Thermoelectric smartwatch

- MATRIX INDUSTRIES, INC.
Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description

FIG. 1 is a top perspective view of a thermoelectric smartwatch in accordance with the present design;

FIG. 2 is a front view of the thermoelectric smartwatch;

FIG. 3 is a back view of the thermoelectric smartwatch;

FIG. 4 is a right side view of the thermoelectric smartwatch;

FIG. 5 is a left side view of the thermoelectric smartwatch;

FIG. 6 is a top view of the thermoelectric smartwatch; and,

FIG. 7 is a bottom view of the thermoelectric smartwatch.

The broken lines shown in FIGS. 1-7 in the drawings depict portions of the thermoelectric smartwatch that form no part of the claimed design.

Claims

The ornamental design for a thermoelectric smartwatch, as shown and described.

Referenced Cited
U.S. Patent Documents
365990 July 1887 Giles
3653989 April 1972 Alois
4070821 January 31, 1978 Somogyi
4078945 March 14, 1978 Gonsiorawski
4092445 May 30, 1978 Tsuzuki et al.
4106279 August 15, 1978 Martin et al.
4261049 April 7, 1981 Komiyama et al.
4681657 July 21, 1987 Hwang et al.
5089293 February 18, 1992 Bohara et al.
5139624 August 18, 1992 Searson et al.
D332408 January 12, 1993 Chodat
5206523 April 27, 1993 Goesele et al.
D365767 January 2, 1996 Hitter
5552328 September 3, 1996 Orlowski et al.
5565084 October 15, 1996 Lee et al.
5695557 December 9, 1997 Yamagata et al.
5767020 June 16, 1998 Sakaguchi et al.
5868947 February 9, 1999 Sakaguchi et al.
5873003 February 16, 1999 Inoue et al.
5889735 March 30, 1999 Kawata et al.
5895223 April 20, 1999 Peng et al.
D409097 May 4, 1999 Monachon
5970361 October 19, 1999 Kumomi et al.
5981400 November 9, 1999 Lo
5990605 November 23, 1999 Yoshikawa et al.
6017811 January 25, 2000 Winton et al.
6093941 July 25, 2000 Russell et al.
6194323 February 27, 2001 Downey et al.
6222114 April 24, 2001 Mitamura
6304520 October 16, 2001 Watanabe
6304521 October 16, 2001 Kanesaka
6313015 November 6, 2001 Lee et al.
6407965 June 18, 2002 Matoge et al.
6762134 July 13, 2004 Bohn et al.
6790785 September 14, 2004 Li et al.
6803260 October 12, 2004 Shin et al.
6882051 April 19, 2005 Majumdar et al.
D504624 May 3, 2005 Bodino
7075161 July 11, 2006 Barth
7115971 October 3, 2006 Stumbo et al.
7135728 November 14, 2006 Duan et al.
7161168 January 9, 2007 Heath et al.
D536994 February 20, 2007 Sugisawa
D538181 March 13, 2007 Sugiura
7189435 March 13, 2007 Tuominen et al.
7190049 March 13, 2007 Tuominen et al.
D540199 April 10, 2007 Nussbaumer
7254953 August 14, 2007 Callas et al.
7291282 November 6, 2007 Tong
7309830 December 18, 2007 Zhang et al.
D578902 October 21, 2008 Hoshino
7465871 December 16, 2008 Chen et al.
D590727 April 21, 2009 Wei
D591178 April 28, 2009 Magada
7569941 August 4, 2009 Majumdar et al.
7572669 August 11, 2009 Tuominen et al.
D601909 October 13, 2009 Behling
7629531 December 8, 2009 Stark
7645625 January 12, 2010 Ono et al.
7675084 March 9, 2010 Wierer, Jr. et al.
7960258 June 14, 2011 Chao et al.
D646183 October 4, 2011 De Witt
8087254 January 3, 2012 Arnold
