Switching element for a valve train of an internal combustion engine

- Ina Schaeffler KG

In a switching element (1) for a valve train of an internal combustion engine for switching to different valve lifts, said switching element (1) comprising an outer element (2) having an inner element (4) arranged for axial displacement therein, each of the outer and the inner element (2, 4) comprising a reception (11, 9) aligned to each other in a relative position, at least one piston (10) being arranged in at least one of the receptions (11, 9) for sliding toward the other of the receptions (9, 11) to couple the inner element (4) to the outer element (2) in said relative position, and a high-position stop for defining said relative position being arranged between the inner and the outer element (4, 2), at least one part of the high-position stop is configured as an adjustable, separate element (13). This element (13) cooperates through a preferably conical section (15) of its outer periphery with a complementary chamfer (18) on one end (17) of a guide (16) in the outer element (2). By these extremely simple fabrication measures, an aligned adjustment of the receptions (9, 11) is created for effecting coupling.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description

This application is a reissue of U.S. Pat. No. 6,606,972 B2, issued on Aug. 19, 2003, from U.S. application Ser. No. 10/246,278, filed Sep. 18, 2002.

FIELD OF THE INVENTION

The invention concerns a switching element for a valve train of an internal combustion engine for switching to different valve lifts, said switching element comprising an outer element having an inner element arranged for axial displacement therein, each of the outer and the inner element comprising a reception aligned to each other in a relative position, at least one piston being arranged in at least one of the receptions for sliding toward the other of the receptions to couple the inner element to the outer element in said relative position, and a high-position stop for defining said relative position being arranged between the inner and the outer element.

BACKGROUND OF THE INVENTION

A switching element of the pre-cited type is disclosed in the generic prior art document DE 199 15 531 which shows a switchable cam follower for a tappet push rod drive. The high-position stop for defining the relative position is formed by a piston-like element arranged in the inner element. This piston-like element projects radially outward into a longitudinal groove of the outer element. In the axially extracted state of the inner element from the outer element, the piston-like element abuts against one end of the longitudinal groove. The purpose of this is to create an aligned arrangement of a coupling bore made in the outer element for a piston arranged in the inner element for achieving coupling.

A drawback of this prior art is that an adjustment of lash in the coupling is relatively complicated and cost-intensive. It is clear that the reception (coupling bore) in the outer element for receiving the piston must be configured with a slight lash relative to the outer peripheral surface of the piston. This lash and the high position differ from switching element to switching element due to fabrication conditions. The relatively wide range of variance of this mechanical idle travel in switching elements is, however, undesirable.

In other words, a lash, i.e. an idle travel that the inner element undergoes relative to the outer element upon coupling and loading by the cam till the outer element participates in the force flow from the cam can be compensated by an appropriate dimensioning of the cam contour. In practice, however, this results in a relatively large dispersion of lash. This leads to an undesired variance of the overlap of the intake and exhaust valves. Besides this, an undesired large amount of wear occurs if the lash between the coupling piston and its surrounding reception is too large.

To keep the coupling lash or its variance within acceptable limits, the prior art has recourse to a grouping of the coupling pistons. This procedure is extremely expensive from the point of view of fabrication and measuring techniques. For example, the switching elements are first completely mounted, the lash is then measured following which, the switching elements are dismounted again and an appropriate piston is then chosen for coupling. It is equally conceivable to group the high-position stops provided on the longitudinal grooves of the outer elements.

OBJECTS OF THE INVENTION

It is an object of the invention to provide a switching element of the pre-cited type in which the aforesaid drawbacks are eliminated by simple measures.

This and other objects and advantages of the invention will become obvious from the following detailed description.

SUMMARY OF THE INVENTION

The invention achieves the above objects by the fact that at least one part of the high-position stop is configured as an adjustable, separate element which in a particularly preferred embodiment of the invention, is a piston-like element, a first section of whose outer periphery is fixed in a recess of one of the inner element and the outer element, and a second section of whose outer periphery engages a guide such as a slot that is made in the other of the inner element and the outer element and has a length that is at least equal to a relative motion between the inner element and the outer element. One end of the guide forms a further part of the high-position stop, and at least that end of the piston-like element that is situated opposite said one end of the guide comprises a chamfer that bears against a complementary chamfer of the said one end of the guide in the relative position, said piston-like element being axially displaceable in the relative position for establishing an alignment of the receptions of the inner and the outer element.

