Method and system for enhanced detail-in-context viewing

An improved method for display of a transitional region of interest while transitioning between a first region of interest and a second region of interest within visual information on a display screen of a computer. The method comprising the steps of applying a transitional transformation to the visual information and displaying the transitional transformed visual information on the display screen. The transitional transformation requiring a reduced calculation for transforming the visual information in the transitional region.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description

This application is a continuation of U.S. patent application Ser. No. 10/021,313, filed Dec. 19, 2001, now U.S. Pat. No. 7,106,349 the disclosure of which is incorporated herein by reference.

This application claims priority from Canadian Patent Application No. 2,328,795, filed Dec. 19, 2000. The invention relates to the field of computer graphics processing, more specifically, the invention relates to the display of visual information including portable document format (PDF) files on a display screen of a computer.

BACKGROUND OF THE INVENTION

Display screens are the primary visual display interface to a computer. One problem with these visual display screens is that they are limited in size, thus presenting a challenge to user interface design, particularly when larger amounts of information is to be displayed. This problem is normally referred to as the “screen real estate problem”.

Well known solutions to this problem include panning, zooming, scrolling or combinations thereof. While these solutions are suitable for a large number of visual display applications, these solutions become less effective where the visual information is spatially related, such as maps, newspapers and such like. In this type of information display, panning, zooming and/or scrolling is not as effective as much of the context of the panned, zoomed or scrolled display is hidden.

A recent solution to this problem is the application of “detail-in-context” presentation techniques to the display of large surface area media, such as maps. Detail-in-context presentation techniques take on many forms and are useful for displaying large amounts of information on limited size computer screens, and are becoming more important with the increased use of hand held computing devices such as personal digital assistance (PDA's) and cell phones.

Now, in the detail-in-context discourse, differentiation is often made between the terms “representation” and “presentation”. A representation is a formal system, or mapping, for specifying raw information or data that is stored in a computer or data processing system. For example, a digital map of a city is a representation of raw data including street names and the relative geographic location of streets and utilities. Such a representation may be displayed visually on computer screen or printed on paper. On the other hand, a presentation is a spatial organization of a given representation that is appropriate for the task at hand. Thus, a presentation of a representation organizes such things as the point of view and the relative emphasis of different parts or regions of the representation. For example, a digital map of a city may be presented with a region magnified to reveal street names.

Detail-in-context presentations allow for magnification of a particular region of interest (the “focal region”) in a representation while preserving visibility of the surrounding representation. In other words, in detail-in-context presentations focal regions are presented with an increased level of detail without the removal of contextual information from the original representation. In general, a detail-in-context presentation may be considered as a distorted view (or distortion) of a portion of the original representation where the distortion is the result of the application of a “lens” like distortion function to the original representation. A detailed review of various detail-in-context presentation techniques may be found in a publication by Carpendale, Marianne S. T., titled “A Framework for Elastic Presentation Space” (Burnaby, British Columbia: Simon Fraser University, 1999) and incorporated herein by reference.

Thus, detail-in-context presentations of data using techniques such as Elastic Presentation Space (“EPS”) are useful in presenting large amounts of information on limited-size display surfaces. Detail-in-context views allow magnification of a particular region of interest (the “focal region”) in a data presentation while preserving visibility of the surrounding information. Development of increasingly powerful computing devices has lead to new possibilities for applications of detail-in-context viewing. At the same time, the development of new compact, mobile computing platforms such as handheld computers, typically with reduced computing performance and smaller display surfaces as compared to desktop or mainframe computers, has motivated research into alternate implementation techniques and performance improvements to detail-in-context data presentation technologies. Consequently, one shortcoming of current EPS graphics technology and detail-in-context presentation methods is that being computationally inefficient, they are not optimized for newer compact, mobile computing platforms (e.g. handheld computers) that have reduced computing power. Considerable computer processing is required to distort a given presentation so as to produce a detail-in-context “lens”, and to move the lens through the data with adequate performance to provide an acceptable level of interactivity to the user.

A need therefore exists for a method and system that will allow for the effective implementation of EPS graphics technology on computing platforms having variable levels of computing power. Consequently, it is an object of the present invention to obviate or mitigate at least some of the above-mentioned disadvantages.

SUMMARY OF THE INVENTION

In accordance with an aspect of the invention, there is provided an improved method for display of a transitional region of interest while transitioning between a first region of interest and a second region of interest within visual information on a display screen of a computer. The method comprises the steps of: applying a transitional transformation to the visual information, the transitional transformation requiring reduced calculations for transforming the visual information to transitional transformed visual information; and displaying the transitional transformed visual information on the display screen.

In accordance with a further aspect of the invention, there is provided a method for displaying the transition between regions of interest within visual information on a display screen of a computer. The method comprises the steps of: selecting a first region of interest within the visual information; applying a first transformation to the visual information to improve the visual detail in the first region of interest; and displaying the first transformed visual information on the display screen. Selecting a second region of interest within the visual information applying a second transformation to the visual information to improve the visual detail in the second region of interest; and displaying the second transformed visual information on the display screen. Selecting a transitional region of interest on a path between the first region of interest and the second region of interest within the visual information; applying a transitional transformation to the visual information to improve the visual detail in a predetermined portion of the transitional region of interest; and displaying the transitional transformed visual information on the display screen.

In accordance with yet a further aspect of the invention, there is provided a method for displaying visual information on a display screen of a computer. The method comprising the steps of: selecting a region of interest within the visual information; applying a transformation to the visual information for improving visual detail and presentation quality in the region of interest, the transformation for overlaying the visual information on a lens surface, the lens surface having predetermined shape for the region of interest. Projecting the lens surface with the overlaid visual information onto a plane. Increasing resolution of the visual information in the region of interest. Decreasing resolution of the visual information outside the region of interest, and displaying the transformed visual information on the display screen.

In accordance with yet a further aspect of the invention, there is provided a data carrier having stored thereon instructions for improving display of a transitional region while transitioning between a first region of interest and a second region of interest within visual information on a display screen of a computer. The instructions comprise the steps of: applying a transitional transformation to the visual information, the transitional transformation having a reduced a number of calculations required for rendering the transitional transformed visual information; and displaying the transitional transformed visual information on the display screen.

In accordance with yet a further aspect of the invention, there is provided a method for displaying visual information in portable document format (PDF) files on a display screen of a computer is provided. The method comprising the steps of: scaling the visual information to produce a scaled representation to fit on the display screen, the scaled representation generally containing the entire content of the visual information; selecting a region of interest within the scaled representation; applying a transformation to the scaled representation to improve the visual detail in the region of interest; and, displaying the transformed representation on the display screen. The step of applying a transformation further comprising the steps of: creating a lens surface of predetermined shape for the region of interest; and, creating a transformed representation by overlaying the scaled representation on the lens surface and projecting the lens surface with the overlaid scaled representation onto a plane.

In accordance with yet a further aspect of the invention, there is provided the use of a method for displaying visual information on a display screen of a computer for displaying visual information in portable document format (PDF) files is provided. The method comprising the steps of: scaling the visual information to produce a scaled representation to fit on the display screen, the scaled representation generally containing the entire content of the visual information; selecting a region of interest within the scaled representation; applying a transformation to the scaled representation to improve the visual detail in the region of interest; and, displaying the transformed representation on the display screen.

According to one aspect of the invention, there is provided a method for generating a presentation of a region of interest in an original image for display on a display screen, comprising: applying a lens to a border region of the region of interest in the original image by displacing the border region onto the lens and projecting the displacing onto a plane in a uniform direction aligned with a viewpoint, wherein at least one of the lens and the viewpoint remain constant while transitioning between first and second locations for the region of interest in the original image. The method may further include displaying the presentation on the display screen. The lens may have a magnified region for the border region. And, the magnified region may have a diminishing magnification.

According to another aspect of the invention, there is provided a system for generating a presentation of a region of interest in an original image for display on a display screen, comprising: a processor coupled to memory and the display screen; and, modules within the memory and executed by the processor, the modules including: a module for applying a lens to a border region of the region of interest in the original image by displacing the border region onto the lens and projecting the displacing onto a plane in a uniform direction aligned with a viewpoint, wherein at least one of the lens and the viewpoint remain constant while transitioning between first and second locations for the region of interest in the original image. The system may further include a module for displaying the presentation on the display screen. The lens may have a magnified region for the border region. And, the magnified region may have a diminishing magnification.