8101449 January 24, 2012 Liang et al.
D655630 March 13, 2012 Behling
D660727 May 29, 2012 Parmigiani
8278191 October 2, 2012 Hildreth et al.
8324699 December 4, 2012 Ichijo et al.
8486843 July 16, 2013 Li et al.
8641912 February 4, 2014 Heath et al.
8773847 July 8, 2014 Byun
D711750 August 26, 2014 Monachon
8980656 March 17, 2015 Li et al.
D729638 May 19, 2015 Favre
9065016 June 23, 2015 Peter et al.
D736103 August 11, 2015 Behling
D738227 September 8, 2015 Monachon
D744863 December 8, 2015 Behling
D744866 December 8, 2015 Behling
9209375 December 8, 2015 Boukai et al.
9263662 February 16, 2016 Boukai et al.
D752045 March 22, 2016 Kim
9515246 December 6, 2016 Boukai et al.
D804966 December 12, 2017 Inoue
20040152240 August 5, 2004 Dangelo
20050133254 June 23, 2005 Tsakalakos
20050176264 August 11, 2005 Lai et al.
20050215063 September 29, 2005 Bergman
20050253138 November 17, 2005 Choi et al.
20060032526 February 16, 2006 Fukutani et al.
20060118158 June 8, 2006 Zhang et al.
20060185710 August 24, 2006 Yang et al.
20070258213 November 8, 2007 Chen et al.
20070277866 December 6, 2007 Sander et al.
20080019876 January 24, 2008 Chau et al.
20080173344 July 24, 2008 Zhang et al.
20080271772 November 6, 2008 Leonov et al.
20080314429 December 25, 2008 Leonov
20090020148 January 22, 2009 Boukai et al.
20090020188 January 22, 2009 Ulicny et al.
20090069045 March 12, 2009 Cheng
20090117741 May 7, 2009 Heath et al.
20100035163 February 11, 2010 Kobrin
20100065810 March 18, 2010 Goesele et al.
20100126548 May 27, 2010 Jang et al.
20100147350 June 17, 2010 Chou et al.
20100193001 August 5, 2010 Hirono et al.
20100248449 September 30, 2010 Hildreth et al.
20110003279 January 6, 2011 Patel
20110114145 May 19, 2011 Yang et al.
20110114146 May 19, 2011 Scullin
20110168978 July 14, 2011 Kochergin
20110179806 July 28, 2011 Ipposhi et al.
20110215441 September 8, 2011 Lin et al.
20110263119 October 27, 2011 Li et al.
20110266521 November 3, 2011 Ferrari et al.
20120097204 April 26, 2012 Yu et al.
20120152295 June 21, 2012 Matus et al.
20120160290 June 28, 2012 Chen et al.
20120167936 July 5, 2012 Park et al.
20120174956 July 12, 2012 Smythe et al.
20120217165 August 30, 2012 Feng et al.
20120282435 November 8, 2012 Yang et al.
20120290051 November 15, 2012 Boyden et al.
20120295074 November 22, 2012 Yi et al.
20120319082 December 20, 2012 Yi et al.
20120326097 December 27, 2012 Ren et al.
20130019918 January 24, 2013 Boukai et al.
20130052762 February 28, 2013 Li et al.
20130087180 April 11, 2013 Stark et al.
20130143407 June 6, 2013 Lin et al.
20130175484 July 11, 2013 Ren et al.
20130186445 July 25, 2013 Lorimer et al.
20140117380 May 1, 2014 Loboda et al.
20140306250 October 16, 2014 Gardner et al.
20140326287 November 6, 2014 Wiant et al.
20140373888 December 25, 2014 Boukai et al.
20150083180 March 26, 2015 Lang
20150101788 April 16, 2015 Smith et al.
20150162517 June 11, 2015 Kasichainula
20150179911 June 25, 2015 Lemmer et al.
20150216718 August 6, 2015 Diller et al.
20150228883 August 13, 2015 Boukai et al.
20150280099 October 1, 2015 Boukai et al.