Due to the fact that the piston-like element is axially displaceable in its recess and, in the ideal case but not necessarily, has a conical surface forming the high-position stop, the aforesaid drawbacks are eliminated by simple measures During the assembly of the piston-like element to form the high-position stop (pressing or screwing-in or any other method familiar to the person skilled in the art) the mechanical idle travel of the coupling element (piston) relative to its surrounding reception can be adjusted by choosing different assembling depths. This means in other words, that in the axially extracted state of the inner element from the outer element, the high-position stop of the invention enables the axis of the reception for effecting coupling to be adjusted or brought into alignment to the axis of the reception for the piston.

The scope of this invention extends explicitly not only to switching elements such as cam followers in tappet push rod drives or cup tappets and support elements for finger levers but also to switching elements installed directly in lever-type cam followers. The scope of this extension extends equally to other mechanical locking devices that are installed, for instance, in camshaft adjusters and the like for adjusting their start position.

In a particularly simple variant of an embodiment of a peripheral section of the piston-like element that cooperates with the guide, this section has a generally conical configuration as described above. This section or the entire outer peripheral surface can also be precision worked by centerless grinding or the like

The receptions for the piston and the recess for the piston-like element extend preferably radially through the switching element that preferably has a cylindrical shape. If the piston is arranged in the inner element, it is particularly advantageous from the fabrication point of view if the recess of the inner element for fixing the piston-like element is aligned to the reception for the piston in the inner element. Advantageously, in this case, a through-bore can be made.

According to further features of the invention when used in a series of switching elements for internal combustion engines of the same type, a lash of the pistons relative to the surrounding receptions, when coupled, is the same in all the switching elements in their unloaded state, and a distance of the pistons from stops of the surrounding receptions, which stops are situated axially opposite the ends of the guides in the coupled state, is also the same in all the switching elements in their unloaded state. This applies, of course, only in the ideal case but the invention enables the variance of the lash of the elements to be kept within such narrow limits that there is no, or no noteworthy influence on the valve overlap mentioned above. The order of magnitude of this lash is 0.1 mm or approximately this value, with a tolerance of +/−0.010 mm. Thus, generally speaking, the lash or the idle travel is adjusted to a predetermined value in the range of one tenth of a millimeter and the tolerance is in the range of one hundredth of a millimeter.

The invention will now be described more closely with reference to the appended drawing.

BRIEF DESCRIPTION OF THE DRAWING

The sole FIGURE shows, in a longitudinal section, a switching element of the invention made in the present case as a roller tappet for a tappet push rod drive.

DETAILED DESCRIPTION OF THE DRAWING

The FIGURE discloses a switching element 1 that is configured as a roller tappet. The switching element is designed for switching to different valve lifts, in the present case, for switching between a zero lift and a full lift. The switching element 1 comprises an outer element 2 in whose recess 3 an inner element 4 is received for axial displacement.

On one end, the switching element 1 comprises a roller 5 for contacting a cam and acts at the opposite end through a support 6 on a tappet push rod in lifting direction. In the present example, the support 6 is a part of a hydraulic lash adjuster 7.

A lost motion spring 8 that does not need to be described here, acts axially between the inner element 4 and the outer element 2. The inner element 4 comprises a radially extending cylindrical reception 9 in which a piston 10 for coupling the inner element 4 to the outer element 2 is received. The piston 10 is biased radially outward by the force of a compression spring 11a. In the relative position of the inner element 4 to the outer element 2 shown in the FIGURE, a reception 11 in the outer element 2 is situated opposite the piston 10. For coupling, the piston 10 can be displaced partially into the reception 11 by the force of the compression spring 11a.

The inner element 4 comprises a recess 12 that is arranged diametrically opposite and axially aligned to the reception 9. A piston-like element 13 forming a high-position stop (and also an anti-rotation device between the inner element 4 and the outer element 2) extends with an inner peripheral section 14 in the recess 12.