According to another aspect of the invention, there is provided a system for displaying a region of interest while transitioning between first and second locations for the region of interest within visual information on a display screen, comprising: a processor coupled to memory and the display screen; and, modules within the memory and executed by the processor, the modules including: a module for applying a transformation to a border region of the region of interest in the visual information to improve visual detail in the border region of the region of interest by: establishing a lens surface for the border region having a lens surface shape; and, generating a presentation by overlaying the visual information on the lens surface and projecting the lens surface with the visual information onto a plane in a uniform direction aligned with a viewpoint, wherein at least one of the lens surface shape and the viewpoint remain constant during the transitioning between the first and second locations; and, a module for displaying the presentation on the display screen. The transformation may transform only a portion of the visual information in the region of interest. The portion may be the border of the region of interest. The border region may be a periphery of the region of interest. The lens surface for the border region may be defined by a distortion function. The lens surface for the border region may be defined by a predetermined portion of a lens surface for rendering the region of interest. The predetermined portion may be a border region of the lens surface for rendering the region of interest. The predetermined portion may be a periphery of the lens surface for rendering the region of interest. The system may further include a module for establishing a path between the first and second locations for the region of interest. The path may be established automatically by a predetermined program. The path may be established by user selection. The system may further include a module for at least one of: increasing resolution of the visual information in the region of interest; and, decreasing resolution of the visual information outside the region of interest. The transformation may provide a smooth transition to the region of interest from an adjacent region by blending increased and decreased resolution visual information in predefined regions adjacent to the region of interest. The blending may be performed by averaging the increased and decreased resolution visual information. The blending may be performed by admixing the increased and decreased resolution visual information. The system may further include a module for transmitting the presentation over a network to a remote computer. The visual information may include a portable document format (PDF) document. The lens surface for rendering the region of interest may be defined by the distortion function. The region of interest, the lens surface, and the lens surface shape may include a plurality of regions of interest, a plurality of lens surfaces, and a plurality of lens surface shapes, respectively. The visual information may include one or more of newspapers, magazines, telephone directories, and maps. The visual information may include web page content. The display screen may be contained in a handheld device. The visual information may be a newspaper page. The newspaper page may include one or more of a plurality of headlines, columns, articles, graphics, and advertisements. The region of interest may include one or more of a headline, a column, an article, a graphic, and an advertisement. The lens surface shape may have a shape corresponding to that of the region of interest. The lens surface shape may have a shape corresponding to a column. The transformation may increase the font size within a portion of the column. The lens surface shape may be tapered to provide a continuous transition on at least one side of the portion of the column to undistorted text. And, the system may further include a module for scaling the visual information to fit on the display screen.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention may best be understood by referring to the following description and accompanying drawings which illustrate the invention. In the drawings:

FIG. 1 is a perspective view of a 3D perspective viewing frustum in accordance with known elastic presentation space graphics technology;

FIG. 2 is a cross-sectional view of a presentation in accordance with known elastic presentation space graphics technology;

FIG. 3 is a block diagram of an exemplary data processing system for implementing an embodiment of the invention;

FIG. 4 is a screen capture of a PDF file for a newspaper page that has been shrunk to fit a display surface in accordance with one embodiment of the invention; and,

FIG. 5 is a flow chart illustrating a general method for displaying visual information in portable document format (PDF) files on a display screen of a computer in accordance with one embodiment of the invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

In the following description, numerous specific details are set forth to provide a thorough understanding of the invention. However, it is understood that the invention may be practiced without these specific details. In other instances, well-known software, circuits, structures and techniques have not been described or shown in detail in order not to obscure the invention. The term “data processing system” is used herein to refer to any machine for processing data, including the computer systems and network arrangements described herein. The term “PDF” (Portable Document Format) is used herein to refer to a file format that captures all the elements of a printed document as an electronic image that a user can view, navigate, print, or forward to someone else. The term “Elastic Presentation Space” or “EPS” is used herein to refer to techniques that allow for the adjustment of a visual presentation without interfering with the information content of the representation. The adjective “elastic” is included in the term as it implies the capability of stretching and deformation and subsequent return to an original shape. EPS graphics technology is described by Carpendale in A Framework for Elastic Presentation Space (Carpendale, Marianne S. T., A Framework for Elastic Presentation Space (Burnaby, British Columbia: Simon Fraser University, 1999)) which is incorporated herein by reference. In EPS graphics technology, a two-dimensional visual representation is placed onto a surface; this surface is placed in three-dimensional space; the surface, containing the representation, is viewed through perspective projection; and the surface is manipulated to effect the reorganization of image details. The presentation transformation is separated into two steps: surface manipulation or distortion and perspective projection. In the drawings, like numerals refer to like structures or processes. Referring to FIG. 1, there is shown a perspective view 100 of a 3D perspective viewing frustum 220 in accordance with known elastic presentation space (“EPS”) graphics technology. In EPS, detail-in-context views of 2D visual representations are created with sight-line aligned distortions of a 2D information presentation surface within a 3D perspective viewing frustum 220. In EPS, magnification of regions of interest and the accompanying compression of the context region to accommodate this change in scale are produced by the movement of regions of the surface towards the viewpoint 240 located at the apex of the pyramidal shape 220 containing the frustum. The process of projecting these transformed layouts via a perspective projection results in a new 2D layout which includes the zoomed and compressed regions. The use of the third dimension and perspective distortion to provide magnification in EPS provides a meaningful metaphor for the process of distorting the information presentation surface. The 3D manipulation of the information presentation surface in such a system is an intermediate step in the process of creating a new 2D layout of the information.

Referring to FIG. 2, there is shown a cross-sectional view of a presentation 200 in accordance with known EPS graphics technology. EPS graphics technology employs viewer-aligned perspective projections to produce detail-in-context presentations in a reference view plane 201 which may be viewed on a display. Undistorted 2D data points are located in a basal plane 210 of a 3D perspective viewing volume or frustum 220 which is defined by extreme rays 221 and 222 and the basal plane 210. A viewpoint (“VP”) 240 is located above the centre point of the basal plane 210 and reference view plane 201. Points in the basal plane 210 are displaced upward onto a distorted surface 230 which is defined by a general 3D distortion function (i.e. a detail-in-context distortion basis function). The direction of the viewer-aligned perspective projection corresponding to the distorted surface 230 is indicated by the line FPo-FP 231 drawn from a point FPo 232 in the basal plane 210 through the point FP 233 which corresponds to the focus or focal region or focal point of the distorted surface 230.

To reiterate, EPS refers to a collection of know-how and techniques for performing “detail-in-context viewing” (also known as “multi-scale viewing” and “distortion viewing”) of information such as images, maps, and text, using a projection technique summarized below. EPS is applicable to multidimensional data and is well suited to implementation on a computer for dynamic detail-in-context display on an electronic display surface such as a monitor. In the case of two dimensional data, EPS is typically characterized by magnification of areas of an image where detail is desired, in combination with compression of a restricted range of areas of the remaining information (the “context”), the end result typically giving the appearance of a lens having been applied to the display surface. EPS has numerous advantages over conventional zoom, pan, and scroll technologies, including the capability of preserving the visibility of information outside the local region of interest.

In general, in EPS, the source image to be viewed is located in the basal plane. Magnification and compression are achieved through elevating elements of the source image relative to the basal plane, and then projecting the resultant distorted surface onto the reference view plane. EPS performs detail-in-context presentation of n-dimensional data through the use of a procedure wherein the data is mapped into a region in an (n+l) dimensional space, manipulated through perspective projections in the (n+l) dimensional space, and then finally transformed back into n-dimensional space for presentation.

For example, and referring to FIGS. 1 and 2, in two dimensions, EPS can be implemented through the projection of an image onto a reference plane 201 in the following manner. The source image is located on a basal plane 210, and those regions of interest 233 of the image for which magnification is desired are elevated so as to move them closer to a reference plane situated between the reference viewpoint 240 and the reference view plane (RVP) 201. Magnification of the “focal region” 233 closest to the RVP varies inversely with distance from the RVP 201. As shown in FIGS. 1 and 2, compression of regions outside the focal region 233 is a function of both distance from the RVP 201, and the gradient of the function describing the vertical distance from the RVP 201 with respect to horizontal distance from the focal region 233. The resultant combination of magnification and compression of the image as seen from the reference viewpoint 240 results in a lens-like effect similar to that of a magnifying glass applied to the image, and the resultant distorted image may be referred to as a “pliable display surface”. Hence, the various functions used to vary the magnification and compression of the image via vertical displacement from the basal plane 210 are described as lenses, lens types, or lens functions. Lens functions that describe basic lens types with point and circular focal regions, as well as certain more complex lenses and advanced capabilities such as folding, have previously been described by Carpendale.

System.

