Apparatus, systems and methods to provide authentication services to a legacy application
Authentication credentials from legacy applications are translated to Kerberos authentication requests. Authentication credentials from the legacy application are directed to an authentication proxy module. The authentication proxy module acts as a credential translator for the application by receiving a set of credentials such as a user name and password, then managing the process of authenticating to a Kerberos server and obtaining services from one or more Kerberized applications, including Kerberos session encryption. A credential binding module associates a user corresponding to authentication credentials from a legacy authentication protocol with one or more Kerberos credentials. Anonymous authentication credentials may be translated to authentication requests for a network directory services object, such as a computer object or service object.
Latest Dell Software, Inc. Patents:
- Systems and methods for predictive logins to session(s) or resource(s)
- Secure shell authentication
- System and method for enforcing access control to publicly-accessible web applications
- System for Rapid Identification of Sources of Variation in Complex Manufacturing Processes
- System for Managing Effective Self-Service Analytic Workflows
1. Field of the Invention
The present invention relates to computer network authentication services. Specifically, the invention relates to apparatus, methods, and systems for providing authentication services to legacy applications.
2. Description of the Related Art
In recent years, computer networks have been increasingly significant in terms of the quantity and sensitivity of the data communicated. Once used primarily for academic purposes, the Internet has become a vehicle for communicating such confidential information as credit card transactions, bank account transactions, and corporate intellectual property. The same applies to proprietary corporate networks. As the quantity and value of the data being communicated has increased, the threats to the security of this data have increased proportionately.
One of the technologies developed to address data security threats is Kerberos authentication. Kerberos provides a means for sensitive data to be communicated securely across an insecure network. Kerberos authentication relies on the existence of a Kerberos server that certifies a user's identity to network services utilized by an application the user is running. Services that use Kerberos to authenticate users are said to be “Kerberized.”
Many organizations use legacy applications that are not capable of using Kerberized services. These organizations face the dilemma of undergoing an expensive upgrade or rewriting of their legacy applications, or facing the increasing threats to the security of their data.
Given the aforementioned issues and challenges related to providing authentication services and the shortcomings of currently available solutions, a need exists for an apparatus, method, and system for providing authentication services to legacy applications. Beneficially, such an apparatus, method, and system would translate legacy authentication services to Kerberos authentication services.
SUMMARY OF THE INVENTIONThe present invention has been developed in response to the present state of the art, and in particular, in response to the problems and needs in the art that have not yet been fully solved by currently available authentication services. Accordingly, the present invention has been developed to provide an apparatus, method, and system for providing authentication services to legacy applications that overcome many or all of the above-discussed shortcomings in the art.
In one aspect of the present invention, an apparatus for providing authentication services to legacy applications includes an authentication translation module that receives authentication credentials corresponding to a legacy authentication protocol with the authentication proxy module further configured to authenticate the user corresponding to the received credentials using the Kerberos authentication protocol. The authentication proxy module may be further configured to authenticate users in circumstances where Kerberos authentication services are temporarily unavailable. In some embodiments, the apparatus for providing authentication services to legacy applications includes a credential binding module configured to associate legacy authentication credentials with corresponding Kerberos credentials.
In another aspect of the present invention, a method for providing authentication services to legacy applications includes directing authentication legacy authentication protocol credentials to a local authentication process that authenticates the user corresponding to the credentials, using the Kerberos authentication protocol. In one embodiment, the method further includes associating a plurality of users with corresponding legacy authentication credentials and Kerberos credentials. In another embodiment, the method further includes translating anonymous authentication requests to authentication requests for network directory services computer objects or service objects. This embodiment provides additional network security benefits by facilitating configuring network directory servers to prevent anonymous users from searching the network directory.
Various elements of the present invention may be combined into a system arranged to carry out the functions or steps presented above. In one embodiment, the system includes a client configured to authenticate using a legacy authentication protocol, an application configured to receive credentials from the client and direct them to an authentication proxy module, the authentication proxy module, a Kerberos server, and an application server that provides a Kerberos-secured service. Legacy authentication credentials are transmitted from the client to the authentication proxy module, which authenticates the user to the Kerberos server and passes the Kerberos credentials corresponding to the user to the Kerberos-secured service.
In some embodiments, the system may further include a credential binding module that associates each user with the corresponding legacy authentication credentials and one or more Kerberos credentials. In various embodiments, the legacy authentication credentials may include a user name, password, biometric, or the like. In various embodiments, the legacy authentication protocol may be RADIUS, TACACS, or the like, or may be a data access protocol that involves authentication such as ftp, LDAP, SQL, ODBC, or the like.
The present invention facilitates providing authentication services to legacy applications. These and other features and advantages of the present invention will become more fully apparent from the following description and appended claims, or may be learned by the practice of the invention as set forth hereinafter.
It should be noted that reference throughout this specification to features, advantages, or similar language does not imply that all of the features and advantages that may be realized with the present invention should be or are in any single embodiment of the invention. Rather, language referring to the features and advantages is understood to mean that a specific feature, advantage, or characteristic described in connection with an embodiment is included in at least one embodiment of the present invention. Thus, discussion of the features and advantages, and similar language, throughout this specification may, but do not necessarily, refer to the same embodiment.
Furthermore, the described features, advantages, and characteristics of the invention may be combined in any suitable manner in one or more embodiments. One skilled in the relevant art will recognize that the invention can be practiced without one or more of the specific features or advantages of a particular embodiment. In other instances, additional features and advantages may be recognized in certain embodiments that may not be present in all embodiments of the invention.
In order that the advantages of the invention will be readily understood, a more particular description of the invention briefly described above will be rendered by reference to specific embodiments that are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered to be limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings, in which:
It will be readily understood that the components of the present invention, as generally described and illustrated in the Figures herein, may be arranged and designed in a wide variety of different configurations. Thus, the following more detailed description of the embodiments of the apparatus, method, and system of the present invention, as represented in
Many of the functional units described in this specification have been labeled as modules, in order to more particularly emphasize their implementation independence. For example, a module may be implemented as a hardware circuit comprising custom VLSI circuits or gate arrays, off-the-shelf semiconductors such as logic chips, transistors, or other discrete components. A module may also be implemented in programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices or the like.
Modules may also be implemented in software for execution by various types of processors. An identified module of executable code may, for instance, comprise one or more physical or logical blocks of computer instructions which may, for instance, be organized as an object, procedure, or function. Nevertheless, the executables of an identified module need not be physically located together, but may comprise disparate instructions stored in different locations which, when joined logically together, comprise the module and achieve the stated purpose for the module.
Indeed, a module of executable code could be a single instruction, or many instructions, and may even be distributed over several different code segments, among different programs, and across several memory devices, such as a computer readable storage medium. Similarly, operational data may be identified and illustrated herein within modules, and may be embodied in any suitable form and organized within any suitable type of data structure. The operational data may be collected as a single data set, or may be distributed over different locations including over different storage devices, and may exist, at least partially, merely as electronic signals on a system or network.
In the following description, numerous specific details are provided, such as examples of programming, software modules, user selections, network transactions, database queries, database structures, hardware modules, hardware circuits, hardware chips, etc., to provide a thorough understanding of embodiments of the invention. One skilled in the relevant art will recognize, however, that the invention can be practiced without one or more of the specific details, or with other methods, components, materials, and so forth. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of the invention.
The features, structures, or characteristics of the invention described throughout this specification may be combined in any suitable manner in one or more embodiments. For example, reference throughout this specification to “one embodiment,” “an embodiment,” or similar language means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in one embodiment,” “in an embodiment,” or similar language throughout this specification do not necessarily all refer to the same embodiment and the described features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
The present invention sets forth an apparatus, system and method for providing authentication services to legacy applications. Authentication requests from legacy applications are directed to an authentication proxy module that translates authentication requests to authenticate to Kerberized services. From the user's standpoint, there is no change in the authentication process, nor is any modification required to the legacy application.
The user 110 enters a credential 130 at the client 120 at the request of the application 150 running on the application server 140. The credential 130 typically consists of a user name and password. The application 150 utilizes services provided by the service provider 170 and authenticates to it by passing the authentication credential 160. The service provider returns service data 180 to the application 150. The cycle completes when the application 150 returns application data 190 to the client 120. In other embodiments, application data 190 may be stored in a database or directed to another process or service.
Because the authentication credential 160 may be transmitted across an unsecured network, it is subject to eaves-dropping attacks in which an unauthorized user copies the authentication credential 160 as it is transmitted, or spoofing attacks in which an unauthorized user intercepts the authentication credential 160 by emulating the service provider 170. Replacing the service provider 170 with a Kerberized service may prevent such attacks, but the legacy application 150 is not configured to authenticate using Kerberos. Because the Kerberos authentication algorithm is more complex than older authentication protocols, it is typically not possible to reconfigure a legacy application 150 to use Kerberos authentication, and rewriting a legacy application 150 to authenticate using Kerberos typically involves a considerable investment of cost and time. A further advantage to replacing service provider 170 with a Kerberized service is that duplicate user accounts on servers in an organization's network may be consolidated, thereby reducing the administrative overhead required.
