Method and system for entering and displaying ground taxi instructions
A system and method are provided for the efficient entry and display of ground taxi routes on an electronic airport map display. The system may include a touchscreen entry device, a display device, a computer, a map database, a vehicle position sensor and a transmitter/receiver. The system may be configured to check the ground taxi entries to ensure that each successive segment is contiguous with the last or next segment, and any gaps or discontinuities in the displayed taxi instructions may be annunciated. An intelligent display of next possible segments may be incorporated into the system.
Latest The Boeing Company Patents:
This patent application is a reissue application for commonly assigned U.S. Pat. No. 7,222,017, issued from U.S. patent application Ser. No. 10/870,630, filed on Jun. 17, 2004.
FIELD OF THE INVENTIONThe invention is generally related to systems and methods for tracking and planning vehicle movement, and specifically to airport map displays and to the entry and display of ground taxi routes.
BACKGROUNDAs the air travel system becomes saturated, airports are becoming more and more congested. At the busiest airports, it is not uncommon to have 50 or more aircraft taxiing to and from multiple active runways using complex routes involving many different taxiways. System capacity is at or near saturation even during good weather conditions. Ground taxi can add over one hour to travel time for any particular flight. Efficient, flexible and adaptive ground operations are essential to enhancing air travel performance. This is especially true during poor weather conditions. As visibility drops, the number of aircraft that can operate at a given airport decreases rapidly and those aircraft still operating must slow down so as not to miss a turn or a hold short point, or taxi across an active runway without clearance.
A variety of methods are currently in use for aircrews to navigate on the ground. Most of these methods involve receiving verbal instructions from air traffic control, writing them down and interpreting those instructions by looking at a paper map of the airport. To effectively use such methods, the pilot must direct attention from outside the aircraft to inside the aircraft, and simultaneously transition from verbal instructions to a visual interpretation of those instructions while looking at a paper airport diagram. During low visibility, the aircrew loses their ability to use forward and peripheral vision because ground references and other airport traffic become harder to see, forcing the aircrew to concentrate their attention outside the aircraft to ensure safe operations. Recently, some devices have enabled aircrews to electronically display and orient the airport map and even show the aircraft position on the map; however, entry and display of taxi route information could be enhanced. The invention is directed to overcoming one or more of the problems or disadvantages associated with the prior art.
SUMMARYAccording to one aspect of the invention, a method of entering and displaying ground movement instructions for a vehicle may include loading an electronic database of map data into an onboard computer. Entry of ground movement instructions into the onboard computer may be made by entering a series of ground movement segments. Each ground movement segment may be automatically checked for continuity with a previous segment, a subsequent segment, an initial vehicle position or a vehicle destination. An electronic map showing an area of operation for the vehicle may be displayed. Vehicle position data may be acquired and displayed on the electronic map and updated according to vehicle movement. Ground movement segments may be graphically and/or alphanumerically displayed on the electronic map and updated according to vehicle movement.
According to another aspect of the invention, a system for the entry, recall and/or display of ground movement instructions for a vehicle may include an electronic entry device, an electronic output device, a computer, an electronic database and a position determining device. The computer may contain a software program which analyzes ground movement segments for continuity and ensures that each ground movement segment connects with adjacent segments, an initial vehicle position and/or a destination. The invention may facilitate the speed and accuracy of the entry of ground movement instructions. Alternatively, the system may store preloaded taxi routes for recall. These preloaded taxi routes may be constructed manually by the aircrew, or downloaded from air traffic control through a data link. This system may be simulated on a desktop computer for training purposes.
The system and method according to one aspect of the invention facilitate aircraft ground movement route entry through a user entered series of ground movement segments, and check each segment by ensuring each segment is continuous with the currently selected segment, an adjoining initial position and/or an adjoining destination. The system may separately display the segments that are continuous or otherwise join with the currently selected segment (the currently selected segment may be either the last entered segment or the last selected segment). Speed and accuracy of ground movement segment entry may be enhanced by allowing the pilot to quickly locate the next possible segments. An embodiment of the invention automatically pans and zooms the display as ground movement segments are entered to center on and fully show the last entered segment and its intersection with all possible next segments, thereby reducing the amount of manual panning and zooming that might otherwise be required.
The features, functions, and advantages can be achieved independently in various embodiments of the present invention or may be combined in yet other embodiments.