Referring to FIG, 3, there is shown a block diagram of an exemplary data processing system 300 for implementing an embodiment of the invention. The data processing system is suitable for implementing EPS technology and for viewing PDF files. The data processing system 300 includes an input device 310, a central processing unit or CPU 320, memory 330, and a display 340. The input device 310 may be a keyboard, mouse, trackball, or similar device. The CPU 320 may include dedicated coprocessors and memory devices. The memory 330 may include RAM, ROM, databases, or disk devices. And, the display 340 may include a computer screen or terminal device. The data processing system 300 has stored therein data representing sequences of instructions which when executed cause the method described herein to be performed. Of course, the data processing system 300 may contain additional software and hardware a description of which is not necessary for understanding the invention.

Presentation of PDF Files Using EPS.

According to one aspect of the invention, EPS is applied to the electronic and online (i.e. Internet) presentation of Portable Document Format (“PDF”) files. PDF is a file format that captures the elements of a printed document as an electronic image that a user can view, navigate, print, or forward to someone else. PDF files are created using software products such as Adobe Acrobat®. To view and use a PDF file, a product such as Adobe Acrobat Reader® is typically used. PDF files are especially useful for documents such as newspaper and magazine articles, product brochures, or flyers where it is desired to preserve the original graphic appearance online. For example, a PDF file may be used for the online distribution of a printed document where it is desirable to preserve its printed appearance.

EPS and detail-in-context viewing can be used to enhance the viewing of PDF file. This is affected by the electronic scaling of the document content to a size that allows presentation of the full content on the display surface, with the use of specialized EPS lenses to enlarge regions of interest 233 to make them readable to the user. This method can be used to achieve the more effective presentation of PDF file content on small display surfaces including handheld computers. This aspect of the invention can be implemented with pre-placed EPS lenses on important content components including headlines, feature articles, tables of contents, and advertisements. Interaction with the reader is such that articles in the reader's region of interest 233 are enlarged automatically via EPS lenses of complex shape to suit the shape of the article or other area of interest.

Referring to FIG. 4, there is shown a screen capture 400 of a PDF file for a newspaper page that has been effectively shrunk to fit a display surface 340 according to one embodiment of the invention. A lens 410 has been used in the fifth column to increase the font size in the reader's region of interest 233. The top 420 and bottom 430 of the lens 410 are tapered to provide a continuous transition to the unmagnified text 440. Partial overwriting of neighboring columns 450 and images 460 by the lens 410, rather than a lateral distortion, is performed to blend the lens 410 into the undistorted regions 470, and provide enough space for the lens 410 while preserving the spatial orientation of the neighboring columns.

The implementation of pre-placed lenses can be achieved as follows. In order to provide the user with an immediate view of certain regions of a file, items of interest such as article headlines, whole articles, or advertisements can have lenses 410 in place when the document is first viewed. This can be implemented, for example, through the use of special lens locating information (i.e. locating tags) embedded within the source file or in a separate data layer, indicating the characteristics, location and/or bounds of the lens.

Method and Use.

Referring to FIG. 5, there is shown a flow chart 500 illustrating a general method for displaying visual information in portable document format (PDF) files on a display screen of a computer according to one embodiment of the invention. At step 501, the method starts. At step 502, the visual information is scaled to produce a scaled representation to fit on the display screen. The scaled representation generally contains the entire content of the visual information. At step 503, a region of interest is selected within the scaled representation. At step 504, a transformation is applied to the scaled representation to improve the visual detail in the region of interest. At step 505, the transformed representation is displayed on the display screen. At step 506, the method ends. Thus, elastic presentation space methodology can be used for displaying visual information in portable document format (PDF) files on a display screen of a computer.

Restricted Rendering of Lens During Lens Motion.

According to another aspect of the invention, a restricted portion of the region of interest (i.e. the “lens”) 233, for example the border or periphery 420, 430 of a lens 410, is rendered to a display 340 during the movement of the lens about the data space. The movement of the lens 410 may be user initiated or automated. By rendering only a portion of the lens 410, the computations required for lens movement and rendering are minimized while a presentation of the changing location of the lens is maintained. When movement of the lens ceases, by user or automated means, a full rendering of the lens in its new location can be displayed. In this way, the number of computations required during the movement of the lens 410 is reduced and hence performance is improved which is especially important for systems 300 with limited computational speed.

Blending and Selective Use of Data at Multiple Resolutions.

To improve detail-in-context presentation quality, an increase in the spatial resolution or level of detail within the region of interest 233, 410 can be provided as can a smooth visual transition from the region of interest to surrounding regions 440, 470.

According to another aspect of the invention, an increase in resolution within the region of interest 233, 410 of a detail-in-context presentation is provided by the selective high resolution rendering to a display 340 of data within the region of interest 233, 410 and neighbouring regions 420, 430 of a detail-in-context lens while the remaining data 440, 470 in the presentation is rendered at low resolution. In this way, resolution within and about the region of interest 233, 410 can be increased with a minimum of computing resources (i.e. processing time and processor memory).

According to another aspect of the invention, a smooth visual transition from the region of interest 233, 410 to surrounding regions 440, 470 is provided by the blending of low and high resolution regions 410, 420, 430, 440, 470. This blending can be accomplished by averaging or admixing of the high and low resolution regions described above. In this way, a smooth visual transition can be provided from the region of interest to surrounding regions with a minimum of computing resources (i.e. processing time and processor memory).

In the case where the client device on which the data is viewed is located apart from the data source (e.g. connected via the Internet), it is an advantage of the present invention that by increasing the resolution within the region of interest and smoothing the visual transition from the region of interest to surrounding regions as described, the amount of data that has to be transferred from the data source (e.g. server) to the viewer (e.g. client) is minimized.

Computer Software Product.

The sequences of instructions which when executed cause the method described herein to be performed by the exemplary data processing system of FIG. 3 can be contained in a computer software product according to one embodiment of the invention. This computer software product can be loaded into and run by the exemplary data processing system of FIG. 3.

Integrated Circuit Product.

The sequences of instructions which when executed cause the method described herein to be performed by the exemplary data processing system of FIG. 3 can be contained in an integrated circuit product including a coprocessor or memory according to one embodiment of the invention. This integrated circuit product can be installed in the exemplary data processing system of FIG. 3.

Although the invention has been described with reference to certain specific embodiments, various modifications thereof will be apparent to those skilled in the art without departing from the spirit and scope of the invention as outlined in the claims appended hereto.

Claims

1. A method for generating a presentation of a region of interest in an original image for display on a display screen, comprising:

applying a lens to a border region of the region of interest in the original image by displacing the border region onto the lens and projecting the displacing onto a plane in a uniform direction aligned with a viewpoint, wherein the lens remains constant while transitioning between first and second locations for the region of interest in the original image; and,
displaying the presentation on the display screen.

2. The method of claim 1 wherein the viewpoint remains constant while transitioning between the first and second locations.

3. The method of claim 2 wherein the lens has a magnified region for the border region.

4. The method of claim 3 wherein the magnified region has a diminishing magnification.

5. A system for generating a presentation of a region of interest in an original image for display on a display screen, comprising:

a processor coupled to memory and the display screen; and,
modules within the memory and executed by the processor, the modules including: a module for applying a lens to a border region of the region of interest in the original image by displacing the border region onto the lens and projecting the displacing onto a plane in a uniform direction aligned with a viewpoint, wherein the viewpoint remains constant while transitioning between first and second locations for the region of interest in the original image; and,
a module for displaying the presentation on the display screen.

6. The system of claim 5 wherein the lens remains constant while transitioning between the first and second locations.

7. The system of claim 6 wherein the lens has a magnified region for the border region.

8. The system of claim 7 wherein the magnified region has a diminishing magnification.

9. A system for displaying a region of interest while transitioning between first and second locations for the region of interest within visual information on a display screen, comprising:

a processor coupled to memory and the display screen; and,
modules within the memory and executed by the processor, the modules including:
a module for applying a transformation to a border region of the region of interest in the visual information to improve visual detail in the border region of the region of interest by:
establishing a lens surface for the border region having a lens surface shape; and, generating a presentation by overlaying the visual information on the lens surface and projecting the lens surface with the visual information onto a plane in a uniform direction aligned with a viewpoint, wherein at least one of the lens surface shape and the viewpoint remain constant during the transitioning between the first and second locations; and, a module for displaying the presentation on the display screen.

10. The system of claim 9 wherein the transformation transforms only a portion of the visual information in the region of interest.

11. The system of claim 10 wherein the portion is the border of the region of interest.

12. The system of claim 9 wherein the border region is a periphery of the region of interest.

13. The system of claim 9 wherein the lens surface for the border region is defined by a distortion function.

14. The system of claim 9 wherein the lens surface for the border region is defined by a predetermined portion of a lens surface for rendering the region of interest.