A radially outer peripheral section 15 of the element 13 extends into a guide 16 made as a longitudinal groove in the outer element 2. The length of the guide 16 is at least equal in dimension to a relative travel of the inner element 4 to the outer element 2 in the deactivated or uncoupled state of the switching element 1. An upper end 17 of the guide 16 defines a stop for the adjustable, separate element 13 of the invention. The outer peripheral section 15 of the element 13 has a conical configuration. The end 17 comprises a chamfer 18 of complementary shape to this conical configuration.

As described in detail above, it is possible with the adjustable, separate piston-like element 13, to realize in a very simple manner from the fabrication point of view, an alignment of the reception 9 for the piston 10 to the reception 11 in the outer element 2. For achieving this, when the element 13 is being pressed into the recess 12, it is pressed axially toward the reception 9 for the piston 10 till the piston 10, of course in the unloaded state of the switching element 1, is surrounded by the reception 11 uniformly and with slight lash upon coupling. In this way, an idle travel that the inner element 4 undergoes with the piston 10 in the reception 11 relative to the outer element 2 upon coupling to the outer element 2 and at the onset of loading by the cam is uniformly small throughout a series of switching elements 1 in internal combustion engines of the same type.

Claims

1. A switching element for a valve train of an internal combustion engine for switching to different valve lifts, said switching element comprising an outer element having an inner element arranged for axial displacement therein, each of the outer element and the inner element comprising a reception aligned to each other in a relative position, at least one piston being arranged in at least one of the receptions for sliding toward the other of the receptions to couple the inner element to the outer element in said relative position, and a high-position stop for defining said relative position being arranged between the inner element and the outer element, wherein at least one part of the high-position stop is configured as an adjustable, separate piston element, the adjustable, separate element is a piston-like element, a first section of whose outer periphery is fixed in a recess of one of the inner element and the outer element, and a second section of whose outer periphery engages a guide that is made as a slot in the other of the inner element and the outer element and has a length that is at least equal to a relative motion between the inner element and the outer element, one end of the guide forms a further part of the high-position stop, and at least that end of the piston-like element that is situated opposite said one end of the guide comprises a chamfer that bears against a complementary chamfer of the said one end of the guide in the relative position, said piston-like element being axially displaceable in the relative position for establishing an alignment of the receptions of the inner and the outer element having a configuration for entry into a recess of one of the inner element and the outer element, opposite the receptions, to position the at least one piston so that mechanical lash of a predetermined value is provided between the at least one piston and at least one of the receptions.

2. A switching element of claim 1, wherein the second a section of the outer periphery of the piston-like separate piston element has a conical configuration.

3. A switching element of claim 1, wherein the piston-like separate piston element enables an alignment of the receptions of the inner outer element and the outer inner element so that upon coupling, in the unloaded state of the switching element, the at least one piston is uniformly surrounded with slight lash by the reception in which it is arranged.

4. A switching element of claim 1, wherein at least one of the first and the second sections of the outer periphery of the piston-like separate piston element is ground by centerless grinding.

5. A switching element of claim 1, wherein the at least one piston and the piston-like separate piston element are arranged in the inner element, and the recess of the inner element for fixing the piston-like separate piston element is aligned to the reception for the at least one piston in the inner element.

6. A switching element of claim 1, wherein the piston and the piston-like separate piston element are arranged in the inner element, and the recess of the inner element for fixing the piston-like separate piston element is made as a common bore with the reception for the piston in the inner element.

7. A series of switching elements of claim 1 for internal combustion engines of a same type wherein the alignment of the receptions of the inner outer element and the outer inner element is realized by the high-position stops of the switching elements so that a lash of the pistons, when coupled, relative to the receptions in which they are arranged is the same in all the switching elements of the series in an unloaded state of the switching elements.

8. A series of switching elements of claim 1 for internal combustion engines of a same type wherein a distance of the pistons, when coupled, from stops of the receptions in which they are arranged is the same in all the switching elements of the series in an unloaded state of the switching elements, said stops being situated axially opposite said one ends of the guides in the coupled state.

9. A switching element of claim 1 configured as one of a cam follower in a tappet push rod drive, a cup tappet and a support element for a finger lever.