20150325772 November 12, 2015 Boukai et al.
20160035956 February 4, 2016 Carroll et al.
20160197259 July 7, 2016 Boukai et al.
Foreign Patent Documents
1382626 December 2002 CN
S63266829 November 1988 JP
H11317547 November 1999 JP
2004193526 July 2004 JP
2006261451 September 2006 JP
2007300127 November 2007 JP
2010192580 September 2010 JP
2010537430 December 2010 JP
WO-0223607 March 2002 WO
WO-2010003629 January 2010 WO
WO-2011049804 April 2011 WO
WO-2012068426 May 2012 WO
WO-2013012842 January 2013 WO
WO-2013109729 July 2013 WO
WO-2014028903 February 2014 WO
WO-2014070795 May 2014 WO
WO-2014179622 November 2014 WO
WO 2015134394 September 2015 WO
WO-2015148554 October 2015 WO
Other references
  • Garmin Forerunner 935 Running GPS Unit (Black), posted Apr. 14, 2017, [retrieved Jan. 2, 2018]. Retrieved from Internet, <URL: https://www.amazon.com/Garmin-Forerunner-Running-Unit-Black/dp/B06XGD6CS4 >.
  • Garmin Fenix 5 review The king of multisport watches is back with a bang, posted Apr. 5, 2017, [retrieved Jan. 2, 2018]. Retrieved from Internet, <URL: https://www.wareable.com/garmin/garmin-fenix-5-review >.
  • Montblanc TimeWalker Chronograph “On-the-Wrist” Review, posted Dec. 8, 2008, [retrieved Jan. 2, 2018]. Retrieved from Internet, <URL: http://www.watchprosite.com/page-wf.forumpost/fi-1006/ti-478416/pi-2864726/ >.
  • This Smart Watch Will Charge Itself Using Heat From Your Skin, posted Nov. 14, 2016, [retrieved Jan. 2, 2018]. Retrieved from Internet , <URL: https://spectrum.ieee.org/view-from-the-valley/consumer-electronics/gadgets/this-smart-watch-will-charge-itself-using-the-heat-of-your-skin >.
  • Advisory action dated Jul. 21, 2017 for U.S. Appl. No. 14/372,443.
  • Agnes, et al. Doping of the nanocrystalline semiconductor zinc oxide with the donor indium, Amer Institute of Phystcs, vol. 83, No. 6, 1204, (Aug. 11, 2003).
  • Beckman, et al., Bridging Dimensions: Demultiplexing Ultrahigh-Density nanowire Circuits, Science 2005, 310: 465-468.
  • Beckman, et al. Fabrication of Conducting. Silicon nanowire Arrays, J. Appi. Phys. 96 (10), 5921-5923'(2004).
  • Behnen. Quantitative examination of the thermoelectric power of n-typesilicon in the phono drag regime.Journal of Applied Physics, vol. 67, pp. 287-292, Jan. 1, 1990.
  • Bera, et al. Marked Effects of Alloying on the Thermal Conductivity of nanoporous Materials, Mar. 19, 2010, American Physical Society Physical Review Letters, 104, pp. 115502-01 to 115502-4.
  • Boukai, et al. Silicon nanowires as efficient thermoelectric materials. nature, vol. 451, pp. 168-171, Jan. 10, 2008.
  • Boukai, et al. Size-Dependent transport and thermoelectric properties of individual polycrystalline bismuth nanowires. Advanced Materials, 18, pp. 864-869, 2006.
  • Boukai. Thermoelectric properties of bismuth and silicon nanowires. Dissertation (Ph.D.), California Institute of Technology. 2008.
  • Bunimovich, et al. Quantitative Real-Time Measurements of DnA Hybridization with Alkylated nonoxidized Silicon nanowires in Electrolyte Solution, JACS 2006, 128: 16323-16331.