An embodiment of the invention may have at least two different entry interface options; menu and graphical. As will be discussed in further detail when referring to the figures, the menu interface option allows the user to make an entry by selecting a predisplayed softkey. Softkeys are selectable areas on the input/output display screen 124 (
The graphical interface allows the user to make an entry by directly touching the segment on the map, or by placing a cursor on the segment, and confirming the selection by selecting the corresponding softkey generated by the computer with the cursor. As the user makes a selection, the system 20 automatically pans and zooms the display so as to fully display the last selected segment and its intersection(s) with any segment(s) that join the last selected segment. This prevents the user from having to pan and zoom the display manually to find the next segment. In addition, when the user makes a selection, the system 20 may automatically position the cursor in the menu or graphical interface in such a way as to facilitate the next selection by minimizing cursor movement to the next selection.
In the menu interface, the user selects segments from a set of softkeys, each of which represent an individual ground movement segment. The user may select the softkeys by either touching them, or placing the cursor over them and selecting the softkey with the cursor control device. The user has the option of selecting segments from a menu which may only display ground movement segments which join with the currently selected ground movement segment, an initial vehicle position and/or a vehicle destination. Alternatively, either the graphical or menu interface may be configured so as to allow creation and storage of taxi routes for recall. For example, Air Traffic Control may predefine a taxi route at an airport; the predefined taxi route may be stored in the system memory and recalled by the user, thereby accelerating the entry process.
Referring to
An electronic map database 24 may be resident in a memory 25 of the computer 26 and may be updatable. The electronic map database 24 may contain multiple airport layouts including, but not limited to, runways, taxiways, terminal and other permanent structures, parking locations, and run-up locations. An example of one such a database is Jeppesen's Electronic Flight Bag Airport Map.
A vehicle position sensor 28 may be used to supply the computer 26 with vehicle position information. The vehicle position sensor may include one or more of, a Global Positioning System (GPS), an inertial navigation system (INS), a terrestrial based navigation system (such as VOR or TACAN), and/or a manually input starting or current position. The computer 26 may be configured to receive position data from any other aircraft system (i.e., the flight management computer, the autopilot, etc.).
A transmitter/receiver 30 for the wireless transmittal and receipt of data may be connected to the computer 26 for data transfer between the aircraft and external sources. This data may include taxi instructions from Air Traffic Control (ATC), position data, Notices to Airmen (NOTAMs), runway/taxiway information, weather information, delay information, information from a dispatcher and/or any other type of data suitable for wireless transmittal/receipt. A cursor control device 32, such as a keyboard, a mouse, a touchpad, a joystick, or any other device suitable for controlling a cursor may be connected to the computer 26.
The aircraft starting location may be determined at 64. This may be accomplished many different ways. For example, one or more of a Global Positioning System (GPS), an inertial navigation system (INS), a terrestrial based navigation system, retrieval from another aircraft system, such as a Flight Management Computer (FMC) and a manually input starting position may be used to determine the aircraft starting location.
The computer 26 generates the map display, as shown at 66, using the map database 24 and displays the map and the starting position, as shown at 68, on the input/output device 22. The system 20 determines the current gate or runway, and/or nearby gates and/or runways at 69 by analyzing the map database 24 for all gates and/or runways within a predefined distance of the aircraft starting location. Those gates and/or runways may be displayed for selection. At 70, the system 20 determines all segments that join the starting position. Alternatively, if the user selects a gate or runway as a starting point, the system 20 determines all segments that join the selected gate or runway as shown at 70. Segments that join the starting position may be determined by analyzing all segments for points in common with the starting position. The joining segments may be displayed separately, as shown at 72, on the input/output device 22 for user selection.
The user may select the next segment, as shown at 74, for example by touching the selection on the screen, or by positioning a cursor over the selection and activating it. The selected segment may be checked at 76 to ensure that it joins the previous segment and may be annunciated if the selected segment does not join the previous segment. The annunciation may be visual, tactile and/or aural cue. The process may be repeated for the next segment, as shown at 78. If a selection is entered between two previously entered segments, the selected segment may be checked at 76 to ensure that it joins the previous and subsequent segments and may be annunciated if the selected segment does not join both adjacent segments. The system 20 monitors aircraft movement, as shown at 80, and may update the map display and taxi instructions to account for movement of the vehicle as indicated at 82.