10. A switching element for a valve train of an internal combustion engine for switching to different valve lifts, said switching element comprising an outer element having an inner element arranged for axial displacement therein, each of the outer element and the inner element comprising a reception aligned to each other in a relative position, at least one piston being arranged in at least one of the receptions for sliding toward the other of the receptions to couple the inner element to the outer element in said relative position, and a high-position stop for defining said relative position being arranged between the inner element and the outer element, wherein at least one part of the high-position stop is a separate piston element adjustable for entry into a recess of one of the inner element and the outer element, opposite the receptions, wherein the separate piston element comprises a first section having its outer periphery fixed in the recess of one of the inner element and the outer element, and a second section having its outer periphery engaging a guide that is made as a slot in the other of the inner element and the outer element, the guide having a length that is at least equal to a relative motion between the inner element and the outer element.

11. A switching element of claim 10, wherein one end of the guide forms a further part of the high-position stop, and at least that end of the separate piston element that is situated opposite said one end of the guide comprises a chamfer that bears against a complementary chamfer of the said one end of the guide in the relative position, the separate piston element being axially displaceable in the relative position for establishing an alignment of the receptions of the outer element and the inner element.

12. A switching element for a valve train of an internal combustion engine for switching to different valve lifts, said switching element comprising an outer element having an inner element arranged for axial displacement therein, each of the outer element and the inner element comprising a reception aligned to each other in a relative position, at least one piston being arranged in at least one of the receptions for sliding toward the other of the receptions to couple the inner element to the outer element in said relative position, and a high-position stop for defining said relative position being arranged between the outer element and the inner element, wherein at least one part of the high-position stop is configured as an adjustable, separate element, the adjustable, separate element is a piston element, having a first section disposed in a recess of the inner element and a second section engaging a guide in the outer element, said piston element being axially displaceable in the relative position and having a configuration selected for establishing an alignment of the receptions of the outer element and the inner element and for positioning the at least one piston so that mechanical lash of a predetermined value is provided between the at least one piston and at least one of the receptions.

13. A switching element of claim 12, wherein one end of the guide forms a further part of the high-position stop.

14. A switching element of claim 12, wherein at least that end of the piston element that is situated opposite said one end of the guide comprises a chamfer that bears against a complementary chamfer of the said one end of the guide in the relative position.

15. A switching element for a valve train of an internal combustion engine for switching to different valve lifts, said switching element comprising an outer element having an inner element arranged for axial displacement therein, each of the outer element and the inner element comprising a reception aligned to each other in a relative position, at least one piston being arranged in at least one of the receptions for sliding toward the other of the receptions to couple the inner element to the outer element in said relative position, and a high-position stop for defining said relative position being arranged between the outer element and the inner element, wherein at least one part of the high-position stop is configured as an adjustable, separate element, the adjustable, separate element is a piston element, having a first section disposed in a recess of the inner element and a second section engaging a guide in the outer element, said piston element being axially displaceable in the relative position for establishing an alignment of the receptions of the outer element and the inner element, wherein the guide has a length that is at least equal to a relative motion between the outer element and the inner element.

16. A deactivatable lifter for a valve train of an internal combustion engine, said deactivatable lifter comprising:

an outer element and an inner element positioned therein and arranged for axial displacement within said outer element to effect selective activation of an associated valve in the train;
a lost motion spring positioned axially between the outer element and the inner element, and acting on said inner element;
each of the outer element and the inner element having an opening aligned with each other in a relative position;
at least one coupling element being arranged in at least one of the openings for sliding movement toward or away from the other of the openings to couple to or decouple from the outer element to effect activation or deactivation, respectively, of said associated valve; and
a stop member including a separate adjustable element defining an upper limit of relative motion between said outer element and said inner element of said lifter, the separate adjustable element having a configuration to position the at least one coupling element so that mechanical lash of a predetermined value is provided between the at least one coupling element and at least one of the openings.

17. A deactivatable lifter of claim 16, wherein the predetermined value is on the order of 0.1 mm.

18. A deactivatable lifter of claim 16, wherein at least one of the outer element and the inner element is generally cylindrical in shape.

19. A deactivatable lifter of claim 16, wherein the lost motion spring is positioned in the outer element, underneath a lower surface of the inner element.

20. A deactivatable lifter of claim 16, wherein the separate adjustable element is adjustable to provide a selected assembly depth.

21. A deactivatable lifter of claim 16, wherein the separate adjustable element enables alignment between the openings of the inner element and the outer element to be adjusted.

22. A deactivatable lifter of claim 16, wherein the lost motion spring is positioned between a lower surface of the inner element and a part of the outer element below the lower surface of the inner element.