  • Chadwick, et al. Plane waves in an elastic solid conducting heat. Journal of the Mechanics and Physics of Solids 6, 223-230 (1958).
  • Chen, et al. Dispenser Printed Microscale Thermoelectric Generators for Powering Wireless Sensor Networks. Paper No. IMECE2009-11636, pp. 343-352; 10 pages.
  • Chen, et al. Recent developments in thermoelectric materials. International Materials Reviews, vol. 48, pp. 45-66, 2003.
  • Choi, et al. Fabrication of bismuth nanowires with a silver nanocrystal shadowmask, J. Vac. Sci. Tech. A-Vac. Surf. And Films, 18, 1236, 1328 (2000).
  • Choi, et al. Fabrication of nanometer size photoresist wire patterns With a silver nanocrystal shadowmask. J. Vac. Sci. & Tech. A-Vac. Surf. And Films, 17, 1425 (1999).
  • Chung, et al. Fabrication and Alignment of Wires in Two-Dimensions. The Journal of PhysiCal Chemistry B. 102. 6685 (1998).
  • Collier, et al. Nanocrystal superlattices. Annu. Rev. Phys. Chem. 1998, 49: 371-404.
  • Co-pending U.S. Appl. No. 15/585,376, filed May 3, 2017.
  • Deresiewicz. Plane waves in a thermoelastic solid. Journal of the Acoustical Society of America 29, 204-209 (1957).
  • Diehl, et al. Self-Assembly of Deterministic Carbon nanottibe Wiring networks. Angew. 'Chem. Int Ed. 41, 353 (2002).
  • European search report and opinion dated Feb. 26, 2016 for EP Application No. 13829134.9.
  • European search report and opinion dated Mar. 25, 2014 for EP Application No. 11835180.8.
  • Extended European Search Report and Search Opinion dated Oct. 9, 2017 for European Patent Application No. EP 15768608.0.
  • Fan, et al. Self-Oriented Regular Arrays of Carbon nanotubes and their Field Emission Devices. Science, v. 283, p. 512 (Jan. 22, 1999).
  • Geballe, et al. Seebeck Effect in Silicon. Physical Review, vol. 98, pp. 940-947, May 15, 1955.
  • Green, et al., A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimeter, nature 2007, 445: 414-417.
  • Gurevich. Thermoelectric properties of conductors J. Phys. (U.S.S.R.) 9, 477 (1945).
  • Harman, et al. Quantum dot superlattice thermoelectric materials and devices. Science, vol. 297, pp. 2229-2232, Sep. 27, 2002.
  • Haynes, et al. nanosphere Lithography: A Versatile nanofabrication Tool for Studies of Size-Dependent nanoparticle Optics. J. Phys. Chem. B, 105, 5599-5611 (2001).
  • Heat sinks heat spreaders peltier coolers, novel concepts, Inc., 2014, Available at novelconceptsinc.com http://www.novelconceptsinc.com/heat-spreaders.htm, accessed on Aug. 21, 2017, 2 pages.
  • Heath, et al. A Defect-Tolerant Computer Architecture: Opportunities for nanotechnology, Science 1998, 280: 1716-1721.
  • Heath, et al. Pressure/Temperature Phase Diagrams and Superlattices of Organically Functionalized Metal nanocrystal Monolayers: The Influence of Particle Size, Size Distribution, and Surface Passivant, J. Phys. Chem. B 1997, 101: 189-197.
  • Herring. Theory of the thermoelectric power of semiconductors. Physical Review, vol. 96, No. 5, pp. 1163-1187, 1954.
  • Hicks, et al.. Thermoelectric figure of merit of a one-dimensional conductor. Physical Review B 47, 1 6631-1 6634 (1993).
  • Hochbaum, et al. Enchanced thermoelectric performance of rough silicon nanowires, Jan. 2008, nature Publishing Group, vol. 451, pp. 1-6.