Working counterclockwise around
When the Route softkey 220a is selected in the graphical mode, the segments that do not join the currently selected segment may be disabled for selection, allowing only the graphical selection of segments that join the currently selected segment. An alternative embodiment of intelligent entry in the graphical mode comprises highlighting all segments and/or displaying all associated softkeys for segments which join the currently selected segment. Another alternate embodiment comprises displaying a list of all segments that join the currently selected segment, similar to the menu interface, and selecting a segment for entry directly from the list. This may also be accomplished by graphically highlighting the map segment selected from the list and displaying the associated segment softkey in the map area near the segment.
Sub-menus 222 and sub-sub-menus 223 (FIG. 6), may be displayed when more information is needed. A small square on the taxiway sub-menu 222 softkey “H” 222a indicates that there is a sub-sub-menu available. Alternatively, an asterisk indicates a sub-sub-menu, containing a partial taxiway set, is available which displays only those ground movement segments which join the current segment. One instance in which sub-sub-menus may be employed is in the case of taxiway identifiers with subsets (H, H1, H2, etc.) 223a, 223b, 223c, or numerically identical runway identifiers With right, left, center, or any other alphanumerical designations. A Runways softkey 22c may display sub-menus for all runways for a given airport. A Taxiways softkey 22b may display sub-menus for all taxiways for a given airport. A Concourses softkey 220d may display sub-menus for all the gates and/or parking locations at a given airport.
Selecting the Hold softkey 220e allows the user to input at least one hold short instruction. Aircraft crossing of a hold short point may be annunciated. The annunciation may be a visual, tactile and/or aural cue.
A Route sub-menu 222 may show runways and taxiways available (222a, b, c, d, e) that connect with the currently selected ground movement segment. A Route display in the lower left-hand corner of the input/output display device 124 of
In the lower right-hand corner of the input/output display device 124 is a View menu 227. A Center softkey 234 toggles a display center between ownship position and a center of the last selected segment or manual pan. A Zoom softkey 230 allows the user to change the scale of the displayed map. The system 20 may automatically declutter the symbology on the display by using an impingement algorithm. Each symbol may be assigned a location and an area on the screen, and as the scale decreases and symbol areas begin to overlap, the software program may selectively remove certain symbols based on a preprogrammed priority. This removes excess clutter and makes the display easier to read. The system 20 incorporates a manually activated simultaneous pan and zoom feature called local area zoom. When the user “double taps” the input/output display device, similar to double clicking the mouse on a desktop computer, the system 20 may automatically increase the magnification by a preset amount and center the magnified display on the point the user double tapped. The same local area zoom feature can be selected by placing the cursor at a point and tapping or otherwise activating the cursor control device twice rapidly in succession. In both touch and cursor implementations, a subsequent “double tap” restores the display center and scale to that which existed before the local area zoom was activated. A Pan softkey 228 allows the user to pan the display in the selected direction in order to see some map feature and/or more of the taxi route without zooming the map scale out to a larger scale.
As shown in
In an alternate embodiment of the graphical interface entry, the route may be entered as a series of discrete sub-segments (i.e. short dashed lines or dots) collocated with the map segment. These sub-segments may appear/display when the route sub-segment is touched or the cursor is moved/passes over the sub-segment in the approximate direction of the overall segment. In this alternate embodiment, which may differ for touch or cursor interface, the segment identifier may be displayed in the alphanumeric route line once some predetermined number of sub-segments are graphically displayed or selected. Sub-segments may be removed from the display by deleting the segment identifier from the alphanumeric route line, or by touching or passing the cursor over the displayed sub-segment.
Logical filtering and sub-segment display thresholds may be implemented to prevent unwanted nuisance display of, or deletion of sub-segments the cursor may pass over or which may be inadvertently touched. Selection of the displayed sub-segment and/or entry of the associated identifier in the alphanumeric route line may require positive confirmation such as, for example, cursor select switch activation. This alternate embodiment of graphical interface route entry may be facilitated by logic which automatically connects displayed sub-segments of joined segments. Thus a least one sub-segment per segment may be entered. Automatic connection of sub-segments eliminates the need for the user to connect sub-segments in adjacent segments which join one another, thus speeding up route entry.