15. The system of claim 14 wherein the predetermined portion is a border region of the lens surface for rendering the region of interest.

16. The system of claim 15 wherein the predetermined portion is a periphery of the lens surface for rendering the region of interest.

17. The system of claim 14 wherein the lens surface for rendering the region of interest is defined by the distortion function.

18. The system of claim 9 and further comprising a module for establishing a path between the first and second locations for the region of interest.

19. The system of claim 18 wherein the path is established automatically by a predetermined program.

20. The system of claim 18 wherein the path is established by user selection.

21. The system of claim 9 and further comprising a module for at least one of: increasing resolution of the visual information in the region of interest; and, decreasing resolution of the visual information outside the region of interest.

22. The system of claim 21 wherein the transformation provides a smooth transition to the region of interest from an adjacent region by blending increased and decreased resolution visual information in predefined regions adjacent to the region of interest.

23. The system of claim 22 wherein the blending is performed by averaging the increased and decreased resolution visual information.

24. The system of claim 22 wherein the blending is performed by admixing the increased and decreased resolution visual information.

25. The system of claim 9 and further comprising a module for transmitting the presentation over a network to a remote computer.

26. The system of claim 9 wherein the visual information includes a portable document format (PDF) document.

27. The system of claim 26 and further comprising a module for scaling the visual information to fit on the display screen.

28. The system of claim 9 wherein the region of interest, the lens surface, and the lens surface shape include a plurality of regions of interest, a plurality of lens surfaces, and a plurality of lens surface shapes, respectively.

29. The system of claim 9 wherein the visual information includes one or more of newspapers, magazines, telephone directories, and maps.

30. The system of claim 9 wherein the visual information includes web page content.

31. The system of claim 9 wherein the display screen is contained in a handheld device.

32. The system of claim 9 wherein the visual information is a newspaper page.

33. The system of claim 32 wherein the newspaper page includes one or more of a plurality of headlines, columns, articles, graphics, and advertisements.

34. The system of claim 33 wherein the region of interest includes one or more of a headline, a column, an article, a graphic, and an advertisement.

35. The system of claim 34 wherein the lens surface shape has a shape corresponding to that of the region of interest.

36. The system of claim 35 wherein the lens surface shape has a shape corresponding to a column.

37. The system of claim 36 wherein the transformation increases the font size within a portion of the column.

38. The system of claim 37 wherein the lens surface shape is tapered to provide a continuous transition on at least one side of the portion of the column to undistorted text.

39. A method comprising:

applying a function by a data processing system to give an appearance of a lens to a region in an original image; and
displaying a presentation of the appearance of the lens that keeps the appearance of the lens constant while transitioning between first and second locations for the region in the original image on a display screen of the data processing system,
wherein said displaying comprises rendering the appearance of the lens at a first resolution and rendering the original image outside of the lens at a second resolution that is lower than the first resolution.

40. The method of claim 39 wherein the applying includes displacing a border region of the region in the original image onto the lens and projecting the displaying onto a plane in a uniform direction.

41. The method of claim 40 wherein the uniform direction is aligned with a viewpoint.

42. The method of claim 41 wherein the viewpoint remains constant while transitioning between the first and second locations.

43. The method of claim 40 wherein the lens has a magnified region for the border region.

44. The method of claim 43 wherein the magnified region has a diminishing magnification.

45. A method comprising:

applying a function by a data processing system to give an appearance of a lens to a region in an original image; and
displaying a presentation of the appearance of the lens that restricts rendering of the presentation while transitioning between first and second locations for the region in the original image on a display screen of the data processing system such that a portion of the appearance of the lens is not rendered during the transitioning,
wherein the portion of the appearance of the lens that is not rendered during the transitioning is within a border of the appearance of the lens.

46. A method of claim 45 wherein the border of the appearance of the lens is rendered during the transitioning.

47. The method of claim 45 wherein the applying includes displacing a border region of the region in the original image onto the lens and projecting the displaying onto a plane in a uniform direction that is aligned with a viewpoint.

48. The method of claim 45 further comprising displaying the presentation of the appearance of the lens such as not to be restricted when the appearance of the lens is not being transitioned in the original image on the display screen.

49. The method of claim 45 wherein the displaying of the presentation of the appearance of the lens is performed by fully rendering the appearance of the lens if the appearance is not being transitioned.

50. The method of claim 45 wherein the displaying of the presentation of the appearance of the lens is performed by rendering the portion of the appearance of the lens if the appearance is not being transitioned.

51. A client device comprising a processor and memory having instructions that are executable on a processor to receive data via an Internet from a server of an original image having a function applied to give an appearance of a lens to a region of the original image provided by selective high resolution rendering to display data within the region of interest and neighboring regions of the appearance of the lens while remaining data in the original image is rendered at a low resolution,

wherein the function causes a border region of the region in the original image to be displaced onto the lens and displayed onto a plane in a uniform direction.

52. The client device of claim 51 wherein the function causes the neighboring regions of the appearance of the lens to give an appearance of a smooth transition from the high resolution rendering of the region to the remaining data in the original image.

53. The client device of claim 52 wherein the function causes the transition by blending of a low resolution rendering of the remaining data in the original image with the selective high resolution rendering of the region.

54. The client device of claim 53 wherein the blending includes admixing or averaging.

55. The client device of claim 56, wherein the uniform direction is aligned with a viewpoint.

56. A method comprising:

displaying an image on a display of a computing device;
specifying a region of interest in the image;
displaying, on the display, the region of interest at a first resolution while displaying, on the display, one or more portions from the image that lie outside the region of interest at a second resolution that is less than the first resolution; and
updating display of the region of interest as the region of interest transitions from the first position to the second position, wherein said updating renders only a periphery of the region of interest as the region of interest transitions from the first position to the second position.

57. The method of claim 56, further comprising scaling the region of interest to obtain a magnified presentation of the region of interest having a greater scale than the one or more portions that lie outside the region of interest, wherein

said displaying the region of interest comprises displaying the magnified presentation of the region of interest.

58. The method of claim 56, wherein said displaying the region of interest occludes a portion of the image.

59. The method of claim 56, further comprising receiving input that specifies movement of the region of interest from a first position to a second position.

60. The method of claim 56, further comprising smoothing a resolution transition between the region of interest displayed at the first resolution and the one or more other portions displayed at the second resolution.

61. The method of claim 56, wherein said specifying includes embedding locating information for the region of interest in a source of the image.

62. A computing device, comprising

an input device configured to receive input that specifies a region of interest in an image; and
a processor configured to cause a display to display the region of interest at a first resolution and one or more portions from the image that lie outside the region of interest at a second resolution that is less than the first resolution,
wherein the processor is further configured to cause the display to update display of the region of interest as the region of interest transitions from the first position to the second position, and to only update a periphery of the region of interest as the region of interest transitions from the first position to the second position.

63. The computing device of claim 62, wherein the processor is further configured to:

scale the region of interest to obtain a magnified presentation of the region of interest having a greater scale than the one or more portions that lie outside the region of interest; and
cause the display to display the magnified presentation of the region of interest such that the magnified presentation occludes a portion of the image.

64. The computing device of claim 62, wherein the input device is further configured to receive additional input that specifies movement of the region of interest from a first position to a second position.

65. The computing device of claim 62, wherein said processor is further configured to cause the display to display a smoothed resolution transition between the region of interest displayed at the first resolution and the one or more other portions displayed at the second resolution.