In one embodiment, legacy authentication credentials 160 are configured to be submitted from the application 150 to the authentication proxy module 210. The authentication proxy module 210 receives the authentication credential 160 from the application 150 and invokes a corresponding Kerberos authentication request 230 for the Kerberos server 240. The Kerberos server 240 returns a Kerberos ticket 260 to the authentication proxy module 210, which then submits an authentication credential 270 to the Kerberized service provider 280. Once authentication to the Kerberized service provider 280 has completed successfully, service data 290 may be returned to the legacy application 150. In the embodiment depicted in
The Kerberos protocol is actually more complex than represented in
In some embodiments, a credential binding module 220 includes an association between the legacy authentication protocol credentials for each user 110 and the corresponding Kerberos authentication credentials. In other embodiments, the association between the legacy and corresponding Kerberos credentials for each user 110 may be intrinsic to the authentication proxy module 210. In some embodiments, the credential binding module associates credentials corresponding to a legacy authentication protocol with a Kerberos identity, rather than a cached Kerberos ticket 260.
The configure application operation 310 initializes the authentication proxy module 210 by directing the authentication credential 160 from the service provider 170 to the authentication proxy module 210. The authentication proxy module 210 thereafter is configured to receive a legacy authentication credential from the application 150 and intermediate between the legacy application 150 and the Kerberized service provider 280. In some embodiments, the legacy application 150 is configured to submit the authentication credential 160 to the authentication proxy module 210, rather than the service provider 170. In some embodiments, the configure application operation 310 is a setup program for the authentication protocol translation apparatus comprising the authentication proxy module 210 and the credential binding module 220.
The receive legacy authentication credential operation 320 receives an authentication credential 160 directed to the authentication proxy module 210. The authentication credential 160 may include a user name and password passed in clear text. In some embodiments, the receive legacy authentication credential operation 320 enters the authentication credential 160 into a table or database for later association with the corresponding Kerberos ticket 260. In some embodiments, the authentication credential 160 is stored in encrypted form. In some embodiments, the authentication credential 160 may be associated with a Kerberos identity.
In some embodiments, the authentication credential 160 may be stored in a database in clear text or encrypted form or be newly-assigned for the user 110. The receive legacy authentication credential operation 320 may receive the legacy authentication credential 160 from a database or user account initialization process to obtain a corresponding Kerberos ticket 260. Although the Kerberos ticket 260 may be expired when the user 110 subsequently authenticates, successfully decrypting the Kerberos ticket 260 using the authentication credential 160 submitted by the user 110 demonstrates that the authentication credential provided is correct. Generating the Kerberos ticket 260 prior to user 110 authentication facilitates subsequent authentication of the user 110 when the Kerberos server 240 is not available, even though the user 110 may never have previously authenticated to the network.
The authenticate to Kerberos test 330 determines whether the user 110 can be authenticated to the Kerberos server 240 after submitting a Kerberos authentication request 230. If the Kerberos server 240 returns a Kerberos ticket 260 to the authentication proxy module 210, the authentication protocol translation method 300 continues with the cache Kerberos credential operation 340. Otherwise, the authentication protocol translation method 300 continues with the return failure status operation 380.
The cache Kerberos credential operation 340 associates the Kerberos ticket 260 with the authentication credential 160 corresponding to the user 110. In some embodiments, the cache Kerberos credential operation 340 enters the Kerberos ticket 260 into the table or database utilized by the legacy authentication credential operation 320. In various embodiments, the table or database may be intrinsic to the authentication proxy module 210 or may be included in the credential binding module 220.
The request service operation 350 submits an authentication credential 270 in accordance with the Kerberos authentication protocol to the Kerberized service provider 280 and receives any service data 290 returned by the Kerberized service provider 280. The service data 290 is then redirected to the legacy application 150. The service data 290 returned by the Kerberized service provider 280 is returned in encrypted form, using a temporary service key provided by the Kerberos server 240. Transmitting the service data in encrypted form increases the security of the service provided by the Kerberized service provider 280. In some embodiments, the authentication proxy module 210 receives service data 290 and returns the service data 290 to the application 150 as a proxy for the non-Kerberized service provider 170. Upon completion of the request service operation, the authentication protocol translation method 300 ends 390.
The Kerberos service available test 360 determines whether Kerberos authentication failed because the Kerberos server did not respond, due to a network error, hardware failure, or the like. If authentication failed because the Kerberos service was not available, the authentication protocol translation method 300 continues with the obtain cached credential procedure 370. Otherwise, the authentication protocol translation method 300 continues with the return failure status operation 380.
The obtain cached credential operation 370 obtains the cached Kerberos ticket 260 with the authentication credential 160 corresponding to the user 110. The authentication credential 160 may be considered valid if the cached Kerberos ticket 260 can be successfully decrypted using the authentication credential 160. Using the cached Kerberos ticket 260 facilitates uninterrupted access to services provided by the Kerberized service provider 280 when the Kerberos server 240 is unavailable due to network failure or the like. In some embodiments, the authentication protocol translation method 300 provides the cached Kerberos ticket 260 as long as the ticket remains valid, thus reducing the number of authentication requests submitted to the Kerberos server 240.
The return failure status operation 380 reports a failure to authenticate to the Kerberos server 240 to the legacy application 150. In some embodiments, the return failure status operation 380 may delete the authentication credential 160 from the table or database in which it was stored by the receive legacy authentication credential operation 320. Upon completion of the return failure status operation 360, the authentication protocol translation method 300 ends 390.
The anonymous user authentication protocol translation method 400 translates anonymous bind requests into Kerberos authentication requests for the computer object or service object associated with the client 120 from which the anonymous bind request originates. The Kerberos server 240 can be configured to not accept anonymous bind requests, thus protecting the Kerberos server 240 from attack from foreign network addresses. Once the client 120 has authenticated as a computer object or service object, the client 120 may then be permitted to search the network directory. For example, the user 110 may enter a common name and password, which the authentication proxy module 210 may use to search the directory to obtain the distinguished name associated with the common name, so that the user 110 may be authenticated using the associated distinguished name and password.
Since there are no network directory objects associated with anonymous binds, there is no mechanism for the network administrator to manage computers that connect using anonymous binds. Converting anonymous binds to computer object authentications facilitates management of the associated computers using network directory services prior to authentication. For example, a computer object can be assigned to an organizational unit, so that a login script associated with the organizational unit is executed when the computer object authenticates. Additionally, converting anonymous binds to computer object authentications increases network security by allowing only a trusted client 120 to access network directory services. For example, when unauthorized users are permitted to bind to the network directory service anonymously, they may obtain user names that may be used with a dictionary attack to obtain unauthorized access to the network.
The receive anonymous authentication credential operation 410 receives an anonymous authentication credential corresponding to the authentication credential 160. In some embodiments, an anonymous authentication credential 160 may include a common name and network password of a user to be authenticated using the distinguished name associated with the common name.
The valid origin test 420 verifies that the authentication credential 160 originated from a trusted source. In some embodiments, the application server 140 may be configured such that the authentication credential 160 is received from a secure network. If the authentication credential 160 originated from a trusted source, the anonymous user authentication protocol translation method 400 continues with the authenticate to Kerberos as computer test 430. Otherwise, the anonymous user authentication protocol translation method 400 continues with the return failure status procedure 380.
The authenticate to Kerberos as computer test 430 determines whether the authentication proxy module 210, acting as a proxy for the client 120, can authenticate to Kerberos as a computer object. In some embodiments, the authentication proxy module 210 uses one service account for a plurality of clients 120. Authentication may not be possible if the Kerberos server is unavailable due to a network failure. If the authentication proxy module 210 authenticates to Kerberos, the anonymous user authentication protocol translation method 400 continues with the cache Kerberos credential procedure 340. Otherwise, the anonymous user authentication protocol translation method 400 continues with the return failure status procedure 380.
The present invention facilitates providing authentication services to legacy applications. The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
Claims
1. A system to provide authentication services to legacy applications, the system comprising:
- one or more legacy applications executing on an application server and configured to authenticate a user based on one or more user credentials received from a client using a legacy authentication protocol, wherein the one or more legacy applications are not configured to authenticate using a Kerberos authentication protocol;
- an authentication proxy module executing on a computing device and configured to receive legacy authentication credentials from the one or more legacy applications corresponding to the legacy authentication protocol, wherein the legacy authentication credentials are associated with the one or more user credentials; and
- a credential binding module in communication with the authentication proxy module and configured to associated the legacy authentication credentials with a cached Kerberos credential,
- and wherein the authentication proxy module is further configured to: (i) authenticate the user corresponding to the legacy authentication credentials using a Kerberos authentication protocol by invoking a Kerberos authentication request to a Kerberos server, and (ii) use the cached Kerberos credential received from the credential binding module to authenticate the user when the Kerberos server is temporarily unavailable.