Although the preferred embodiments of the invention have been disclosed for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed herein and in the accompanying claims. For example, other embodiments may include systems and methods according to the invention for use in connection with vehicles other than aircraft, such as automobiles, ships, mining vehicles, agricultural equipment, construction equipment, or any other vehicle capable of movement on, above, or below the surface of the earth.
Claims
1. A system for entry and display of at least one ground movement route for a vehicle, comprising:
- an electronic entry device for entry of a series of ground movement segments, the electronic entry device including a graphical interface that allows a user to select the ground movement segments from an electronically displayed map, wherein said entry device is operatively connected to an output device;
- a computer operatively connected to said electronic entry device and said output device, wherein said computer contains a software program which analyzes each instructions programming the computer to analyze individual ground movement segment segments in said series of a ground movement segments and ensures ensure that each said the individual ground movement segment joins segments join at least one of the following,: a previous segment, a subsequent segment, an initial vehicle position and a vehicle destination, and which automatically pans said electronically displayed map to center on at least one of a currently selected ground movement segment, said initial vehicle position and said vehicle destination;
- an electronic database including map data that can be accessed by said computer and used to generate the electronically displayed map; and
- a position determining device coupled to said computer.
2. A system according to claim 1, wherein said electronic entry device is at least one of a liquid crystal display (LCD), a cathode ray tube (CRT), a plasma display and a rear projection display.
3. A system according to claim 1, wherein said electronic entry device includes a touchscreen.
4. A system according to claim 1, wherein said position determining device includes at least one of a Global Positioning System (GPS), an inertial navigation system (INS), another aircraft system, a terrestrial based navigation system, and a manually input position.
5. A system according to claim 1, wherein said electronic entry device further includes a keyboard.
6. A system according to claim 1, wherein said electronic entry device further includes a cursor and a cursor control device.
7. A system according to claim 1, wherein said electronic entry device further includes speech recognition.
8. A system according to claim 1, wherein said electronic entry device uses a menu display for entry of said ground movement segments.
9. A system according to claim 1, wherein said system automatically changes the scale of said output device, to at least fully display a currently selected ground movement segment and intersections with said possible successive ground movement segments.
10. A system according to claim 1, wherein said output device separately displays ground movement segments that join at least one of, said previously entered ground movement segment, said subsequent ground movement segment, said initial vehicle position and said vehicle destination.
11. A system according to claim 10, wherein said system automatically pans said electronically displayed map to include at least one intersection with at least one of said previous ground movement segment, said initial vehicle position and said vehicle destination.
12. A system according to claim 11, wherein said system automatically pans said electronically displayed map to center on said currently selected ground movement segment and at least one of said previous ground movement segment, said initial vehicle position and said vehicle destination.
13. A system according to claim 12, wherein said system automatically pans said electronically displayed map to center on an intersection of at least two of, a last entered ground movement segment, a last selected ground movement segment, and said previous segment.
14. A system according to claim 1, further comprising a simultaneous pan and zoom feature.
15. A system according to claim 1, further comprising a transmitter and receiver for the wireless transmittal and receipt of data.
16. A system according to claim 1, wherein said electronic database includes predefined ground movement routes.
17. A system according to claim 1, wherein said electronic entry device is adapted to facilitate at least one of creation, storage and recall of ground movement segment routes.
18. A system according to claim 1, wherein said output device is at least one of, a cathode ray tube (CRT) type display, a liquid crystal (LCD) type display, a head-up (HUD) type display, a plasma display and a rear projection display.
19. A system according to claim 1, wherein said electronic entry device and said output device are simulated on a desktop computer.
20. A system according to claim 1, wherein the instructions program the computer to analyze the individual ground movement segments in the series of ground movement segments after the individual ground movement segments have been selected by the user.