Referenced Cited
U.S. Patent Documents
3201546 August 1965 Richardson
3704938 December 1972 Fanselow
3739739 June 1973 Brase
3762799 October 1973 Shapiro
4581647 April 8, 1986 Vye
4630110 December 16, 1986 Cotton et al.
4688181 August 18, 1987 Cottrell et al.
4757616 July 19, 1988 Hills
4790028 December 6, 1988 Ramage
4800379 January 24, 1989 Yeomans
4885702 December 5, 1989 Ohba
4888713 December 19, 1989 Falk
4970028 November 13, 1990 Kenyon et al.
4985849 January 15, 1991 Hideaki
4992866 February 12, 1991 Morgan
5031918 July 16, 1991 Brill
5048077 September 10, 1991 Wells et al.
5175808 December 29, 1992 Sayre
5185599 February 9, 1993 Doornink et al.
5185667 February 9, 1993 Zimmermann
5200818 April 6, 1993 Neta et al.
5206721 April 27, 1993 Ashida et al.
5227771 July 13, 1993 Kerr et al.
5250934 October 5, 1993 Denber et al.
5258837 November 2, 1993 Gormley
5269687 December 14, 1993 Mott et al.
5275019 January 4, 1994 Pagani
5309279 May 3, 1994 Halstead
5321807 June 14, 1994 Mumford
5329310 July 12, 1994 Liljegren et al.
5341466 August 23, 1994 Perlin et al.
5369527 November 29, 1994 McCracken
5416900 May 16, 1995 Blanchard et al.
5432895 July 11, 1995 Myers
5451998 September 19, 1995 Hamrick
5459488 October 17, 1995 Geiser
5473740 December 5, 1995 Kasson
5521634 May 28, 1996 McGary
5523783 June 4, 1996 Cho
5528289 June 18, 1996 Cortjens et al.
5539534 July 23, 1996 Hino et al.
5581670 December 3, 1996 Bier et al.
5583977 December 10, 1996 Seidl
5588098 December 24, 1996 Chen et al.
5594859 January 14, 1997 Palmer et al.
5596690 January 21, 1997 Stone et al.
5598297 January 28, 1997 Yamanaka et al.
5610653 March 11, 1997 Abecassis
5613032 March 18, 1997 Cruz et al.
5638523 June 10, 1997 Mullet et al.
5644758 July 1, 1997 Patrick
5651107 July 22, 1997 Frank et al.
5652851 July 29, 1997 Stone et al.
5657246 August 12, 1997 Hogan et al.
5670984 September 23, 1997 Robertson et al.
5680524 October 21, 1997 Maples et al.
5682489 October 28, 1997 Harrow et al.
5689287 November 18, 1997 Mackinlay et al.
5689628 November 18, 1997 Robertson
5696531 December 9, 1997 Suzuki et al.
5721853 February 24, 1998 Smith
5726670 March 10, 1998 Tabata et al.
5729673 March 17, 1998 Cooper et al.
5731805 March 24, 1998 Tognazzini et al.
5742272 April 21, 1998 Kitamura et al.
5745166 April 28, 1998 Rhodes et al.
5751289 May 12, 1998 Myers
5754348 May 19, 1998 Soohoo
5764139 June 9, 1998 Nojima et al.
5786814 July 28, 1998 Moran et al.
5798752 August 25, 1998 Buxton et al.
5808670 September 15, 1998 Oyashiki et al.
5812111 September 22, 1998 Fuji et al.
5818455 October 6, 1998 Stone et al.
5844545 December 1, 1998 Suzuki et al.
5848231 December 8, 1998 Teitelbaum et al.
5852440 December 22, 1998 Grossman et al.
5872922 February 16, 1999 Hogan et al.
5909219 June 1, 1999 Dye
5923364 July 13, 1999 Rhodes et al.
5926209 July 20, 1999 Glatt
5949430 September 7, 1999 Robertson et al.
5950216 September 7, 1999 Amro et al.
5959605 September 28, 1999 Gilblom
5969706 October 19, 1999 Tanimoto et al.
5973694 October 26, 1999 Steele et al.
5991877 November 23, 1999 Luckenbaugh
5999879 December 7, 1999 Yano
6005611 December 21, 1999 Gullichsen et al.
6037939 March 14, 2000 Kashiwagi et al.
6052110 April 18, 2000 Sciammarella et al.
6057844 May 2, 2000 Strauss
6064401 May 16, 2000 Holzman et al.
6067372 May 23, 2000 Gur et al.
6072501 June 6, 2000 Bier
6073036 June 6, 2000 Heikkinen et al.
6075531 June 13, 2000 DeStefano
6081277 June 27, 2000 Kojima
6084598 July 4, 2000 Chekerylla
6091771 July 18, 2000 Seeley et al.
6108005 August 22, 2000 Starks et al.
6128024 October 3, 2000 Carver et al.
6133914 October 17, 2000 Rogers et al.
6147709 November 14, 2000 Martin et al.
6154840 November 28, 2000 Pebley et al.
6160553 December 12, 2000 Robertson et al.
6184859 February 6, 2001 Kojima
6198484 March 6, 2001 Kameyama
6201546 March 13, 2001 Bodor et al.
6201548 March 13, 2001 Cariffe et al.
6204845 March 20, 2001 Bates et al.
6204850 March 20, 2001 Green
6215491 April 10, 2001 Gould
6219052 April 17, 2001 Gould
6241609 June 5, 2001 Rutgers
6246411 June 12, 2001 Strauss
6249281 June 19, 2001 Chen et al.
6256043 July 3, 2001 Aho et al.
6256115 July 3, 2001 Adler et al.
6256737 July 3, 2001 Bianco et al.
6266082 July 24, 2001 Yonezawa et al.
6271854 August 7, 2001 Light
6278443 August 21, 2001 Amro et al.
6278450 August 21, 2001 Arcuri et al.
6288702 September 11, 2001 Tachibana et al.
6304271 October 16, 2001 Nehme
6307612 October 23, 2001 Smith et al.
6320599 November 20, 2001 Sciammarella et al.
6337709 January 8, 2002 Yamaashi et al.
6346938 February 12, 2002 Chan et al.
6346962 February 12, 2002 Goodridge
6359615 March 19, 2002 Singh
6381583 April 30, 2002 Kenney
6384849 May 7, 2002 Morcos et al.
6392661 May 21, 2002 Tankersley
6396648 May 28, 2002 Yamamoto et al.
6396962 May 28, 2002 Haffey et al.
6400848 June 4, 2002 Gallagher
6407747 June 18, 2002 Chui et al.
6411274 June 25, 2002 Watanabe et al.
6416186 July 9, 2002 Nakamura
6417867 July 9, 2002 Hallberg
6438576 August 20, 2002 Huang et al.
6487497 November 26, 2002 Khavakh et al.
6491585 December 10, 2002 Miyamoto et al.
6504535 January 7, 2003 Edmark
6515663 February 4, 2003 Hung et al.
6515678 February 4, 2003 Boger
6522341 February 18, 2003 Nagata
6523024 February 18, 2003 Yajima et al.
6542191 April 1, 2003 Yonezawa
6549215 April 15, 2003 Jouppi
6552737 April 22, 2003 Tanaka et al.
6559813 May 6, 2003 DeLuca et al.
6577311 June 10, 2003 Crosby et al.
6577319 June 10, 2003 Kashiwagi et al.
6584237 June 24, 2003 Abe
6590568 July 8, 2003 Astala et al.
6590583 July 8, 2003 Soohoo
6608631 August 19, 2003 Milliron
6612930 September 2, 2003 Kawagoe et al.
6631205 October 7, 2003 Melen et al.
6633305 October 14, 2003 Sarfield
6690387 February 10, 2004 Zimmerman et al.
6704034 March 9, 2004 Rodriguez et al.
6720971 April 13, 2004 Yamamoto et al.
6721655 April 13, 2004 Koichiro
6727910 April 27, 2004 Tigges
6731285 May 4, 2004 Matchen
6731315 May 4, 2004 Ma et al.
6744430 June 1, 2004 Shimizu
6747610 June 8, 2004 Taima et al.
6747611 June 8, 2004 Budd et al.
6760020 July 6, 2004 Uchiyama et al.
6768497 July 27, 2004 Baar et al.
6798412 September 28, 2004 Cowperthwaite
6833843 December 21, 2004 Mojaver et al.
6842175 January 11, 2005 Schmalstieg et al.
6874126 March 29, 2005 Lapidous
6882755 April 19, 2005 Silverstein et al.
6906643 June 14, 2005 Samadani et al.
6911975 June 28, 2005 Iizuka et al.
6919921 July 19, 2005 Morota et al.
6924822 August 2, 2005 Card et al.
6938218 August 30, 2005 Rosen
6956590 October 18, 2005 Barton et al.
6961071 November 1, 2005 Montagnese et al.
6975335 December 13, 2005 Watanabe
6985865 January 10, 2006 Packingham et al.
7038680 May 2, 2006 Pitkow
7055095 May 30, 2006 Anwar
7071971 July 4, 2006 Elberbaum
7084886 August 1, 2006 Jetha et al.
7088364 August 8, 2006 Lantin
7106349 September 12, 2006 Baar et al.