2. The system of claim 1, A system to provide authentication services to legacy applications, the system comprising:
- one or more legacy applications executing on an application server and configured to authenticate a user based on one or more user credentials received from a client, wherein the one or more legacy applications are not configured to authenticate using a Kerberos authentication protocol;
- an authentication proxy module executing on a computing device and configured to receive legacy authentication credentials from the one or more legacy applications, wherein the legacy authentication credentials are associated with the one or more user credentials; and
- a credential binding module in communication with the authentication proxy module and configured to associate the legacy authentication credentials with a cached Kerberos credential,
- wherein the authentication proxy module is further configured to: (i) authenticate the user corresponding to the legacy authentication credentials using a Kerberos authentication protocol by invoking a Kerberos authentication request to a Kerberos server, and (ii) use the cached Kerberos credential received from the credential binding module to authenticate the user when the Kerberos server is temporarily unavailable;
- wherein the cached Kerberos credential comprises a previously-generated Kerberos credential, and wherein the authentication proxy module is further configured to use the previously-generated Kerberos credential to authenticate a user that has not previously been authenticated by the one or more legacy applications, when the Kerberos server is temporarily unavailable.
3. The system of claim 1, A system to provide authentication services to legacy applications, the system comprising:
- one or more legacy applications executing on an application server and configured to authenticate a user based on one or more user credentials received from a client using a legacy authentication protocol, wherein the one or more legacy applications are not configured to authenticate using a Kerberos authentication protocol;
- an authentication proxy module executing on a computing device and configured to receive legacy authentication credentials from the one or more legacy applications corresponding to the legacy authentication protocol, wherein the legacy authentication credentials are associated with the one or more user credentials; and
- a credential binding module in communication with the authentication proxy module and configured to associate the legacy authentication credentials with a cached Kerberos credential,
- wherein the authentication proxy module is further configured to: (i) authenticate the user corresponding to the legacy authentication credentials using a Kerberos authentication protocol by invoking a Kerberos authentication request to a Kerberos server, and (ii) use the cached Kerberos credential received from the credential binding module to authenticate the user when the Kerberos server is temporarily unavailable;
- and wherein the authentication proxy module is further configured to eliminate anonymous binds by authenticating as a network directory services object as a proxy for an anonymous user.
4. The system of claim 1, wherein the legacy authentication credentials comprise a user name and password.
5. The system of claim 1, A system to provide authentication services to legacy applications, the system comprising:
- one or more legacy applications executing on an application server and configured to authenticate a user based on one or more user credentials received from a client using a legacy authentication protocol wherein the one or more legacy applications are not configured to authenticate using a Kerberos authentication protocol;
- an authentication proxy module executing on a computing device and configured to receive legacy authentication credentials from the one or more legacy applications corresponding to the legacy authentication protocol, wherein the legacy authentication credentials are associated with the one or more user credentials; and
- a credential binding module in communication with the authentication proxy module and configured to associate the legacy authentication credentials with a cached Kerberos credential,
- wherein the authentication proxy module is further configured to: (i) authenticate the user corresponding to the legacy authentication credentials using a Kerberos authentication protocol by invoking a Kerberos authentication request to a Kerberos server, and (ii) use the cached Kerberos credential received from the credential binding module to authenticate the user when the Kerberos server is temporarily unavailable;
- and wherein the legacy authentication credentials comprise a biometric.
6. The system of claim 1, wherein the legacy authentication protocol is selected from the group consisting of RADIUS, TACACS, ftp, LDAP, SQL and ODBC.
7. The system of claim 1, wherein the application server comprises the computing device.
8. The system of claim 1, wherein the cached Kerberos credential comprises a Kerberos ticket.
9. The system of claim 1, wherein the authentication proxy module is further configured to determine availability of the Kerberos server.
10. An apparatus to provide authentication services to legacy applications, the apparatus comprising:
- an authentication proxy module executing on a computing device and configured to receive from one or more legacy applications executing on an application server legacy authentication credentials corresponding to a legacy authentication protocol, wherein the one or more legacy applications are not configured to use a Kerberos authentication protocol to authenticate a user; and
- a credential binding module in communication with the authentication proxy module and configured to associate the legacy authentication credentials with a Kerberos credential,
- and wherein the authentication proxy module is further configured to: (i) authenticate a user corresponding to the legacy authentication credentials using a Kerberos authentication protocol by invoking a Kerberos authentication request to a Kerberos server, and (ii) use the Kerberos credential received from the credential binding module to authenticate the user when the Kerberos server is temporarily unavailable.
11. The apparatus of claim 10, An apparatus to provide authentication services to legacy applications, the apparatus comprising:
- one or more legacy applications executing on an application server and configured to authenticate a user based on one or more user credentials received from a client using a legacy authentication protocol, wherein the one or more legacy applications are not configured to authenticate using a Kerberos authentication protocol;
- an authentication proxy module executing on a computing device and configured to receive legacy authentication credentials from the one or more legacy applications corresponding to the legacy authentication protocol, wherein the legacy authentication credentials are associated with the one or more user credentials; and
- a credential binding module in communication with the authentication proxy module and configured to associate the legacy authentication credentials with a cached Kerberos credential,
- wherein the authentication proxy module is further configured to: (i) authenticate the user corresponding to the legacy authentication credentials using a Kerberos authentication protocol by invoking a Kerberos authentication request to a Kerberos server, and (ii) use the cached Kerberos credential received from the credential binding module to authenticate the user when the Kerberos server is temporarily unavailable;
- wherein the Kerberos credential comprises a previously-generated Kerberos credential, and wherein the authentication proxy module is further configured to use the previously-generated Kerberos credential to authenticate a user that has not previously been authenticated by the one or more legacy applications, when Kerberos authentication services are temporarily unavailable.
12. The apparatus of claim 10, An apparatus to provide authentication services to legacy applications, the apparatus comprising:
- one or more legacy applications executing on an application server and configured to authenticate a user based on one or more user credentials received from a client using a legacy authentication protocol, wherein the one or more legacy applications are not configured to authenticate using a Kerberos authentication protocol;
- an authentication proxy module executing on a computing device and configured to receive legacy authentication credentials from the one or more legacy applications corresponding to the legacy authentication protocol, wherein the legacy authentication credentials are associated with the one or more user credentials; and
- a credential binding module in communication with the authentication proxy module and configured to associate the legacy authentication credentials with a cached Kerberos credential,
- wherein the authentication proxy module is further configured to: (i) authenticate the user corresponding to the legacy authentication credentials using a Kerberos authentication protocol by invoking a Kerberos authentication request to a Kerberos server, and (ii) use the cached Kerberos credential received from the credential binding module to authenticate the user when the Kerberos server is temporarily unavailable;
- and wherein the authentication proxy module is further configured to eliminate anonymous binds by authenticating an anonymous user as a network directory services object.
13. The apparatus of claim 10, wherein the legacy authentication credentials comprise a user name and password.
14. The apparatus of claim 10, An apparatus to provide authentication services to legacy applications, the apparatus comprising:
- one or more legacy applications executing on an application server and configured to authenticate a user based on one or more user credentials received from a client using a legacy authentication protocol, wherein the one or more legacy applications are not configured to authenticate using a Kerberos authentication protocol;
- an authentication proxy module executing on a computing device and configured to receive legacy authentication credentials from the one or more legacy applications corresponding to the legacy authentication protocol, wherein the legacy authentication credentials are associated with the one or more user credentials; and
- a credential binding module in communication with the authentication proxy module and configured to associate the legacy authentication credentials with a cached Kerberos credential,
- wherein the authentication proxy module is further configured to: (i) authenticate the user corresponding to the legacy authentication credentials using a Kerberos authentication protocol by invoking a Kerberos authentication request to a Kerberos server, and (ii) use the cached Kerberos credential received from the credential binding module to authenticate the user when the Kerberos server is temporarily unavailable;
- and wherein the legacy authentication credentials comprise a biometric.
15. The apparatus of claim 10, wherein the legacy authentication protocol is selected from the group consisting of RADIUS, TACACS, ftp, LDAP, SQL and ODBC.
16. A method of providing authentication services to legacy applications, the method comprising:
- directing from one or more legacy applications executing on an application server legacy authentication credentials corresponding to a legacy authentication protocol to a local authentication process executing on a computing device, wherein the one or more legacy applications are not configured to use a Kerberos authentication protocol to authenticate a user;
- receiving the legacy authentication credentials with the local authentication process;
- associating with a binding module the legacy authentication credentials with a Kerberos credential; and
- with the local authorization process: (i) when a Kerberos server coupled to the computing device is available, authenticating a user corresponding to the legacy authentication credentials using a Kerberos authentication protocol in response to receiving the authentication credentials by invoking a Kerberos authentication request to the Kerberos server, and (ii) using the Kerberos credential received from the binding module to authenticate the user when the Kerberos server is unavailable.