  • Hsu, et al. Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high Figure of Merit. Science, vol. 303, pp. 818-821, Feb. 6, 2004.
  • Huang, et al. Metal-assisted chemical etching of silicon: a review. Adv Mater. Jan. 11, 2011;23(2):285-308. doi: 10.1002/adma.201001784.
  • Huang, et al. Spontaneous formation of nanoparticle strip patterns through dewetting. nature Materials vol. 4, p. 896 (2005).
  • Hulteen, et al. nanosphere lithography: A materials general fabrication process for periodic particle array surfaces, J. Vac. Sci. Technol. 1995, 13: 1553-1558.
  • Humphrey, et al. Reversible thermoelectric nanomaterials. Physical Review Letters 94, 096601 (2005).
  • Husain, et al. Nanowire-based very-high-frequency electromechanical resonator. Applied physics letters, vol. 83, No. 6, Aug. 11, 2003, pp. 1240-1242.
  • Ihab, et al. Manipulation of thermal phonons: a phononic crystal route to high-ZT thermoelectrics. Photonic and Phononic Properties of Engineered nanostructures, SPIE. 1000 20th St. Bellingham, WA 98225-6705. Feb. 10, 2011; 7946:1-9.
  • International search report and written opinion dated Feb. 9, 2009 for PCT/US2008/070309.
  • International search report and written opinion dated Apr. 7, 2017 for PCT Application No. US- 201664501.
  • International search report and written opinion dated Apr. 15, 2009 for PCT/US2008/064439.
  • International search report and written opinion dated Apr. 26, 2013 for PCT/U52013/021900.
  • International search report and written opinion dated May 29, 2012 for PCT/US2011/057171.
  • International search report and written opinion dated Jul. 3, 2015 for PCT Application No. US2015/022312.
  • International search report and written opinion dated Jul. 17, 2012 for PCT Application No. PCT/US2012/047021.
  • International search report and written opinion dated Aug. 7, 2017 for PCT Application US-201730868.
  • International search report and written opinion dated Dec. 27, 2013 for PCT/U52013/055462.
  • International search report dated Feb. 10, 2014 for PCT/US2013/067346.
  • Joannopoulos, et al. Photonic crystals: putting a new twist on light, nature 1997, 386: 143-149.
  • Jung, et al. Circuit Fabrication at 17 nm Half-Pitch by nanoimprinttithography. nanoLetters, 6, 351 (2006).
  • Koga, et al. Experimental proof-of-principle investigation of enhanced Z3DT in (100) oriented Si/Ge superlattices. Applied Physics Letters 77, 1490-1492 (2000).
  • Lee, et al. Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. nano. Lett. 2008; 8(12):4670-4674.
  • Lee, et al nanoporous Si as an Efficient Thermoelectric Material. nano Letter, 8, 2008, 3750-3754.
  • Lee, et al. nanostructured bulk thermoelectric materials and their properties. ICT 2005. 24th International Conference on Thermoelectrics (ICT). 2005 284-287.
  • Li, et al. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. Journal of heart transfer, vol. 125, pp. 881-888, Oct. 2003.
  • Li et al. Thermal Conductivity of Individual Silicon Nanowires. Appl Phys Lett 83(14):2934-2936 (Oct. 6, 2003).
  • Lifshitz, et al. Thermoelastic damping in micro- and nanomechanical systems. Physical Review B 61, 5600-5609 (2000).
  • Liu, et al. Thermal conduction in ultrahigh pure and doped single-crystal silicon layers at high temperatures. Journal of Applied Physics 98, 123523 (2005).
  • Llaguno, et al. Observation of thermopower oscillations in the coulomb blockade regime in a semiconducting carbon nanotube. nano Lett. 4, 45-49 (2004).
  • Mahan, et al. The best thermoelectric. PnAS 93, 7436-7439 (1996).
  • Mahan, et al. Thermoelectric materials: new approaches to an old problem. Physics Today 50, pp. 42-47, Mar. 1997.