7133054 November 7, 2006 Aguera y Arcas
7134092 November 7, 2006 Fung et al.
7158878 January 2, 2007 Rasmussen et al.
7173633 February 6, 2007 Tigges
7173636 February 6, 2007 Montagnese
7194697 March 20, 2007 Sinclair, II et al.
7197718 March 27, 2007 Westerman et al.
7197719 March 27, 2007 Doyle et al.
7213214 May 1, 2007 Baar et al.
7233942 June 19, 2007 Nye
7246109 July 17, 2007 Ramaswamy
7256801 August 14, 2007 Baar et al.
7274381 September 25, 2007 Mojaver et al.
7275219 September 25, 2007 Shoemaker
7280105 October 9, 2007 Cowperthwaite
7283141 October 16, 2007 Baar et al.
7310619 December 18, 2007 Baar et al.
7312806 December 25, 2007 Tigges
7321824 January 22, 2008 Nesbitt
7411610 August 12, 2008 Doyle
7423660 September 9, 2008 Ouchi et al.
7443396 October 28, 2008 Ilic
7450114 November 11, 2008 Anwar
7472354 December 30, 2008 Jetha et al.
7486302 February 3, 2009 Shoemaker
7489321 February 10, 2009 Jetha et al.
7493572 February 17, 2009 Card et al.
7495678 February 24, 2009 Doyle et al.
7580036 August 25, 2009 Montagnese
7667699 February 23, 2010 Komar
7698653 April 13, 2010 Roman et al.
7714859 May 11, 2010 Shoemaker
7737976 June 15, 2010 Lantin
7761713 July 20, 2010 Baar
7773101 August 10, 2010 Shoemaker
20010040585 November 15, 2001 Hartford et al.
20010040636 November 15, 2001 Kato et al.
20010048447 December 6, 2001 Jogo
20010055030 December 27, 2001 Han
20020033837 March 21, 2002 Munro
20020038257 March 28, 2002 Joseph et al.
20020044154 April 18, 2002 Baar et al.
20020062245 May 23, 2002 Niu et al.
20020063711 May 30, 2002 Park et al.
20020075280 June 20, 2002 Tigges
20020087894 July 4, 2002 Foley et al.
20020089520 July 11, 2002 Baar
20020093567 July 18, 2002 Cromer et al.
20020101396 August 1, 2002 Huston et al.
20020122038 September 5, 2002 Cowperthwaite
20020135601 September 26, 2002 Watanabe et al.
20020143826 October 3, 2002 Day et al.
20020171644 November 21, 2002 Reshetov et al.
20020180759 December 5, 2002 Park et al.
20020180801 December 5, 2002 Doyle et al.
20030006995 January 9, 2003 Smith et al.
20030007006 January 9, 2003 Baar et al.
20030048447 March 13, 2003 Harju et al.
20030052896 March 20, 2003 Higgins et al.
20030052900 March 20, 2003 Card et al.
20030061211 March 27, 2003 Shultz et al.
20030076363 April 24, 2003 Murphy
20030100326 May 29, 2003 Grube et al.
20030103063 June 5, 2003 Mojaver et al.
20030105795 June 5, 2003 Anderson et al.
20030112503 June 19, 2003 Lantin
20030118223 June 26, 2003 Rahn et al.
20030137525 July 24, 2003 Smith
20030151625 August 14, 2003 Shoemaker
20030151626 August 14, 2003 Komar et al.
20030174146 September 18, 2003 Kenoyer
20030179198 September 25, 2003 Uchiyama
20030179219 September 25, 2003 Nakano et al.
20030179237 September 25, 2003 Nelson et al.
20030196114 October 16, 2003 Brew et al.
20030210281 November 13, 2003 Ellis et al.
20030227556 December 11, 2003 Doyle
20030231177 December 18, 2003 Montagnese et al.
20040026521 February 12, 2004 Colas et al.
20040056869 March 25, 2004 Jetha et al.
20040056898 March 25, 2004 Jetha et al.
20040111332 June 10, 2004 Baar et al.
20040125138 July 1, 2004 Jetha et al.
20040150664 August 5, 2004 Baudisch
20040194014 September 30, 2004 Anwar
20040217979 November 4, 2004 Baar et al.
20040240709 December 2, 2004 Shoemaker
20040257375 December 23, 2004 Cowperthwaite
20040257380 December 23, 2004 Herbert et al.
20050041046 February 24, 2005 Baar et al.
20050134610 June 23, 2005 Doyle et al.
20050259118 November 24, 2005 Mojaver et al.
20050278378 December 15, 2005 Frank
20050285861 December 29, 2005 Fraser
20060022955 February 2, 2006 Kennedy
20060026521 February 2, 2006 Hotelling et al.
20060033762 February 16, 2006 Card et al.
20060036629 February 16, 2006 Gray
20060059432 March 16, 2006 Bells
20060082901 April 20, 2006 Shoemaker
20060098028 May 11, 2006 Baar
20060139375 June 29, 2006 Rasmussen et al.
20060192780 August 31, 2006 Lantin
20060214951 September 28, 2006 Baar et al.
20070033543 February 8, 2007 Ngari et al.
20070064018 March 22, 2007 Shoemaker et al.
20070097109 May 3, 2007 Shoemaker et al.
20090141044 June 4, 2009 Shoemaker
20090147023 June 11, 2009 Jetha et al.
20090172587 July 2, 2009 Carlisle
20090265656 October 22, 2009 Jetha
20090284542 November 19, 2009 Baar
20100026718 February 4, 2010 Jetha
20100033503 February 11, 2010 Baar
20100045702 February 25, 2010 Doyle
20100201785 August 12, 2010 Lantin
20100208968 August 19, 2010 Shoemaker et al.
20100262907 October 14, 2010 Shoemaker et al.
Foreign Patent Documents
2350342 November 2002 CA
2386560 November 2003 CA
2393708 January 2004 CA
2394119 January 2004 CA
0635779 January 1995 EP
0650144 April 1995 EP
0816983 July 1998 EP
4410465 February 2010 JP
Other references
  • Carpendale, M. Sheelagh T., “A Framework for Elastic Presentation Space”, Simon Fraser University, Burnaby; British Columbia XP001051168; cited in the application figures 2.13, 3.1-3.31, 4.1-4.19, 5.14,(Mar. 1999), pp. 7, 14, 34, 38, 65, 112, 123, and 126.
  • “Non Final Office Action”, U.S. Appl. No. 11/935,222, (Feb. 20, 2009), 8 pages.
  • Carpendale, M. Sheelagh T., et al., “A Framework for Unifying Presentation Space”, Proceedings of UIST '01: ACM Symposium on User Interface Software and Technology, Orlando, FL, USA; XP002249323 2001, New York, NY, USA, ISBN: 1-58113-438-X,(Nov. 14, 2001), pp. 61-70, 64.
  • Ikedo, Tsuneo “A Realtime Video-Image Mapping Using Polygon Rendering Techniques”, IEEE Intl. conf on Ottawa, Ont, Canada Jun. 3-6, 1997, Los Alamitos, CA, USA; IEEE Comput. Soc, US, XP010239181, ISBN: 0-8186-7819-4 Sections 2, 4.4; Multimedia Computing and Systems '97 Proceedings, (Jun. 3, 1997), pp. 127-134.
  • Bouju, Alain et al., “Client-Server Architecture for Accessing Multimedia and Geographic Databases within Embedded Systems”, Database and Expert Systems Applications, 1999 Proceedings. Tenth International Workshop on Florence, Italy Sep. 1-3, 1999, Los Alamitos, CA, USA, IEEE Comput. Soc, US, XP010352370; ISBN:0-7695-0281-4, abstract, figure 2,(Sep. 1-3, 1999), pp. 760-764.
  • Robertson, George G., et al., “The Document Lens”, UIST. Proceedings of the Annual ACM Symposium on User Interface Software and Technology, abstract figures 3,4,(Nov. 3, 1993), pp. 101-108.
  • Dursteler, Juan C., “The Digital Magazine of InfoVis.net”, Retrieved from: <http://www.infovis.net/printMag.php?num=85&lang=2> on Nov. 9, 2006 (Apr. 22, 2002), 2 pages.
  • “Presentation for CGDI Workshop”, Retrieved from: http://www.geoconnections.org/developersCorner/devCornerdevNetwork/meetings/2002.05.30/IDELIXCGDI20020530dist.pdf, (May 2002), 19 pages.
  • Kuederle, Oliver “Presentation of Image Sequences: A Detail-in-context Approach”, Thesis, Simon Fraser University; (Aug. 2000), pp. 1-3, 5-10, 29-31.
  • Microsoft Corp., “Microsoft Paint”, (1981-1998), pp. 1-14.
  • “Electronic Magnifying Glasses”, IBM Technical Disclosure Bulletin, IBM Corp., New York, US, vol. 37, No. 3; XP000441501, ISSN: 0018-8689 the whole document; (Mar. 1, 1994), pp. 353-354.