17. The method of claim 16, further comprising A method of providing authentication services to legacy applications, the method comprising:
- directing from one or more legacy applications executing on an application server legacy authentication credentials corresponding to a legacy authentication protocol to a local authentication process executing on a computing device, wherein the one or more legacy applications are not configured to use a Kerberos authentication protocol to authenticate a user;
- receiving the legacy authentication credentials with the local authentication process;
- associating with a binding module the legacy authentication credentials with a Kerberos credential;
- with the local authorization process: (i) when a Kerberos server coupled to the computing device is available, authenticating a user corresponding to the legacy authentication credentials using a Kerberos authentication protocol in response to receiving the authentication credentials by invoking a Kerberos authentication request to the Kerberos server, and (ii) using the Kerberos credential received from the binding module to authenticate the user when the Kerberos server is unavailable; and
- eliminating anonymous binds by authenticating an anonymous user as a network directory services object.
18. The method of claim 16, wherein the Kerberos credential comprises a Kerberos identity.
19. The method of claim 16, wherein the Kerberos credential comprises a Kerberos ticket.
20. The method of claim 19, wherein using the Kerberos credential received from the binding module to authenticate the user comprises decrypting the Kerberos ticket using user-submitted credentials associated with the legacy authentication credentials.
21. The method of claim 20, further comprising A method of providing authentication services to legacy applications, the method comprising:
- directing from one or more legacy applications executing on an application server legacy authentication credentials corresponding to a legacy authentication protocol to a local authentication process executing on a computing device, wherein the one or more legacy applications are not configured to use a Kerberos authentication protocol to authenticate a user;
- receiving the legacy authentication credentials with the local authentication process;
- associating with a binding module the legacy authentication credentials with a Kerberos credential that comprises a Kerberos ticket;
- with the local authorization process: (i) when a Kerberos server coupled to the computing device is available, authenticating a user corresponding to the legacy authentication credentials using a Kerberos authentication protocol in response to receiving the authentication credentials by invoking a Kerberos authentication request to the Kerberos server, and (ii) using the Kerberos credential received from the binding module to authenticate the user when the Kerberos server is unavailable; and
- using the Kerberos ticket received from the binding module to authenticate the user following expiration of the Kerberos ticket, wherein using the Kerberos credential received from the binding module to authenticate the user comprises decrypting the Kerberos ticket using user-submitted credentials associated with the legacy authentication credentials.
22. The method of claim 16, further comprising determining with the local authorization process when the Kerberos server is unavailable.
23. A computer readable storage medium comprising computer readable program code configured to execute on a processor to carry out a method to providing authentication services to legacy applications, the method comprising:
- directing from one or more legacy applications on an application server legacy authentication credentials corresponding to a legacy authentication protocol to a local authentication process executing on a computing device, wherein the one or more legacy applications are not configured to use a Kerberos authentication protocol to authenticate a user;
- receiving the legacy authentication credentials with the local authentication process;
- associating with a binding module the legacy authentication credentials with a Kerberos credential; and
- with the local authorization process: (i) when a Kerberos server coupled to the computing device is available, authenticating a user corresponding to the legacy authentication credentials using a Kerberos authentication protocol in response to receiving the authentication credentials by invoking a Kerberos authentication request to the Kerberos server, and (ii) using the Kerberos credential received from the binding module to authenticate the user when the Kerberos server is unavailable.
24. The computer readable storage medium of claim 23, wherein the method further comprises A computer readable storage device comprising computer readable program code configured to execute on a processor to carry out a method to providing authentication services to legacy applications, the method comprising:
- directing, from one or more legacy applications on an application server, legacy authentication credentials corresponding to a legacy authentication protocol, to a local authentication process executing on a computing device, wherein the one or more legacy applications are not configured to use a Kerberos authentication protocol to authenticate a user;
- receiving the legacy authentication credentials with the local authentication process;
- associating with a binding module the legacy authentication credentials with a Kerberos credential;
- with the local authorization process: (i) when a Kerberos server coupled to the computing device is available, authenticating a user corresponding to the legacy authentication credentials using a Kerberos authentication protocol in response to receiving the authentication credentials by invoking a Kerberos authentication request to the Kerberos server, and (ii) using the Kerberos credential received from the binding module to authenticate the user when the Kerberos server is unavailable; and
- eliminating anonymous binds by authenticating an anonymous user as a network directory services object.
25. A system to provide authentication services to legacy applications, the system comprising:
- an application server comprising computer hardware including at least one computer processor and executing one or more legacy applications configured to authenticate a user based on one or more user credentials received from a client using a legacy authentication protocol selected from the group consisting of RADIUS, TACACS, LDAP, SQL and ODBC, wherein the one or more legacy applications are not configured to authenticate using a Kerberos authentication protocol;
- at least one computing device comprising computer hardware, including at least one computer processor, that: executes an authentication proxy module stored in computer memory, thereby causing the computer hardware to receive legacy authentication credentials from the one or more legacy applications corresponding to the legacy authentication protocol, wherein the legacy authentication credentials are associated with the one or more user credentials; and executes a credential binding module stored in computer memory and in communication with the authentication proxy module, thereby causing the computer hardware to associate the legacy authentication credentials with a cached Kerberos credential;
- and wherein execution of the authentication proxy module further causes the computer hardware to: (i) authenticate the user corresponding to the legacy authentication credentials using a Kerberos authentication protocol by invoking a Kerberos authentication request to a Kerberos server, and (ii) use the cached Kerberos credential received from the credential binding module to authenticate the user when the Kerberos server is temporarily unavailable.
26. The system of claim 25, wherein the legacy authentication protocol is RADIUS.
27. The system of claim 25, wherein the legacy authentication protocol is TACACS.
28. The system of claim 25, wherein the legacy authentication protocol is LDAP.
29. The system of claim 25, wherein the legacy authentication protocol is SQL.
30. The system of claim 25, wherein the legacy authentication protocol is ODBC.
31. An apparatus to provide authentication services to legacy applications, the apparatus comprising:
- at least one computing device comprising computer hardware, including at least one computer processor, that: executes an authentication proxy module stored in computer memory, thereby causing the computer hardware to receive, from one or more legacy applications executing on an application server, legacy authentication credentials corresponding to a legacy authentication protocol selected from the group consisting of RADIUS, TACACS, LDAP, SQL and ODBC, wherein the one or more legacy applications are not configured to use a Kerberos authentication protocol to authenticate a user; and executes a credential binding module stored in computer memory and in communication with the authentication proxy module, thereby causing the computer hardware to associate the legacy authentication credentials with a Kerberos credential;
- and wherein execution of the authentication proxy module by the computing device further causes the computer hardware to: (i) authenticate a user corresponding to the legacy authentication credentials using a Kerberos authentication protocol by invoking a Kerberos authentication request to a Kerberos server, and (ii) use the Kerberos credential received from the credential binding module to authenticate the user when the Kerberos server is temporarily unavailable.