  • Majumdar. Thermoelectricity in Semiconductor nanostructures. Science Feb. 6, 2004; 303(5659):777-778. DOI: 10.1126/science.1093164.
  • Maranganti, et al. Length scales at which classical elasticity breaks down for various materials. Physical Review Letters 98, 195504 (2007).
  • Martin. nanomaterials—A membrane based synthetic approach. Science, v. 266, p. 1961-1966 (Dec. 23, 1994).
  • Melosh, et al. Ultra-high density nanowire lattices and circuits. Science, vol. 300, pp. 112-115,Apr. 4, 2003.
  • Morales, et al. A laser ablation method for the synthesis of semiconductor crystalline nanowires. Science, vol. 279, pp. 208-211, Jan. 9, 1998.
  • NDT Resource Center, Thermal Conductivity. Downloaded Nov. 26, 2013. https://www.nde-ed.org/EducationResources/CommunityCollege/Materials/Physical_Chemical/ThermalConductivity.htm.
  • Notice of allowance dated Jan. 22, 2016 for U.S. Appl. No. 14/667,177.
  • Notice of allowance dated Jun. 15, 2016 for U.S. Appl. No. 13/278,074.
  • Notice of allowance dated Jul. 13, 2011 for U.S. Appl. No. 12/125,043.
  • Notice of allowance dated Jul. 29, 2015 for U.S. Appl. No. 12/175,027.
  • Notice of allowance dated Jul. 29, 2016 for U.S. Appl. No. 14/624,506.
  • Notice of allowance dated Aug. 18, 2017 for U.S. Appl. No. 14/700,082.
  • Notice of allowance dated Oct. 2, 2013 for U.S. Appl. No. 12/125,043.
  • Notice of allowance dated Oct. 8, 2015 for U.S. Appl. No. 14/667,177.
  • Notice of allowance dated Nov. 6, 2015 for U.S. Appl. No. 14/667,177.
  • Notice of allowance dated Dec. 10, 2015 for U.S. Appl. No. 14/667,177.
  • Office action dated Jan. 9, 2015 for U.S. Appl. No. 12/175,027.
  • Office action dated Jan. 23, 2015 for U.S. Appl. No. 13/278,074.
  • Office action dated Feb. 2, 2017 for U.S. Appl. No. 14/700,082.
  • Office action dated Feb. 12, 2015 for U.S. Appl. No. 13/550,424.
  • Office action dated Feb. 18, 2011 for U.S. Appl. No. 12/125,043.
  • Office action dated Apr. 19, 2017 for U.S. Appl. No. 14/372,443.
  • Office action dated Apr. 25, 2013 for U.S. Appl. No. 13/278,074.
  • Office action dated May 23, 2013 for U.S. Appl. No. 12/175,027.
  • Office action dated Jun. 16, 2015 for U.S. Appl. No. 13/278,074.
  • Office action dated Jun. 22, 2011 for U.S. Appl. No. 12/175,027.
  • Office action dated Jun. 23, 2016 for U.S. Appl. No. 14/372,443.
  • Office action dated Jun. 26, 2017 for U.S. Appl. No. 14/989,225.
  • Office action dated Jun. 28, 2016 for U.S. Appl. No. 14/624,506.
  • Office action dated Jun. 29, 2016 for U.S. Appl. No. 13/550,424.
  • Office action dated Jun. 30, 2014 for U.S. Appl. No. 12/175,027.
  • Office action dated Jul. 18, 2014 for U.S. Appl. No. 13/278,074.
  • Office action dated Aug. 7, 2013 for U.S. Appl. No. 13/278,074.
  • Office action dated Aug. 28, 2015 for U.S. Appl. No. 13/550,424.
  • Office action dated Oct. 7, 2016 for U.S. Appl. No. 14/989,225.
  • Office action dated Nov. 10, 2010 for U.S. Appl. No. 12/175,027.
