. Nature, 1990. 346(6280):174-7.
  • Saypol, J.M., et al., A theoretical comparison of electric and magnetic stimulation of the brain. Annals of Biomedical Engineering, 1991. 19(3):317-28.
  • Schmidt, E.M., et al., Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain, 1996. 119 ( Pt 2):507-22.
  • Schwartzbaum, J.S., Electrophysiology of taste, feeding and reward in lateral hypothalamus of rabbit. Physiol Behav, 1988. 44(4-5):507-26.
  • Schwarz, G.J., A Theory of the Low Fequency Dielectric Dispersion of Colloidal Particles in Electrolyte Solutions, J Phys Chem, 1962. 66:2636.
  • Scivill, I., A.T. Barker, and I.L. Freeston, Finite element modelling of magnetic stimulation of the spine. Proceedings 18th annual international conference of the IEEE engineering in medicine and biology society, 1996:393-394.
  • Seidemann, E. and W.T. Newsome, Effect of spatial attention on the responses of area MT neurons. J Neurophysiol, 1999. 81(4):1783-94.
  • Seidemann, E., et al., Color signals in area MT of the macaque monkey. Neuron, 1999. 24(4):911-7.
  • Shupak, N.M., et al., Exposure to a specific pulsed low-frequency magnetic field: a double-blind placebo-controlled study of effects on pain ratings in rheumatoid arthritis and fibromyalgia patients. Pain Res Manag, 2006. 11(2):85-90.
  • Spiegel, R.J., et al., Measurement of small mechanical vibrations of brain tissue exposed to extremely-low-frequency electric fields. Bioelectromagnetics, 1986. 7(3):295-306.
  • Stecker, M.M., T. Patterson, and B.L. Netherton, Mechanisms of electrode induced injury. Part 1: theory. Am J Electroneurodiagnostic Technol, 2006. 46(4):315-42.
  • Stojanovic, M.P. and S. Abdi, Spinal cord stimulation. Pain Physician, 2002. 5(2):156-66.
  • Stoney, S.D., Jr., W.D. Thompson, and H. Asanuma, Excitation of pyramidal tract cells by intracortical microstimulation: effective extent of stimulating current. J Neurophysiol, 1968. 31(5):659-69.
  • Tehovnik, E.J. and W.M. Slocum, Microstimulation of V1 affects the detection of visual targets: manipulation of target contrast. Exp Brain Res, 2005. 165(3):305-14.
  • Tehovnik, E.J., Electrical stimulation of neural tissue to evoke behavioral responses. J Neurosci Methods, 1996. 65(1):1-17.
  • Terzuolo, C.A. and T.H. Bullock, Measurment of Imposed Voltage Gradient Adequate to Modulate Neuronal Firing. Proc Natl Acad Sci U S A, 1956. 42(9):687-694.
  • Thickbroom, G.W., Transcranial magnetic stimulation and synaptic plasticity: experimental framework and human models. Exp Brain Res, 2007. 180(4):583-93.
  • International Search Report for PCT/US2009/053006 dated Mar. 18, 2010 (3 pages).
  • Roth, B.J., Mechanisms for electrical stimulation of excitable tissue. Critical Reviews in Biomedical Engineering, 1994. 22(3-4):253-305.
Patent History
Patent number: D759803
Type: Grant
Filed: Oct 28, 2014
Date of Patent: Jun 21, 2016
Assignee: Highland Instruments, Inc. (Somerville, MA)
Inventors: Timothy Andrew Wagner (Somerville, MA), William Edelman (Sharon, MA), Laura Dipietro (Cambridge, MA), Paul James Mulhauser (New York, NY), Kyungmin Andy Lee (New York, NY)
Primary Examiner: Barbara Fox
Assistant Examiner: Lilyana Bekic
Application Number: 29/507,490
Classifications