32. The apparatus of claim 31, wherein the legacy authentication protocol is RADIUS.
33. The apparatus of claim 31, wherein the legacy authentication protocol is TACACS.
34. The apparatus of claim 31, wherein the legacy authentication protocol is LDAP.
35. The apparatus of claim 31, wherein the legacy authentication protocol is SQL.
36. The apparatus of claim 31, wherein the legacy authentication protocol is ODBC.
4109237 | August 22, 1978 | Hill |
4370707 | January 25, 1983 | Phillips et al. |
4694397 | September 15, 1987 | Grant et al. |
5222018 | June 22, 1993 | Sharpe et al. |
5267865 | December 7, 1993 | Lee et al. |
5302132 | April 12, 1994 | Corder |
5310349 | May 10, 1994 | Daniels et al. |
5313465 | May 17, 1994 | Perlman et al. |
5333302 | July 26, 1994 | Hensley et al. |
5339435 | August 16, 1994 | Lubkin et al. |
5367698 | November 22, 1994 | Webber et al. |
5371852 | December 6, 1994 | Attanasio et al. |
5387104 | February 7, 1995 | Corder |
5410703 | April 25, 1995 | Nilsson et al. |
5423032 | June 6, 1995 | Byrd et al. |
5437027 | July 25, 1995 | Bannon et al. |
5437555 | August 1, 1995 | Ziv-El |
5440719 | August 8, 1995 | Hanes et al. |
5441415 | August 15, 1995 | Lee et al. |
5497486 | March 5, 1996 | Stolfo et al. |
5497492 | March 5, 1996 | Zbikowski et al. |
5499379 | March 12, 1996 | Tanaka et al. |
5530829 | June 25, 1996 | Beardsley et al. |
5550968 | August 27, 1996 | Miller et al. |
5550976 | August 27, 1996 | Henderson et al. |
5553291 | September 3, 1996 | Tanaka et al. |
5586304 | December 17, 1996 | Stupek, Jr. et al. |
5590360 | December 31, 1996 | Edwards |
5600833 | February 4, 1997 | Senn et al. |
5608874 | March 4, 1997 | Ogawa et al. |
5608903 | March 4, 1997 | Prasad et al. |
5613090 | March 18, 1997 | Willems |
5623601 | April 22, 1997 | Vu |
5630069 | May 13, 1997 | Flores et al. |
5630131 | May 13, 1997 | Palevich et al. |
5659735 | August 19, 1997 | Parrish et al. |
5659736 | August 19, 1997 | Hasegawa et al. |
5666502 | September 9, 1997 | Capps |
5671428 | September 23, 1997 | Muranaga et al. |
5673386 | September 30, 1997 | Batra |
5673387 | September 30, 1997 | Chen et al. |
5675782 | October 7, 1997 | Montague et al. |
5677997 | October 14, 1997 | Talatik |
5680586 | October 21, 1997 | Elkins et al. |
5684950 | November 4, 1997 | Dare et al. |
5692132 | November 25, 1997 | Hogan |
5692902 | December 2, 1997 | Aeby |
5694540 | December 2, 1997 | Humelsine et al. |
5706502 | January 6, 1998 | Foley et al. |
5708812 | January 13, 1998 | Van Dyke et al. |
5708828 | January 13, 1998 | Coleman |
5710884 | January 20, 1998 | Dedrick |
5711671 | January 27, 1998 | Geeslin et al. |
5724521 | March 3, 1998 | Dedrick |
5727145 | March 10, 1998 | Nessett et al. |
5727951 | March 17, 1998 | Ho et al. |
5740427 | April 14, 1998 | Stoller |
5743746 | April 28, 1998 | Ho et al. |
5745113 | April 28, 1998 | Jordan et al. |
5745902 | April 28, 1998 | Miller et al. |
5752042 | May 12, 1998 | Cole et al. |
5754173 | May 19, 1998 | Hiura et al. |
5754938 | May 19, 1998 | Herz et al. |
5758062 | May 26, 1998 | McMahon et al. |
5758074 | May 26, 1998 | Marlin et al. |
5758344 | May 26, 1998 | Prasad et al. |
5764897 | June 9, 1998 | Khalidi |
5765140 | June 9, 1998 | Knudson et al. |
5768519 | June 16, 1998 | Swift et al. |
5774551 | June 30, 1998 | Wu et al. |
5778169 | July 7, 1998 | Reinhardt |
5784553 | July 21, 1998 | Kolawa et al. |
5784643 | July 21, 1998 | Shields |
5790801 | August 4, 1998 | Funato |
5796393 | August 18, 1998 | MacNaughton et al. |
5806075 | September 8, 1998 | Jain et al. |
5812669 | September 22, 1998 | Jenkins et al. |
5812865 | September 22, 1998 | Theimer et al. |
5815657 | September 29, 1998 | Williams et al. |
5819265 | October 6, 1998 | Ravin et al. |
5819281 | October 6, 1998 | Cummins |
5819295 | October 6, 1998 | Nakagawa et al. |
5822518 | October 13, 1998 | Ooki et al. |
5835087 | November 10, 1998 | Herz et al. |
5835911 | November 10, 1998 | Nakagawa et al. |
5838918 | November 17, 1998 | Prager et al. |
5844508 | December 1, 1998 | Murashita et al. |
5848396 | December 8, 1998 | Gerace |
5859972 | January 12, 1999 | Subramaniam et al. |
5872928 | February 16, 1999 | Lewis et al. |
5872973 | February 16, 1999 | Mitchell et al. |
5878432 | March 2, 1999 | Misheski et al. |
5889520 | March 30, 1999 | Glaser |
5890161 | March 30, 1999 | Helland et al. |
5890175 | March 30, 1999 | Wong et al. |
5892898 | April 6, 1999 | Fujii et al. |
5893074 | April 6, 1999 | Hughes et al. |
5893076 | April 6, 1999 | Hafner et al. |
5893916 | April 13, 1999 | Dooley |
5930512 | July 27, 1999 | Boden et al. |
5937165 | August 10, 1999 | Schwaller et al. |
5948064 | September 7, 1999 | Bertram et al. |
5949419 | September 7, 1999 | Domine et al. |
5956732 | September 21, 1999 | Tsuchida |
5956736 | September 21, 1999 | Hanson et al. |
5960200 | September 28, 1999 | Eager et al. |
5968176 | October 19, 1999 | Nessett et al. |
5987247 | November 16, 1999 | Lau |
5995114 | November 30, 1999 | Wegman et al. |
6002868 | December 14, 1999 | Jenkins et al. |
6003047 | December 14, 1999 | Osmond et al. |
6014669 | January 11, 2000 | Slaughter et al. |
6014712 | January 11, 2000 | Islam et al. |
6016495 | January 18, 2000 | McKeehan et al. |
6016501 | January 18, 2000 | Martin et al. |
6021496 | February 1, 2000 | Dutcher et al. |
6029178 | February 22, 2000 | Martin et al. |
6029195 | February 22, 2000 | Herz |
6029247 | February 22, 2000 | Ferguson |
6035323 | March 7, 2000 | Narayen et al. |
6041344 | March 21, 2000 | Bodamer et al. |
6044368 | March 28, 2000 | Powers |
6044465 | March 28, 2000 | Dutcher et al. |
6049822 | April 11, 2000 | Mittal |
6052512 | April 18, 2000 | Peterson et al. |
6055538 | April 25, 2000 | Kessenich et al. |
6058260 | May 2, 2000 | Brockel et al. |
6058379 | May 2, 2000 | Odom et al. |
6061643 | May 9, 2000 | Walker et al. |
6061650 | May 9, 2000 | Malking et al. |
6067568 | May 23, 2000 | Li et al. |
6070184 | May 30, 2000 | Blount et al. |
6076166 | June 13, 2000 | Moshfeghi et al. |
6079020 | June 20, 2000 | Liu |
6092199 | July 18, 2000 | Dutcher et al. |
6101481 | August 8, 2000 | Miller |
6101503 | August 8, 2000 | Cooper et al. |
6108649 | August 22, 2000 | Young et al. |
6108670 | August 22, 2000 | Weida et al. |
6112228 | August 29, 2000 | Earl et al. |
6112240 | August 29, 2000 | Pogue et al. |
6115040 | September 5, 2000 | Bladow et al. |
6115544 | September 5, 2000 | Mueller |
6134548 | October 17, 2000 | Gottsman et al. |
6137869 | October 24, 2000 | Voit et al. |
6138086 | October 24, 2000 | Rose et al. |
6141006 | October 31, 2000 | Knowlton et al. |
6141010 | October 31, 2000 | Hoyle |
6141647 | October 31, 2000 | Meijer et al. |
6151600 | November 21, 2000 | Dedrick |
6151610 | November 21, 2000 | Senn et al. |
6161176 | December 12, 2000 | Hunter et al. |
6167445 | December 26, 2000 | Gai et al. |
6167564 | December 26, 2000 | Fontana et al. |
6170009 | January 2, 2001 | Mandal et al. |
6182212 | January 30, 2001 | Atkins et al. |
6182226 | January 30, 2001 | Reid et al. |
6185625 | February 6, 2001 | Tso et al. |
6195794 | February 27, 2001 | Buxton |
6199068 | March 6, 2001 | Carpenter |
6199079 | March 6, 2001 | Gupta et al. |
6202051 | March 13, 2001 | Woolston |
6205480 | March 20, 2001 | Broadhurst et al. |
6208345 | March 27, 2001 | Sheard et al. |
6209000 | March 27, 2001 | Klein et al. |
6209033 | March 27, 2001 | Datta et al. |
6222535 | April 24, 2001 | Hurd, II |
6223221 | April 24, 2001 | Kunz |
6226649 | May 1, 2001 | Bodamer et al. |
6230160 | May 8, 2001 | Chan et al. |
6230194 | May 8, 2001 | Frailong et al. |
6230309 | May 8, 2001 | Turner et al. |
6233584 | May 15, 2001 | Purcell |
6237114 | May 22, 2001 | Wookey et al. |
6246410 | June 12, 2001 | Bergeron et al. |