3696671 | October 1972 | Steigleder et al. |
4147056 | April 3, 1979 | Muller |
4196474 | April 1, 1980 | Buchanan et al. |
4631678 | December 23, 1986 | Angermuller et al. |
4642775 | February 10, 1987 | Cline et al. |
4792906 | December 20, 1988 | King et al. |
4939661 | July 3, 1990 | Barker et al. |
5243339 | September 7, 1993 | Graham et al. |
5289185 | February 22, 1994 | Ramier et al. |
5329277 | July 12, 1994 | Dougan et al. |
5343395 | August 30, 1994 | Watts |
5475594 | December 12, 1995 | Oder et al. |
5519392 | May 21, 1996 | Oder et al. |
5519618 | May 21, 1996 | Kastner et al. |
5592198 | January 7, 1997 | Fagard et al. |
5593114 | January 14, 1997 | Ruhl |
5629691 | May 13, 1997 | Jain |
5715163 | February 3, 1998 | Bang et al. |
5736955 | April 7, 1998 | Roif |
5802492 | September 1, 1998 | DeLorme et al. |
5825306 | October 20, 1998 | Hiyokawa et al. |
5884219 | March 16, 1999 | Curtwright et al. |
5941930 | August 24, 1999 | Morimoto et al. |
5978715 | November 2, 1999 | Briffe et al. |
5983158 | November 9, 1999 | Suzuki et al. |
5995901 | November 30, 1999 | Owen et al. |
6067502 | May 23, 2000 | Hayashida et al. |
6075467 | June 13, 2000 | Ninagawa et al. |
6112141 | August 29, 2000 | Briffe et al. |
6163309 | December 19, 2000 | Weinert |
6181987 | January 30, 2001 | Deker et al. |
6199015 | March 6, 2001 | Curtwright et al. |
6246342 | June 12, 2001 | Vandevoorde et al. |
6289277 | September 11, 2001 | Feyereisen et al. |
6313759 | November 6, 2001 | Musland-Sipper |
6314363 | November 6, 2001 | Pilley et al. |
6314370 | November 6, 2001 | Curtright |
6362750 | March 26, 2002 | Castor et al. |
6381538 | April 30, 2002 | Robinson et al. |
6405975 | June 18, 2002 | Sankrithi et al. |
6424909 | July 23, 2002 | Kusano et al. |
6449556 | September 10, 2002 | Pauly |
6462697 | October 8, 2002 | Klamer et al. |
6512527 | January 28, 2003 | Barber et al. |
6542796 | April 1, 2003 | Gibbs et al. |
6545601 | April 8, 2003 | Monroe |
6553307 | April 22, 2003 | Stratton et al. |
6571166 | May 27, 2003 | Johnson et al. |
6606563 | August 12, 2003 | Corcoran, III |
6633810 | October 14, 2003 | Qureshi et al. |
6690299 | February 10, 2004 | Suiter |
6694249 | February 17, 2004 | Anderson et al. |
6707475 | March 16, 2004 | Snyder |
6711475 | March 23, 2004 | Murphy et al. |
6721640 | April 13, 2004 | Glenn et al. |
6745113 | June 1, 2004 | Griffin, III et al. |
6751545 | June 15, 2004 | Walter |
6753891 | June 22, 2004 | Chohan et al. |
6789010 | September 7, 2004 | Walter |
6812858 | November 2, 2004 | Griffin, III |
6816780 | November 9, 2004 | Naimer et al. |
6856864 | February 15, 2005 | Gibbs et al. |
6862519 | March 1, 2005 | Walter |
6871124 | March 22, 2005 | McElreath |
6898492 | May 24, 2005 | De Leon et al. |
6909967 | June 21, 2005 | Hirano et al. |
6957130 | October 18, 2005 | Horvath et al. |
6980198 | December 27, 2005 | Gyde et al. |
6992596 | January 31, 2006 | Cole et al. |
6992597 | January 31, 2006 | Rogers et al. |
7030892 | April 18, 2006 | Gyde et al. |
7039505 | May 2, 2006 | Southard et al. |
7049953 | May 23, 2006 | Monroe |
7142131 | November 28, 2006 | Sikora |
7148814 | December 12, 2006 | Sikora et al. |
7177731 | February 13, 2007 | Sandell et al. |
7188007 | March 6, 2007 | Boorman et al. |
7203577 | April 10, 2007 | Gunn et al. |
7230632 | June 12, 2007 | Coldefy et al. |
7256710 | August 14, 2007 | Mumaw et al. |
7345693 | March 18, 2008 | Coldefy et al. |
20020099528 | July 25, 2002 | Hett |
20020120392 | August 29, 2002 | Stratton et al. |
20030009278 | January 9, 2003 | Mallet et al. |
20030045994 | March 6, 2003 | Stratton et al. |
20040006412 | January 8, 2004 | Doose et al. |
20040059474 | March 25, 2004 | Boorman et al. |
20040059497 | March 25, 2004 | Sankrithi |
20050090969 | April 28, 2005 | Siok et al. |
20050143871 | June 30, 2005 | Boorman et al. |
20050178903 | August 18, 2005 | Boorman et al. |
20050192717 | September 1, 2005 | Tafs et al. |
20050203675 | September 15, 2005 | Griffin et al. |
20050222721 | October 6, 2005 | Chen et al. |
20050228674 | October 13, 2005 | Gunn et al. |
20050231390 | October 20, 2005 | Crane et al. |
4140406 | June 1993 | DE |
WO-0224530 | March 2002 | WO |
- Hooey et al., “Integrating datalink andcockpit display technologies into current and future taxi operations,” Digital Avionics Systems Conferences, V2, 8 pages (2000).