23. A deactivatable lifter of claim 22, wherein the part of the outer element is an inner surface of the outer element.

Referenced Cited
U.S. Patent Documents
3108580 October 1963 Crane
3886808 June 1975 Weber
4054109 October 18, 1977 Herrin et al.
4083334 April 11, 1978 Roncon
4089234 May 16, 1978 Henson et al.
4098240 July 4, 1978 Abell
4133332 January 9, 1979 Benson et al.
4164917 August 21, 1979 Glasson
4207775 June 17, 1980 Lintott
4228771 October 21, 1980 Krieg
4231267 November 4, 1980 Van Slooten
4386806 June 7, 1983 Axen et al.
4463714 August 7, 1984 Nakamura
4546734 October 15, 1985 Kodama
4576128 March 18, 1986 Kenichi
4615307 October 7, 1986 Kodama et al.
4739675 April 26, 1988 Connell
4768475 September 6, 1988 Ikemura
4790274 December 13, 1988 Inoue et al.
4905639 March 6, 1990 Konno
4913106 April 3, 1990 Rhoads
4941438 July 17, 1990 Muto
4942855 July 24, 1990 Muto
5085182 February 4, 1992 Nakamura et al.
5088455 February 18, 1992 Moretz
5090364 February 25, 1992 McCarroll et al.
5099806 March 31, 1992 Murata et al.
5245958 September 21, 1993 Krieg et al.
5247913 September 28, 1993 Manolis
5253621 October 19, 1993 Dopson et al.
5255639 October 26, 1993 Shirey et al.
5261361 November 16, 1993 Speil
5307769 May 3, 1994 Meagher et al.
5345904 September 13, 1994 Dopson et al.
5351662 October 4, 1994 Dopson et al.
5357916 October 25, 1994 Matterazzo
5361733 November 8, 1994 Spath et al.
5398648 March 21, 1995 Spath et al.
5402756 April 4, 1995 Bohme et al.
5419290 May 30, 1995 Hurr et al.
5429079 July 4, 1995 Murata et al.
5431133 July 11, 1995 Spath et al.
5501186 March 26, 1996 Hara et al.
5544626 August 13, 1996 Diggs et al.
5544628 August 13, 1996 Voigt
5546899 August 20, 1996 Sperling et al.
5555861 September 17, 1996 Mayr et al.
5615651 April 1, 1997 Miyachi
5651335 July 29, 1997 Elendt et al.
5655487 August 12, 1997 Maas et al.
5660153 August 26, 1997 Hampton et al.
5669342 September 23, 1997 Speil
5682848 November 4, 1997 Hampton et al.
5709180 January 20, 1998 Spath
5720244 February 24, 1998 Faria
5782216 July 21, 1998 Haas et al.
5803040 September 8, 1998 Biesinger et al.
5832884 November 10, 1998 Haas et al.
5875748 March 2, 1999 Haas et al.
5893344 April 13, 1999 Church
5934232 August 10, 1999 Greene et al.
6032643 March 7, 2000 Hosaka et al.
6039017 March 21, 2000 Hendriksma
6053133 April 25, 2000 Faria et al.
6076491 June 20, 2000 Allen
6092497 July 25, 2000 Preston et al.
6095696 August 1, 2000 Foldi
6164255 December 26, 2000 Maas et al.
6196175 March 6, 2001 Church
6196176 March 6, 2001 Groh et al.
6213076 April 10, 2001 Fischer et al.
6244229 June 12, 2001 Nakano et al.
6247433 June 19, 2001 Faria et al.
6257185 July 10, 2001 Groh et al.
6273039 August 14, 2001 Church
6318324 November 20, 2001 Koeroghlian et al.
6321704 November 27, 2001 Church et al.
6321705 November 27, 2001 Fernandez et al.
6325030 December 4, 2001 Spath et al.
6345596 February 12, 2002 Kuhl
6405699 June 18, 2002 Church
6412460 July 2, 2002 Sato et al.
6427652 August 6, 2002 Faria et al.
6439176 August 27, 2002 Payne
6460499 October 8, 2002 Mason et al.
6477997 November 12, 2002 Wakeman
6497207 December 24, 2002 Spath et al.
6513470 February 4, 2003 Hedriksma et al.