6249905 | June 19, 2001 | Yoshida et al. |
6256637 | July 3, 2001 | Venkatesh et al. |
6256659 | July 3, 2001 | McLain, Jr. et al. |
6256678 | July 3, 2001 | Traughber et al. |
6260068 | July 10, 2001 | Zalewski et al. |
6263352 | July 17, 2001 | Cohen |
6266666 | July 24, 2001 | Ireland et al. |
6269405 | July 31, 2001 | Dutcher et al. |
6269406 | July 31, 2001 | Dutcher et al. |
6272673 | August 7, 2001 | Dale et al. |
6272678 | August 7, 2001 | Imachi et al. |
6279030 | August 21, 2001 | Britton et al. |
6282576 | August 28, 2001 | Lane |
6282605 | August 28, 2001 | Moore |
6286028 | September 4, 2001 | Cohen et al. |
6286104 | September 4, 2001 | Buhle et al. |
6301601 | October 9, 2001 | Helland et al. |
6304893 | October 16, 2001 | Gish |
6308164 | October 23, 2001 | Nummelin et al. |
6308188 | October 23, 2001 | Bernardo et al. |
6308273 | October 23, 2001 | Goertzel et al. |
6313835 | November 6, 2001 | Gever et al. |
6314434 | November 6, 2001 | Shigemi et al. |
6327677 | December 4, 2001 | Garg et al. |
6330566 | December 11, 2001 | Durham |
6336118 | January 1, 2002 | Hammond |
6341287 | January 22, 2002 | Sziklai et al. |
6345239 | February 5, 2002 | Bowman-Amuah |
6349287 | February 19, 2002 | Hayashi |
6363398 | March 26, 2002 | Andersen |
6370573 | April 9, 2002 | Bowman-Amuah |
6370646 | April 9, 2002 | Goodman et al. |
6381579 | April 30, 2002 | Gervais et al. |
6389589 | May 14, 2002 | Mishra et al. |
6401085 | June 4, 2002 | Gershman et al. |
6401211 | June 4, 2002 | Brezak et al. |
6405364 | June 11, 2002 | Bowman-Amuah |
6430556 | August 6, 2002 | Goldberg et al. |
6438514 | August 20, 2002 | Hill et al. |
6442620 | August 27, 2002 | Thatte et al. |
6446096 | September 3, 2002 | Holland et al. |
6453317 | September 17, 2002 | LaCost et al. |
6457130 | September 24, 2002 | Hitz et al. |
6466932 | October 15, 2002 | Dennis et al. |
6469713 | October 22, 2002 | Hetherington et al. |
6473794 | October 29, 2002 | Guheen et al. |
6496847 | December 17, 2002 | Bugnion et al. |
6567818 | May 20, 2003 | Frey et al. |
6587876 | July 1, 2003 | Mahon et al. |
6615258 | September 2, 2003 | Barry et al. |
6625622 | September 23, 2003 | Henrickson et al. |
6658625 | December 2, 2003 | Allen |
6678714 | January 13, 2004 | Olapurath et al. |
6715128 | March 30, 2004 | Hirashima et al. |
6728877 | April 27, 2004 | Mackin et al. |
6735691 | May 11, 2004 | Capps et al. |
6757696 | June 29, 2004 | Multer et al. |
6760761 | July 6, 2004 | Sciacca |
6795835 | September 21, 2004 | Ricart et al. |
6801946 | October 5, 2004 | Child et al. |
6817017 | November 9, 2004 | Goodman |
6839766 | January 4, 2005 | Parnafes et al. |
6880005 | April 12, 2005 | Bell et al. |
6925477 | August 2, 2005 | Champagne et al. |
6938158 | August 30, 2005 | Azuma |
6941465 | September 6, 2005 | Palekar et al. |
6944183 | September 13, 2005 | Iyer et al. |
6950818 | September 27, 2005 | Dennis et al. |
6950935 | September 27, 2005 | Allavarpu et al. |
6968370 | November 22, 2005 | Wu |
6973488 | December 6, 2005 | Yavatkar et al. |
6976090 | December 13, 2005 | Ben-Shaul et al. |
7028079 | April 11, 2006 | Mastrianni et al. |
7062781 | June 13, 2006 | Shambroom |
7080077 | July 18, 2006 | Ramamurthy et al. |
7089584 | August 8, 2006 | Sharma |
7100195 | August 29, 2006 | Underwood |
7117486 | October 3, 2006 | Wong et al. |
7133984 | November 7, 2006 | Dickensheets |
7139973 | November 21, 2006 | Kirkwood et al. |
7143095 | November 28, 2006 | Barrett et al. |
7162640 | January 9, 2007 | Heath et al. |
7171458 | January 30, 2007 | Brown et al. |
7185073 | February 27, 2007 | Gai et al. |
7209970 | April 24, 2007 | Everson et al. |
7213266 | May 1, 2007 | Maher et al. |
7216181 | May 8, 2007 | Jannu et al. |
7231460 | June 12, 2007 | Sullivan et al. |
7234157 | June 19, 2007 | Childs et al. |
7243370 | July 10, 2007 | Bobde et al. |
7284043 | October 16, 2007 | Feinleib et al. |
7299504 | November 20, 2007 | Tiller et al. |
7346766 | March 18, 2008 | Mackin et al. |
7356601 | April 8, 2008 | Clymer et al. |
7356816 | April 8, 2008 | Goodman et al. |
7379996 | May 27, 2008 | Papatla et al. |
7418597 | August 26, 2008 | Thornton et al. |
7421555 | September 2, 2008 | Dorey |
7426642 | September 16, 2008 | Aupperle et al. |
7428583 | September 23, 2008 | Lortz et al. |
7440962 | October 21, 2008 | Wong et al. |
7444401 | October 28, 2008 | Keyghobad et al. |
7467141 | December 16, 2008 | Steele et al. |
7478418 | January 13, 2009 | Supramaniam et al. |
7483979 | January 27, 2009 | Prager |
7487535 | February 3, 2009 | Isaacson et al. |
7519813 | April 14, 2009 | Cox et al. |
7584502 | September 1, 2009 | Alkove et al. |
7591005 | September 15, 2009 | Moore |
7617501 | November 10, 2009 | Peterson |
7650497 | January 19, 2010 | Thornton et al. |
7653794 | January 26, 2010 | Michael et al. |
7661027 | February 9, 2010 | Langen et al. |
7673323 | March 2, 2010 | Moriconi |
7690025 | March 30, 2010 | Grewal et al. |
7765187 | July 27, 2010 | Bergant et al. |
7805721 | September 28, 2010 | Feinleib et al. |
7895332 | February 22, 2011 | Vanyukhin et al. |
7904949 | March 8, 2011 | Bowers et al. |
7987455 | July 26, 2011 | Senner et al. |
8024360 | September 20, 2011 | Moore |
8086710 | December 27, 2011 | Vanyukhin et al. |
8087075 | December 27, 2011 | Peterson et al. |
8141138 | March 20, 2012 | Bhatia et al. |
8245242 | August 14, 2012 | Peterson et al. |
8346908 | January 1, 2013 | Vanyukhin et al. |
8429712 | April 23, 2013 | Robinson et al. |
8533744 | September 10, 2013 | Peterson et al. |
8584218 | November 12, 2013 | Peterson et al. |
20010034733 | October 25, 2001 | Prompt et al. |
20020055949 | May 9, 2002 | Shiomi et al. |
20020078005 | June 20, 2002 | Shi et al. |
20020112178 | August 15, 2002 | Scherr |
20020129274 | September 12, 2002 | Baskey et al. |
20020133723 | September 19, 2002 | Tait |
20020138572 | September 26, 2002 | Delany et al. |
20020169986 | November 14, 2002 | Lortz |
20020169988 | November 14, 2002 | Vandergeest et al. |
20020174366 | November 21, 2002 | Peterka et al. |
20020178377 | November 28, 2002 | Hemsath et al. |
20020184536 | December 5, 2002 | Flavin |
20030009487 | January 9, 2003 | Prabakaran et al. |
20030018913 | January 23, 2003 | Brezak et al. |
20030023587 | January 30, 2003 | Dennis et al. |
20030028611 | February 6, 2003 | Kenny et al. |
20030033535 | February 13, 2003 | Fisher et al. |
20030065940 | April 3, 2003 | Brezak et al. |
20030065942 | April 3, 2003 | Lineman et al. |
20030110397 | June 12, 2003 | Supramaniam et al. |
20030115186 | June 19, 2003 | Wilkinson et al. |
20030115313 | June 19, 2003 | Kanada et al. |
20030115439 | June 19, 2003 | Mahalingam et al. |
20030149781 | August 7, 2003 | Yared et al. |
20030177388 | September 18, 2003 | Botz et al. |
20030188036 | October 2, 2003 | Chen et al. |
20030226036 | December 4, 2003 | Bivens et al. |
20030229783 | December 11, 2003 | Hardt |
20040010519 | January 15, 2004 | Sinn et al. |
20040059953 | March 25, 2004 | Purnell |
20040078569 | April 22, 2004 | Hotti |
20040088543 | May 6, 2004 | Garg et al. |
20040098595 | May 20, 2004 | Aupperle et al. |
20040098615 | May 20, 2004 | Mowers et al. |
20040111515 | June 10, 2004 | Manion et al. |
20040111643 | June 10, 2004 | Farmer |
20040117382 | June 17, 2004 | Houseknecht et al. |
20040123146 | June 24, 2004 | Himmel et al. |
20040128506 | July 1, 2004 | Blakley et al. |
20040128541 | July 1, 2004 | Blakley et al. |
20040128542 | July 1, 2004 | Blakley et al. |
20040139050 | July 15, 2004 | Barrett et al. |
20040139081 | July 15, 2004 | Barrett et al. |
20040199795 | October 7, 2004 | Grewal et al. |
20040226027 | November 11, 2004 | Winter |
20040260565 | December 23, 2004 | Zimniewicz et al. |