  • Office action dated Nov. 17, 2015 for U.S. Appl. No. 14/372,443.
  • Office action dated Nov. 18, 2015 for U.S. Appl. No. 13/278,074.
  • Office action dated Nov. 27, 2013 for U.S. Appl. No. 12/175,027.
  • Pearson. Survey of thermoelectric studies of the group-1 metals at low temperatures carried out at the national-research-laboratories, Ottawa. Soviet Physics-Solid State 3, 1024-1033 (1961).
  • Peng, et al. Ordered silicon nanowire'arrays via nanosphere lithography and metal induced etching. Applied Physics Letters, v.90, article # 163123 (2007).
  • Prasher. Thermal conductivity of composites of aligned nanoscale and microscale wires and pores. Journal of Applied Physics, 100, 034307, 2006, p. 1-9.
  • Qiu, et al. Large complete band gap in two-dimensional photonic crystals with elliptic air holes, Physical Review B 1999, 60: 10 610-10 612.
  • Routkevitch, et al. Electrochemical Fabrication of CdS nanowires arrays in porous anodic aluminum oxide templates. The Journal of Physical Chemistry, v. 100, p. 14037-14047 (1996).
  • She, et al. Fabrication of vertically aligned Si nanowires and their application in a gated field emission device. Applied Physics Letters. v; 88. article # 013112 (2006).
  • Sialon Ceramics. Downloaded May 6, 2013. http://www.sialon.com.au/high-temperature-seebeck-probes.htm.
  • Silverstein, et al. Porous polymers. John Wiley & Sons, 2011.
  • Small, et al. Modulation of thermoelectric power of individual carbon nanotubes. Physical Review letters, vol. 91, pp. 256801-1 to 256801-4, 2003.
  • Snyder, et al. Thermoelectric microdevice fabricated by a MEMS-like electrochemical process. nature Material, vol. 2, pp. 528-531, Aug. 2003.
  • Tang, et al. Holey silicon as an efficient thermoelectric material. nano. Lett. 2010; 10:4279-4283.
  • Tao, et al. Langrfluir Blodgett Silver nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy. nanoLetters 3, 1229 (2003).
  • Trzcinski, et al. Quenched Phonon Drag in Silicon Microcontacts. Physical Review Letters, vol. 56, No. 10, pp. 1086-1089, 1986.
  • Venkatasubramanian, et al. Thin-film thermoelectric devices with high room-temperature figures of merit. nature, vol. 413, pp. 597-602, Oct. 11, 2001.
  • Vining. Desperately seeking silicon. nature, vol. 451, pp. 132-133, Jan. 10, 2008.
  • Vossmeyer, et al. Light-directed assembly of nanoparticles, Angew. Chem. Int. Ed. Engl. 1997, 36: 1080-1083.
  • Wang, et al. A new type of lower power thermoelectric micro-generator fabricated by nanowire array thermoelectric material. Microelectronic Engineering. 2005; 77:223-229.
  • Wang, et al. Complementary Symmetry Silicon nanowire Logic: Power-Efficient Inverters with Gain**, Small 2006, 2: 1153-1158.
  • Wang, et al. Oxidation Resistant Germanium nanowires:. Bulk. Synthesis. Long Chain Alkahethioi Functionalization, and Langmuir-Blodgett Assembly. Journal of the American Chemical Society, 127, 11871 (2005). 0.
  • Wang, et al., Silicon p-FETs from Ultrahigh Density nanowire Arrays, nano Letters 2006, 6: 1096-1100.
  • Wang, et al. Surface Chemistry and Electrical Properties of Germanium nanowires, JACS 2004, 126: 11602-11611.
  • Wang, et al. Use of phopshine as an n-type dopant source for vapor-liquid-solid growth of silicon nanowires. nano Letters. 2005; 5(11):2139-2143.
  • Weber, et al. Silicon-nanowire transistors with Intruded nickel-Silicide Contacts. nano Letters v. 6, p. 2660-2666 (2006).