6578535 June 17, 2003 Spath et al.
6588394 July 8, 2003 Zheng et al.
6591796 July 15, 2003 Scott
6595174 July 22, 2003 Schnell
6606972 August 19, 2003 Wenisch et al.
6615783 September 9, 2003 Haas et al.
6655487 December 2, 2003 Mallette et al.
6668776 December 30, 2003 Hendriksma et al.
6745737 June 8, 2004 Evans et al.
6748914 June 15, 2004 Spath et al.
6802288 October 12, 2004 Spath
6814040 November 9, 2004 Hendriksma et al.
6866014 March 15, 2005 Spath
6920857 July 26, 2005 Spath
6976463 December 20, 2005 Spath et al.
6977154 December 20, 2005 Choo et al.
6997154 February 14, 2006 Geyer et al.
7007651 March 7, 2006 Spath
7036481 May 2, 2006 Sailer et al.
7055479 June 6, 2006 Sailer et al.
7146951 December 12, 2006 Sailer et al.
7207303 April 24, 2007 Geyer et al.
7210439 May 1, 2007 Geyer et al.
20010009145 July 26, 2001 Faria et al.
20020038642 April 4, 2002 Haas et al.
20020195072 December 26, 2002 Spath et al.
20030070636 April 17, 2003 Evans et al.
20030075129 April 24, 2003 Spath et al.
20030101953 June 5, 2003 Hendriksma et al.
20050081811 April 21, 2005 Spath et al.
20050103300 May 19, 2005 Spath et al.
20050120989 June 9, 2005 Geyer et al.
20060191503 August 31, 2006 Geyer et al.
Foreign Patent Documents
42 06 166 September 1992 DE
43 32 660 March 1995 DE
4333927 April 1995 DE
195 02 332 August 1996 DE
19502332 August 1996 DE
198 04 952 August 1999 DE
198 44 202 March 2000 DE
19844202 March 2000 DE
199 15 531 October 2000 DE
199 15 532 October 2000 DE
199 19 245 November 2000 DE
0 318 151 May 1989 EP
0 608 925 August 1994 EP
1 149 989 October 2001 EP
574 852 January 1946 GB
2 272 022 May 1994 GB
9530081 November 1995 WO
Other references
  • Buuk, B. et al., “Engine Trends and Valve Train Systems for Improved Performance and Fuel Economy”, Eaton Corporation—Engine Components Operations, USA, pp. 1-9 (Aug. 1999).
  • Fortnagel, M. et al., “Four Made of Eight—The New 4.31 and 5.01 V8 Engines”, Mercedes-Benz S-Class, pp. 58-62 (1997).
  • Sandford, M. et al., “Reduced Fuel Consumption and Emissions Through Cylinder Deactivation”, Aachener Kolloquium Fahrzeug-und Motorentechnik, pp. 1017-1027 (1998).
  • Chrysler Group, “Design Practice Standards”, Paper dated Mar. 15, 2005, 1 page, in German with English Translation (2 pages).
  • Quan Zheng, “Characterization of the Dynamic Response of a Cylinder Deactivation Valvetrain System,” Society of Automotive Engineers, Inc., SAE Technical Paper Series, Mar. 2001, pp. 195-201.
  • K. Hampton, Eaton VRRS System, Society of Automotive Engineers, Inc., Variable Value Actuation TOPTEC®: The State of the Art, Sep. 11-12, 2000, 25 pages.
  • O. Schnell, “DaimlerChrysler 5.7L MDS Lifter,” (on or about) Jan. 29, 2001, pp. 1-6.
Patent History
Patent number: RE44864
Type: Grant
Filed: Aug 18, 2005
Date of Patent: Apr 29, 2014
Assignee: Ina Schaeffler KG (Herzogenaurach)
Inventors: Hermann Wenisch (Herzogenaurach), Mario Kuhl (Dobra), Peter Sailer (Erlangen), Oliver Schnell (Veitsbronn)
Primary Examiner: Ching Chang
Application Number: 11/206,280
Classifications
Current U.S. Class: Camshaft Or Cam Characteristics (123/90.17); Cam-to-valve Relationship (123/90.16); Tappet (123/90.48); Hydraulic (123/90.55)
International Classification: F01L 1/34 (20060101);