20040260651 | December 23, 2004 | Chan et al. |
20050010547 | January 13, 2005 | Carinci et al. |
20050044409 | February 24, 2005 | Betz et al. |
20050055357 | March 10, 2005 | Campbell |
20050060397 | March 17, 2005 | Barthram et al. |
20050086457 | April 21, 2005 | Hohman |
20050091068 | April 28, 2005 | Ramamoorthy et al. |
20050091213 | April 28, 2005 | Schutz et al. |
20050091250 | April 28, 2005 | Dunn et al. |
20050091284 | April 28, 2005 | Weissman et al. |
20050091290 | April 28, 2005 | Cameron et al. |
20050108579 | May 19, 2005 | Isaacson et al. |
20050114701 | May 26, 2005 | Atkins et al. |
20050125798 | June 9, 2005 | Peterson |
20050144463 | June 30, 2005 | Rossebo et al. |
20050193181 | September 1, 2005 | Kaneda et al. |
20050198303 | September 8, 2005 | Knauerhase et al. |
20050204143 | September 15, 2005 | Ellington |
20050223216 | October 6, 2005 | Chan et al. |
20050246554 | November 3, 2005 | Batson |
20050267938 | December 1, 2005 | Czeczulin |
20050268309 | December 1, 2005 | Krishnaswamy et al. |
20050283443 | December 22, 2005 | Hardt |
20050283614 | December 22, 2005 | Hardt |
20060004794 | January 5, 2006 | Pizzo et al. |
20060005229 | January 5, 2006 | Palekar et al. |
20060010445 | January 12, 2006 | Peterson et al. |
20060015353 | January 19, 2006 | Reese |
20060021017 | January 26, 2006 | Hinton et al. |
20060026195 | February 2, 2006 | Gu et al. |
20060034494 | February 16, 2006 | Holloran |
20060085483 | April 20, 2006 | Mooney et al. |
20060116949 | June 1, 2006 | Wehunt et al. |
20060130065 | June 15, 2006 | Chin et al. |
20060161435 | July 20, 2006 | Atef et al. |
20060174350 | August 3, 2006 | Roever et al. |
20060184401 | August 17, 2006 | DelGaudio et al. |
20060200424 | September 7, 2006 | Cameron et al. |
20060200504 | September 7, 2006 | Lo |
20060224611 | October 5, 2006 | Dunn et al. |
20060248099 | November 2, 2006 | Barrett et al. |
20060265740 | November 23, 2006 | Clark et al. |
20060282360 | December 14, 2006 | Kahn et al. |
20060282461 | December 14, 2006 | Marinescu |
20060294151 | December 28, 2006 | Wong et al. |
20070011136 | January 11, 2007 | Haskin et al. |
20070038596 | February 15, 2007 | Pizzo et al. |
20070083917 | April 12, 2007 | Peterson et al. |
20070100980 | May 3, 2007 | Kataoka et al. |
20070101415 | May 3, 2007 | Masui |
20070143430 | June 21, 2007 | Johnson et al. |
20070143836 | June 21, 2007 | Bowers et al. |
20070150448 | June 28, 2007 | Patnode |
20070156766 | July 5, 2007 | Hoang et al. |
20070156767 | July 5, 2007 | Hoang et al. |
20070180448 | August 2, 2007 | Low et al. |
20070180493 | August 2, 2007 | Croft et al. |
20070192843 | August 16, 2007 | Peterson et al. |
20070255814 | November 1, 2007 | Green et al. |
20070288992 | December 13, 2007 | Robinson et al. |
20080104220 | May 1, 2008 | Vanyukhin et al. |
20080104250 | May 1, 2008 | Vanyukhin et al. |
20080133533 | June 5, 2008 | Ganugapati et al. |
20080162604 | July 3, 2008 | Soulet et al. |
20080215867 | September 4, 2008 | Mackin et al. |
20090006537 | January 1, 2009 | Palekar et al. |
20090216975 | August 27, 2009 | Halperin et al. |
20100050232 | February 25, 2010 | Peterson et al. |
20110093570 | April 21, 2011 | Mackin et al. |
20110282977 | November 17, 2011 | Peterson |
20110283273 | November 17, 2011 | Peterson |
20120192256 | July 26, 2012 | Peterson et al. |
20120215899 | August 23, 2012 | Peterson |
20120297035 | November 22, 2012 | Peterson |
05728119.1 | March 2005 | EP |
1 932 279 | June 2008 | JP |
WO 2006/016900 | February 2006 | WO |
WO 2007/044613 | April 2007 | WO |
- U.S. Appl. No. 12/200,814, filed Aug. 28, 2008, Eyes et al.
- “Description of Digital Certificates”, Jan. 23, 2007, http://www.support.microsoft.com/kb/195724.
- “Directory Administrator”, http://diradmin.open-it.org/indexlphp, p. 1-3. Dec. 15, 2004.
- “Innovation Report—Windows Group Policy Protocols”. Jul. 31, 2006.
- “Kerberos Module for Apache”, http://modauthkerb.sourceforge.net/.
- “LDAP Linux HOWTO”, http://tldp/org/HOWTO/LDAP-HOWTO/, p. 1-2. Mar. 5, 2004.
- “Lnux Authentication Against Active Directory”, http://laaad/sourceforge.netlen/home/htm, p. 1-2. Dec. 15, 2004.
- “NegotiateAuth”, http://negotiateauth,mozdev.org/ Jul. 8, 2010.
- “Optimization Techniques for Trusted Semantic lnteroperation”, Final Technical Report, Air Force Research Laboratory. Published May 1998.
- “Project: AD4Unix: Summary”, http://sourceforge.netlprojects/adunixl, p. 1-3. Dec. 15, 2004.
- “Replacing NIS with Kerberos and LDAP”, http://ofb.netHhess/krbldap/, p. 1-2. Dec. 15, 2004.
- “Sadma”, http://sadmas.sourceforge.netlen/indexlhtml. p. 1-2. Dec. 15, 2004.
- “Sun Enterprise Authentication Mechanism Data Sheet”, http://wwws.sun.com/jsp—utils/Printpage.jsp?url, pp. 1-4. Dec. 15, 2004.
- Vintela Extends the Reach of Microsoft Group Policy to Unix and Linux; Vintela Group Policy (VGP) Provides a Framework for Unix and Linux Policy-Based Management Through the Popular Windows Group Policy System., PR Newswire, Sep. 13, 2004.
- A. Leonard, “Embrace, extend, censor”, Originally published May 11, 2000 on salon.com, http://archive.salon.com/tech/log/2000/05/11/slashdot—censor/.
- Accelerated Examination Support Document in U.S. Appl. No. 13/198,592, filed Aug. 4, 2011.
- Accelerated Examination Support Document in U.S. Appl. No. 13/198,629, filed Aug. 4, 2011.
- Aelita Software Domain Migration Wizard 6.0 User's Guide, Aug. 21, 2003.
- Affidavit filed with Amendment and Response to Office Action filed Jan. 14, 2008 in U.S. Appl. No. 10/888,845.
- Aix 5L Differences Guide Version 5.2 Edition Published Dec. 24, 2002, Excerpt http://proquest.safaribooksonline.com/073842704 7/ch091ev1sec13.
- Akhgar et al., Secure ICT Services for Mobile and Wireless Communications: A Federated Global Identity Management Framework, 2006 IEEE.
- Alan H. Harbitter et al., “Performance of Public-Key-Enabled Kerberos Authentication in Large Networks”, Proceedings of the IEEE symposium on Security and Privacy. 2001.
- Amendment and Response to Office Action filed on Jan. 14, 2008 with claims as amended in U.S. Appl. No. 10/888,845.
- Antti Tikkanen, “Active Directory and nss—idap for Linux: Centralized er Management,” printed from http://www.hut.fi/cc/docskerberos/nss—ldap/htm, pp. 1-11, 2004.
- Apurva Kumar, “The OpenLDAP Proxy Cache,” IBM, India Research Lab, at least as early as May 2003.
- Authentication, from Pieces of the Puzzle, Chapter 2, p. 12. (Exhibit IV to U.S. Appl. No. 95/001,872, Inter Partes Reexamination Renewed Petition (Third Party Requester to Response to Mar. 1, 2012 Office Action), dated Aug. 9, 2012.
- Buell, D.A. et al., “Identity management”, Internet Computing, IEEEvol. 7, Issue 6, Nov.-Dec. 2003 pp. 26-28.
- Centrify DirectControl Administrator's Guide Version 2.0, Aug. 15, 2005.
- Chapter 9 Authentication Protocols, Distributed System & Network Security Lab, Department of Computer Science & Information Engineering, National Chiao Tung University, pp. 21-22. 1991.
- Claim Chart, Claim 1 vs. Hemsath et al., Garman and Withers (Exhibit II to U.S. Appl. No. 95/001,872, Inter Partes Reexamination Renewed Petition (Third Party Requester to Response to Mar. 1, 2012 Office Action), dated Aug. 9, 2012.
- COSuser—Identity management and user provisioning for Unix, Linux and Microsoft Windows® http://www.cosuser.com/ May 24, 2010.
- Damiani, E., et al, “Managing multiple and dependable identities” Internet Computing, IEEEvol. 7, Issue 6, Nov.-Dec. 2003 pp. 29-37.
- David “Del” Elson, “Active Directory and Linux,” printed from http://www.securityfoc.com/printable/infoc /1563, pp. 1-11, 2002.
- David F. Carr, “What's Federated Identity Management?”, eWeek, Nov. 10, 2003, http://www.eweek.com/printarticle/O,1761.a-111811,00.asp.
- Declaration of Nicholas Webb, dated Apr. 13, 2012.