  • Weber, et al. Transport properties of silicon. Applied Physics A: Solids and Surfaces, pp. 136-140, 1991.
  • Whang, et al. Large-Scale Hierarchical Organization of nanowire Arrays for Integrated nanosystems. nanoLetters 3, 1255-1259 (2003).
  • Williams, et al. Etch rates for micromachining processing. Journal of Microelectromechanical Systems 5, 256-269 (1996).
  • Wolfsteller; et al., Comparison of the top-down and bottom-up approach to fabricate nanowire-based silicon/germanium heterostructures. Thin Solid Films 518.9 (2010): 2555-2561.
  • Wu, et al. Single-crystal metallic nanowires and meta semiconductor nanowires heterostructures. nature, 430. p. 61'(2004).
  • Xu, et al. Controlled fabrication of long quasione-dimensional superconducting nanowire arrays. nano letters, vol. 8, No. 1, Dec. 6, 2007, pp. 136-141.
  • Yablonovitch. Photonic band-gap structures, J. Opt. Soc. Am. B. 1993, 10: 283-297.
  • Yang, et al. Encoding Electronic Properties.by Synthesis of Axial Modulation Doped Silicon nanowires. Science, 310, p. 1304 (2005).
  • Yang, et al. Single p-Type/Intrinsic/n-TypeSilicon nanowires as nanoscale Avalanche Photodetectors, nano Letters 2006, 6: 2929-2934.
  • Yang, et al. Thermal conductivity of simple and tubular nanowire composites in the longitudinal direction. Physiucal Review B, 72, 125418, 2005, p. 1-7.
  • Yu, et al. Reduction of thermal conductivity in phononic nanomesh structures. nature nanotechnology. 2010; 5:718-721.
  • Yu-Ming, et al. Semimetal-semicinductor transition in bil_xSbx alloy nanowires and their thermoelectric properties. Applied Physics Letter, Volov. 81, No. 13, pp. 2403-2405, Sep. 23, 2002.
  • Zener, et al. Internal friction in solids III. Experimental demonstration of thermoelastic internal friction. Physical Review 53, 100-101 (1938).
  • Zener. Internal friction in solids I. Theory of internal friction in reeds. Physical Review 52, 230-235 (1937).
  • Zhong, et al. Nanowire Crossbar Arrays as Address Decoders for Integrated nanosystems, Science 2003, 302: 1377-1379.
  • Zhou. Determination of transport properties in chromium disilicide nanowires via combined thermoelectric and structural characterizations. nano Letters 7, 1649-1654 (2007).
  • Zhou, et al. Verticaly aligned Zn2SiO4 nanotube/ZnO nanowire Heterojunction Arrays. Small, v.3. p. 622-626 (2007).
  • Hicks, et al., Thermoelectric figure of merit of a one-dimensional conductor. Physical Review B 47, 1 6631-6634 (1993).
  • Wallarah Minerals, Downloaded Mar. 26, 2015. http://www.wallarahminerals.com.au/high-temperature-seebeck-probes.htm.
Patent History
Patent number: D819627
Type: Grant
Filed: Nov 11, 2016
Date of Patent: Jun 5, 2018
Assignee: MATRIX INDUSTRIES, INC. (Menlo Park, CA)
Inventors: Akram I. Boukai (Menlo Park, CA), Douglas W. Tham (Menlo Park, CA), Haifan Liang (Menlo Park, CA), Eric C. Hale (Greenbrae, CA), Gregory L. Kress (San Francisco, CA), Scott A. Steber (San Francisco, CA), Brentley M. Wiles (San Francisco, CA), Michael Chiasson (San Francisco, CA)
Primary Examiner: Barbara Fox
Assistant Examiner: Kristin E Reed
Application Number: 29/584,211
Classifications
Current U.S. Class: Wrist Or Body Attached (D14/344)