  • Keahey, T. A., “The Generalized Detail-In-Context Problem”, Information Visualization 1998, Proceedings; IEEE Symposium On Research Triangle, CA, USA; Los Alamitos, CA, USA, IEEE Comput. Soc, US; XP010313304; ISBN: 0-8186-9093,(Oct. 1998), pp. 44-51, 152.
  • Carpendale, M. Sheelagh T., et al., “Extending Distortion Viewing from 2D to 3D”, IEEE Computer Graphics and Applications,IEEE Inc. New York, US, vol. 17, No. 4; XP000927815, ISSN: 0272-1716., (Jul. 1997), pp. 42-51.
  • Viega, J et al., “3D magic lenses”, Proceedings of the 9th annual ACM symposium on User interface software and technology; Pub 1996 ACM Press New York, NY, USA; (1996), pp. 51-58.
  • Cowperthwaite, David J., “Occlusion Resolution Operators for Three-Dimensional Detail-In-Context”, Burnaby, British Columbia: Simon Fraser University; (2000), 166 pages.
  • Carpendale, M. Sheelagh T., “A Framework for Elastic Presentation Space”, Thesis Simon Fraser University, XP001051168; Chapter 3-5; appendix A,B; (Mar. 1999), pp. 1-271.
  • Carpendale, M. Sheelagh T., et al., “Exploring Distinct Aspects of the Distortion Viewing Paradigm”, Technical Report TR 97-08, School of Computer Science, Simon Fraser University, Burnaby, British Columbia, Canada; (Sep. 1997), 14 pages.
  • Cowperthwaite, David J., et al., “Visual Access For 3D Data”, Proceedings of ACM CHI 96 Conference on Human Factors in Computer Systems, Volume 2 of Short Papers: Alternative Methods of Interaction; (1996), 5 pages.
  • Keahey, T. A., “Visualization of High-Dimensional Clusters Using Nonlinear Magnification”, Technical Report LA-UR-98-2776, Los Alamos National Laboratory; (1998), 8 pages.
  • Tigges, M. et al., “Generalized Distance Metrics For Implicit Surface Modeling”, Proceedings of the Tenth Western Computer Graphics Symposium; (Mar. 1999), 5 pages.
  • Bossen, Frank “Anisotropic Mesh Generation With Particles” Technical Report CMU-CS-96-134, CS Dept, Carnegie Mellon University; (May 13, 1996), pp. 1-59.
  • Bossen, Frank J., et al., “A Pliant Method For Anisotropic Mesh Generation”, 5th Intl. Meshing Roundtable; (Oct. 1996), pp. 63-74.
  • Wilson, et al., “Direct Volume Rendering Via 3D Textures”, Technical Report UCSC-CRL-94-19, University of California, Santa Cruz, Jack Baskin School of Engineering; (Jun. 1994), 11 pages.
  • Carpendale, M. Sheelagh T., “A Framework for Elastic Presentation Space”, PhD thesis, Simon Fraser University; Available at <http://pages.cpsc.ucalgary.ca/˜sheelagh/wiki/uploads/Main/Thesis/pre.pdf>,(Mar. 1999), pp. 69, 72, 78-83,98-100, 240, 241.
  • Keahey, T. A., et al., “Techniques For Non-Linear Magnification Transformations”, Information Visualization '96, Proceedings IEEE Symposium on, San Francisco, CA, Los Alamitos, CA, USA, IEEE Comput. Soc, US: XP010201943; ISBN: 0-8186-7668-X the whole document,(Oct. 28, 1996), pp. 38-45.
  • Sheelagh, M et al., “3-Dimensional Pliable Surfaces: For the Effective Presentation of Visual Information”, UIST '95. 8th Annual Symposium on User Interface Software and Technology. Proceedings of the ACM Symposium on User Interface Software and Technology. Pittsburgh, PA; ACM Symposium on User Interface Software and Technology, New York; XP000634423; ISBN: 0-89791-709-X, p. 219, right-hand column, line 219—left-hand column, line 220,(Nov. 14-17, 1995), pp. 217-226.
  • Tominski, Christian et al., “Fisheye Tree Views and Lenses for Graph Visualization”, pp. 1-8.
  • Keahey, T. A., “Getting Along: Composition of Visualization Paradigms”, Visual Insights. Inc.; (2001), 4 pages.
  • Sakamoto, Chikara et al., “Design and Implementation of a Parallel Pthread Library (PPL) with Parallelism and Portability”, Systems and Computers in Japan, New York, US, vol. 29, No. 2; XP0007527130, ISSN: 0882-1666 abstract,(Feb. 1, 1998), pp. 28-35.
  • Deng, Ke et al., “Texture Mapping with a Jacobian-Based Spatially-Variant Filter”, Proceedings 10th Pacific Conference on Computer Graphics and Applications, XP00224932, ISBN; 0-7695-1784-6 the whole document,(Oct. 2002), pp. 460-461.
  • Welsh, Michelle “Futurewave Software”, Business Wire; (Nov. 15, 1993), 2 Pages.
  • Lamar, Eric et al., “A Magnification Lens for Interactive Volume Visualization”, ACM; (Oct. 2001), pp. 1-10.
  • Fitzmaurice, George et al., “Tracking Menus”, UIST; (2003), pp. 71-79.
  • Stone, et al., “The movable filter as a user interface tool”, Proceedings of CHI ACM; (1992), 18 pages.
  • Baudisch, P. et al., “Halo: a Technique for Visualizing Off-Screen Locations”, CHI; Retrieved from: <www.patrickbaudisch.com/.../2003-Baudisch-CHI03-Halo.pdf<, (Apr. 5-10, 2003), 8 pages.
  • Baudisch, Patrick et al., “Drag-And-Pop: Techniques for Accessing Remote Screen Content On Touch-And-Pen-Operated Systems”, Interact '03 (2003), pp. 57-64.
  • Carpendale, M. Sheelagh T., et al., “Distortion Viewing Techniques for 3-Dimensional Data”, Information Visualization '96. Proceedings IEEE Symposium On, San Francisco, CA, USA, Los Alamitos, CA, USA, IEEE Comput. Soc., US, Oct. 28, 1996, XP010201944, ISBN: 0-8186-76138-X,(Oct. 28-29, 1996), pp. 46-53 and 119.
  • Carpendale, M. Sheelagh T., et al., “Making Distortions Comprehensible”, Visual Languages, Proceedings, 1997 IEEE Symposium On Isle of Capri, Italy, Los Alamitos, CA, USA, IEEE Comput. Soc., US, Sep. 23, 1997; XP010250566, ISBN: 0-8186-8144-6,(Sep. 23-26, 1997), pp. 36-45.
  • Ito, Minoru et al., “A Three-Level Checkerboard Pattern (TCP) Projection Method for Curved Surface Measurement”, Pattern Recognition, vol. 28, No. 1, XP004014030, ISSN 0031-3203,(1995), pp. 27-40.
  • Keahey, T. A., et al., “Nonlinear Magnification Fields”, Information Visualization, 1997, Proceedings, IEEE Symposium On Phoenix, AZ, USA, Los Alamitos, CA, USA, IEEE Comput. Soc., US: XP010257169; ISBN: 0-8186-8189-6,(Oct. 1997), pp. 51-58 and 121.
  • Rauschenbach, Uwe “The Rectangular Fish Eye View as an Efficient Method for the Transmission and Display of Large Images”, Image Processing, ICIP 99, Proceedings, 1999 International Conference On, Kobe, Japan. Oct. 24-28, 1999, Piscataway, NJ, USA, IEEE, US, XP01368852, ISBN 0-7803-5467-2 p. 115, left-hand column—p. 116, paragraph 3, p. 118, paragraph 7.1; (Oct. 1999), pp. 115-119.
  • Keahey, T. A., “Nonlinear Magnification”, (Indiana University Computer Science), (1997), 196 pages.
  • Watt, et al., “Advanced Animation and Rendering Techniques” (Addison-Wesley Publishing), (1992), p. 106-108.
  • Boots, Barry N., “Delaunay Triangles: An Alternative Approach to Point Pattern Analysis”, Proceedings of the Association of American Geographers, vol. 6, (1974), pp. 26-29.
  • Leung, Y. K., et al., “A Review and Taxonomy of Distortion-Oriented Presentation Techniques”, ACM Transactions on Computer-Human Interaction, 'Online! vol. 1, No. 2, XP002252314; Retrieved from the Internet: <URL:http://citeseer.nj.nec.com/ leung94review.html> 'retrieved on Aug. 21, 2003! the whole document,(Jun. 1994), pp. 126-160.