- McCann, R.S., et al., “Enhancing Taxi Performance Under Low Visibility: Are Moving Maps Enough?” Paper Presenting at the Human Factors and Ergonomics Society 41st Annual Meeting, 1997, Santa Monica, CA.
- Andre, A.D. “Information Requirements for Low-Visibility Taxi Operations: What Pilots Say.” 8th International Symposium on Aviation Psychology, 1995, Columbus, OH.
- McCann, R. S., Andre, A. D., Begault, D., Foyle, D. D., & Wenzel, E. (1997), E. (1997). Enhancing taxi performance underlow visibility: are moving maps enough? Paper presentedd at the Human Factors and Ergonomics Society 41st Annual Meeting, Santa Monica, CA.
- McCann, R. S., Andre, A. D., Foyle, D. C., & Battiste, V. (1996). Advanced navigation aids in the flight deck: Effects on ground taxi performance under low visibility conditions. Paper presented at eh World Aviation Congress, Los Angeles, CA.
- Batson V.M. et al., “Navigating the Airport Surface: Electronic vs. Paper Maps,” AIAA/IEEE Digital Avionics Systems Conference, 13th DASC, Phoenix, AZ, USA Oct. 30-Nov. 3, 1994, pp. 515-520, XP001012787, 1994, New York, NY, USA, IEEE, USA ISBN-0-7803-2425-0, pp. 517, right-hand column, Paragraph 1.
- Hutchins, Edwin, “The Integrated Mode Management Interface,” Final report for grant #NCC 2-591 from the Ames Research Center of the National Aeronautices and Space Administration in the Aviation Society/Automation Program, pp. 1-50 and Appendixes 1-5.
- Jones, D.R. et al., “Airport Surface Movement Technologies, Atlanta Demonstration Overview,” Proceedings of 17th Digital Avionics Systems Conference, Bellevue, WA USA<Oct. 31-Nov. 7, 1998, pp. F-21/1-10, vol. 2, New York, NY, USA, IEEE, USA. ISGN:0-7803-5086-3, pp. F21/6-7.
- Jones, D.R., et al., “Flight Demonstration of Integrated Airport Surface Automation Concepts,” Proceedings of the 14th Digital Avionics Systems Conference, Cambridge, MA, USA, Nov. 5-9, 1995, pp. 77-82, XP002241831, 1995, New York, NY, USA<IEEE, USA. ISBN:0-7803-3050-1, p. 79, left-hand column, Paragraph 1, p. 79, right hand column, paragraph 3, figure 2.
- Lindenfeld, Ron, “What is an FMS?” <http://www.ultranet.com/˜marzgold/FAQ-FMS.html>, Accessed Jun. 3, 2002, pp. 1-5.
- McCann, R.S. et al. “Advanced Navigation Aids in the Flight Deck: Effects on Ground Taxi Performance Under Low Visibility Conditions.” Paper Presented at the World Aviation Congress, 1996, Los Angeles, CA.
- Theunissen, E. et al. “Design and Evaluation of Taxi Navigation Displays.” Paper presented at the Proceeding of the 21st Digital Avionics Systems Conference, 2002, Irvine, CA.
Type: Grant
Filed: Jun 13, 2008
Date of Patent: Jun 22, 2010
Assignee: The Boeing Company (Chicago, IL)
Inventors: Samuel T. Clark (Federal Way, WA), Wayne R. Jones (Bellevue, WA), Michael P. Snow (Langley, WA), Eddie J. Trujillo (Snohamish, WA)
Primary Examiner: Tan Q. Nguyen
Attorney: Perkins Coie LLP
Application Number: 12/139,416
International Classification: G08G 5/06 (20060101); G06F 19/00 (20060101);