  • “Non Final Office Action”, U.S. Appl. No. 10/358,394, (Mar. 13, 2009),36 pages.
  • Sarkar, et al., “Stretching the Rubber Sheet: A Metaphor for Viewing Large Layouts on Small Screens”, Proc. of the 6th annual ACM symp. on User interface software an technology, Atlanta, GA, (Dec. 1993), p. 81-91.
  • Carpendale, M. Sheelagh T., et al., “Graph Folding: Extending Detail and Context Viewing into a Tool for Subgraph Comparisons”, In Proceedings of Graph Drawing 1995, Passau, Germany, (1995), 13 pages.
  • Carpendale, M. Sheelagh T., “A Framework for Elastic Presentation Space”, Available at <http://pages.cpsc.ucalgary.ca/˜sheelagh/personal/thesis/>,(Nov. 19, 1999), 1 page.
  • “Non Final Office Action”, U.S. Appl. No. 11/542,120, (Jan. 22, 2009),1 2 pages.
  • “Final Office Action”, U.S. Appl. No. 11/410,024, (Mar. 11, 2009), 20 pages.
  • “Foreign Office Action”, U.S. Appl. No. 2002-536993, (Mar. 11, 2009), 2 pages.
  • “Notice of Allowance & Examiner's Amendment”, U.S. Appl. No. 11/401,349, (Apr. 17, 2009), 10 pages.
  • Schmalstieg, Dieter et al., “Using transparent props for interaction with the virtual table”, Proceedings of the 1999 symposium on Interactive 3D graphics.,(Apr. 26, 1999), 8 pages.
  • “Final Office Action”, U.S. Appl. No. 10/705,199, (May 12, 2009), 13 pages.
  • “Non Final Office Action”, U.S. Appl. No. 11/541,778, (Jun. 19, 2009), 11 pages.
  • “Non Final Office Action”, U.S. Appl. No. 11/673,038, (Jul. 13, 2009), 30 pages.
  • “Non Final Office Action”, U.S. Appl. No. 11/410,024, (Jul. 20, 2009), 12 pages.
  • Smith, et al., “Efficient techniques for wide-angle stereo vision using surface projection models”, Retrieved from <http://ieee.org/stamp.jsp?arnumber=17045 (1999), 6 pages.
  • “Non Final Office Action”, U.S. Appl. No. 11/159,205, (Jul. 27, 2009), 13 pages.
  • “Advisory Action”, U.S. Appl. No. 11/249,493, (Aug. 11, 2009), 5 pages.
  • “Advisory Action”, U.S. Appl. No. 10/705,199, (Aug. 18, 2009), 3 pages.
  • “Restriction Requirement”, U.S. Appl. No. 11/935,222, (Aug. 20, 2009), 6 pages.
  • “Advisory Action”, U.S. Appl. No. 11/249,493, (Sep. 14, 2009), 4 pages.
  • “Non-Final Office Action”, U.S. Appl. No. 12/364,450, (Sep. 30, 2009), 10 pages.
  • “Notice of Allowance”, U.S. Appl. No. 10/358,394, (Oct. 8, 2009), 7 pages.
  • “Final Office Action”, U.S. Appl. No. 11/935,222, (Nov. 24, 2009), 8 pages.
  • “Final Office Action”, U.S. Appl. No. 11/541,778, (Dec. 4, 2009), 12 pages.
  • “Notice of Allowance”, U.S. Appl. No. 11/214,886, (Dec. 15, 2009), 16 pages.
  • “BPAI Decision”, U.S. Appl. No. 10/682,298, (Dec. 30, 2009), 14 pages.
  • “Notice of Allowance”, U.S. Appl. No. 11/410,024, (Jan. 4, 2010), 7 pages.
  • “Final Office Action”, U.S. Appl. No. 11/673,038, (Jan. 8, 2010), 33 pages.
  • “Advisory Action”, U.S. Appl. No. 11/541,778, (Feb. 1, 2010), 3 pages.
  • “Advisory Action”, U.S. Appl. No. 11/935,222, (Feb. 4, 2010), 3 pages.
  • “Restriction Requirement”, U.S. Appl. No. 12/368,263, (Mar. 9, 2010), 7 pages.
  • “Notice of Allowance”, U.S. Appl. No. 10/705,199, (Mar. 10, 2010), 18 pages.
  • “Non Final Office Action”, U.S. Appl. No. 11/691,686, (Mar. 18, 2010), 17 pages.
  • “Advisory Action”, U.S. Appl. No. 11/673,038, (Mar. 25, 2010), 3 pages.
  • “Final Office Action”, U.S. Appl. No. 11/159,205, (Mar. 25, 2010), 16 pages.
  • “Notice of Allowance”, U.S. Appl. No. 12/364,450, (Apr. 19, 2010), 4 pages.
  • “Non-Final Office Action”, U.S. Appl. No. 11/236,694, (Apr. 20, 2010), 9 pages.
  • “Non Final Office Action”, U.S. Appl. No. 12/368,263, (Apr. 30, 2010), 8 pages.
  • “Non Final Office Action”, U.S. Appl. No. 12/368,267, (Jun. 11, 2010), 12 pages.
  • “Notice of Allowability”, U.S. Appl. No. 12/364,451, (Jun. 18, 2010), 2 pages.
  • “Non Final Office Action”, U.S. Appl. No. 12/388,437, (Jun. 23, 2010), 7 pages.
  • “Non Final Office Action”, U.S. Appl. No. 12/764,724, (Jul. 1, 2010), 20 pages.
  • “Non Final Office Action”, U.S. Appl. No. 11/673,038, (Jul. 22, 2010), 39 pages.
  • “Final Office Action”, U.S. Appl. No. 11/691,686, (Sep. 1, 2010), 16 pages.
  • “Non Final Office Action”, U.S. Appl. No. 11/138,979, (Sep. 17, 2010), 11 pages.
  • “Non Final Office Action”, U.S. Appl. No. 11/541,778, (Sep. 29, 2010), 10 pages.
  • “Non Final Office Action”, U.S. Appl. No. 11/695,104, (Oct. 1, 2010), 9 pages.
  • “Final Office Action”, U.S. Appl. No. 11/159,20, (Oct. 6, 2010), 16 pages.
  • “Non Final Office Action”, U.S. Appl. No. 11/236,694, (Oct. 13, 2010), 16 pages.
  • Lieberman, Henry “Power of Ten Thousand—Navigating in Large Information Spaces”, Proceedings of the 7th annual ACM symposium on User interface software and technology, Marina del Rey, California, United States, (Nov. 1994), pp. 15-16.
  • Mills, Michael et al., “A Magnifier Tool for Video Data”, Proceedings of the SIGCHI conference on Human factors in computing systems, (1992), pp. 93-96.
  • Kline, Richard L., et al., “Improving GUI Accessibility for People with Low Vision”, Proceedings of the SIGCHI conference on Human factors in computing systems, (1995), pp. 114-121.
  • Perlin, Ken et al., “Pad—an alternative approach to the computer interface”, International Conference on Computer Graphics and Interactive Techniques. Proceedings of the 20th annual conference on Computer graphics and interactive techniques., (1993), pp. 57-64.
  • Bier, Eric A., et al., “The Movable Filter as a User Interface Tool—The Video”, Conference on Human Factors in Computing Systems Conference companion on Human factors in computing systems, (1995), pp. 413-414.
  • Bier, Eric A., et al., “Toolglass and Magic Lenses—The See-Through Interface”, International Conference on Computer Graphics and Interactive Techniques Proceedings of the 20th annual conference on Computer graphics and interactive techniques, (1993), pp. 73-80.
  • Bier, Eric A., et al., “Toolglass and Magic Lenses—The See-Through Interface”, Conference on Human Factors in Computing Systems Conference companion on Human factors in computing systems, (1994), pp. 445-446.
  • Kamba, Tomonari et al., “Using Small Screen Space More Efficiently”, CHI 96 Vancouver, BC Canada, (1996), pp. 383-390.
  • “Final Office Action”, U.S. Appl. No. 12/368,263, (Nov. 5, 2010), 7 pages.
  • “Final Office Action”, U.S. Appl. No. 12/764,724, (Nov. 9, 2010), 21 pages.
  • “Final Office Action”, U.S. Appl. No. 11/691,686, (Nov. 22, 2010), 16 pages.
Patent History
Patent number: RE43742
Type: Grant
Filed: Oct 16, 2009
Date of Patent: Oct 16, 2012
Assignee: Noregin Assets N.V., L.L.C. (Dover, DE)
Inventors: David J. P. Baar (Vancouver), David J. Cowperthwaite (Hillsboro, OR), Mark H. A. Tigges (North Vancouver)
Primary Examiner: Chante Harrison
Attorney: McAndrews, Held & Malloy, Ltd.
Application Number: 12/580,540