- Dennis, Disconnect Login (Was: FC3 Bug Week—Help Wanted) (Sep. 24, 2004).
- Description of Digital Certificates, Jan. 23, 2007, available at http://www.support.microsoft.com/kb/195724.
- Designing Network Security Published May 7, 1999. Excerpt http://proquest.safaribooksonline.com/1578700434/ch021ev1sec1.
- Documentation for Kerberos V5 release krb5-1.3, Copyright 1985-2002, Installation Guide: http://web.mit.edu/Kerberos/krb5-1.6/krb5-1.6/doc/krb5-install.html.
- Documentation for Kerberos V5 release krb5-1.3, Copyright 1985-2002, Installation Guide: http://web.mit.edu/Kerberoslkrb5-1.3/krb5-1.3/doc/krb5-install.html—System Administrator's Guide: http://web.mit.edu/Kerberos/krb5-1.3/krb5-1.3/doc/krb5-admin.html—Unix User's Guide: http://web.mit.edu/Kerberos/krb5-1.3/krb5-1.3/doc/krb5- er.html.
- Documentation for Kerberos V5 release krb5-1.3, Copyright 1985-2002, System Administrator's Guide: http://web.mit.edu/Kerberos/krb5-1.6/krb5-1.6/doc/krb5-admin.html.
- Documentation for Kerberos V5 release krb5-1.3, Copyright 1985-2002, Unix User's Guide: http://web.mit.edu/kerberos/www/krb5-1.2/krb5-1.2.6/doc/user-guide.html.
- European Office Action, Application No. 05728119.8-1243 dated Apr. 9, 2009.
- European Patent Office Communication pursuant to Article 94(3) EPC dated Apr. 9, 2009.
- Fabini et al., “IMS in a Bottle: Initial Experiences from an OpenSER-based Prototype Implementation of the 3GPP IP Multimedia Subsystem” Mobile Business, 2006. ICMB '06. International Conference on Publication Date: 2006; on pp. 13-13.
- Garman, “Kerberos—The Definitive Guide,” Aug. 2003, O'Reilly & Associates, Inc.
- Get to One Options for moving from multiple, Unix identities to a single, AD-based authentication infrastructure with Vintela Authentication Serviceshttp://www.quest.com/Vintela—Authentication—Services/migration—options—VAS.aspx May 24, 2010.
- Hank Simon, “Saml:The Secret to Centralized Identity Management”, Dec. 2004, http://intelligententerprise.com/showArticle.jhtml?articleID=54200324.
- IBM SecureWay Policy Director, 1999. (4 pages).
- IBM z/Os V1R1.0-V1R12.0 DCE Application Development Reference: dce—ace—is—cient—authorized API call: URL: http://publib.boulder.ibm.com/infocenter/zos/v1r12/topic/com.ibm.zos.r12.euvmd00/euva6a00646.htm, Copyright IBM Corporation 1990,2010, (2 pages).
- Identity Management for Unix http://technet2.microsoft.com/WindowsServer/en/library/ab66b7d2-9cfb-4d76-b707-30a5e0dd84f31033.mspx?mfr=true Aug. 22, 2005.
- Implementing Registry-Based Group Policy for Applications, Microsoft Windows 2000 Server. White Paper. 2000.
- International Preliminary Report on Patentability and Written Opinion for International Application No. PCT/US2006/039302, mailed on Apr. 2, 2009, in 7 pages.
- International Search Report and Written Opinion from International Patent Appl. No. PCT/US2009/038394, mailed Oct. 6, 2009, in 13 pages.
- International Search Report in International Application No. PCT/US2006/039302, mailed on Jul. 3, 2008.
- International Search Report PCT/US2005/008342 , mailed on Nov. 9, 2006.
- Introduction to Group Policy in Windows Server 2003, Microsoft Corporation, Published Apr. 2003.
- J. Barr, “The Gates of Hades: Microsoft attempts to co-opt Kerberos”, Published Apr. 2000 as verified by the Internet Archive, http://web.archive.org/web/20000619011652/http://www.linuxworld.com/linuxworld/lw-2000-04/lw-04-vcontrol—3.html.
- J. Brezak, “HTTP Authentication: SPNEGO Access Authentication as Implemented in Microsoft Windows 2000,” http://Meta.cesnet.cz/cms/opencms/en/docs/software/devel/draft-brezek-spnego-http-04.xt, pp. 1-6. 2002.
- J. Kohl et al. “RFC 1510: The Kerberos Network Authentication Service (V5)”, Published Sep. 1993, http://ietfreport.isoc.org/rfc/PDF/rfc1510.pdf.
- Jan De Clercq, “Win.NET Server Kerberos”, http://www.winnetmag.com/WindowsSecurity/ Articlesl ArticleID/26450/pg/3/3.html. Sep. 17, 2002.
- John Brezak, “Interoperability with Microsoft Windows 2000 Active Directory and Kerberos Services,” printed from http://msdn.microsft.com/library/en- /dnactdir/html/kerberossamp.asp?frame=true, pp. 1-4, 2000.
- Kerberos, PACs, and Microsoft's Dirty Tricks Originally posted to slashdot.org on May 2, 2000, http://slashdot.org/comments.pl?sid=5268&threshold=1&commentsort=O&mode=thread&cid=1096250.
- KSR Int'l Co. v. Teleflex Inc., 27 S.Ct. 1727, 1739 (2007).
- Langella, S. et al., “Dorian: Grid Service Infrastructure for Identity Management and Federation”, Computer-Based Medical Systems, 2006. CBMS 2006. 19th IEEE International Symposium on Jun. 22-23, 2006 pp. 756-761.
- Li, M., et al., “Identity management in vertical handovers for UMTS-WLAN networks”, Mobile Business, 2005. ICMB 2005. International Conference on Jul. 11-13, 2005 pp. 479-484.
- LinuX® and Windows® Interoperability Guide, Published Dec. 14, 2001, Excerpt http://proquest.safaribooksonline.com/0130324779/ch 18/lev1sec3.
- Lowe-Norris, Alistair G., Windows 2000 Active Directory, Chapters 8 and 9, pp. 177-245, Jan. 2000.
- Matsunaga et al, “Secure Authentication System for Public WLAN Roaming, Proceedings of the 1st ACM international workshop on Wireless mobile applications and services on WLAN hotspots,” San Diego, CA, A, Year of Publication: 2003, p. 113-121.
- Matthew Hur, “Session Code: ARC241 architecture & infrastructure”, Microsoft Corporation. Oct. 26, 2003.
- MCSE in a Nutshell: The Windows 2000 Exams Published Feb. 2001. Excerpt http://proquest.safaribooksonline.com/0596000308/mcseian-CHP-13-SECT-1.
- Microsoft Corp., Implementing Registry-Based Group Policy for Applications, 2000.
- Microsoft Corp., Introduction to Group Policy in Windows Server 2003, 2003.
- Microsoft: CATIA Migration from Unix to Windows, Overview, Jul. 18, 2003. (3 pages).
- Microsoft: CATIA Migration from Unix to Windows, Overview, Jul. 18, 2003, Microsoft, Chapter 8, Windows-Unix Interoperability and Data Sharing. (21 pages).
- Mikkonen, H. et al., “Federated Identity Management for Grids” Networking and Services, 2006. ICNS '06. International conference on Jul. 16, 18, 2006 pp. 69-69.
- Mont, M.C. et al., “Towards accountable management of identity and privacy: sticky policies and enforceable tracing services”, Database and Expert Systems Applications, 2003. Proceedings. 14th International Workshop on Sep. 1-5, 2003 pp. 377-382.
- NCSA Introduction to Kerberos 5, All right reserved Board of Trustees of the University of Illinois Page last updated May 21, 2002 http://www.ncsa.uiuc.edu/UserInfo/Resources/Sofiware/kerberosold/introduction.html.
- Neuman et al., “RFC 4120—The Kerberos Network Authentication Service V5,” Network Working Group, Jul. 2005.
- Neuman, et al.: “Kerberos: An Authentication Service for Computer Networks”, IEEE Communications Magazine, vol. 32, Issue 9, Pub. Date Sep. 1994, relevant pp. 33-38.
- O'Reily publications “Unix & Internet Security”, Apr. 1996. (3 pages).
- PADL Software Pty Ltd., http://www.padl.com/productslXAD.html, pp. 1-3. Dec. 15, 2004.
- Padl Software Pty Ltd., Pam—ccreds readme, (Apr. 11, 2004) (pan—crreds).
- Phiri, J. et al., “Modelling and Information Fusion in Digital Identity Management Systems” Networking, International Conference on Systems and International Conference on Mobile Communications and Learning Technologies, 2006. ICN/ICONS/MCL 2006. International Conference on Apr. 23-29, 2006 pp. 181-181.
- Quest Software; “Unix Identity Migration Wizard User Guide”, 2006.
- Quest Vintela Authentication Services Administrator's Guide Version 3.1, Sep. 2006.
- Radeke, E., et al. “Framework for object migration in federated database systems”, Cooperation Univ. of Paderborn, Germany, Parallel and Distributed Information Systems, 1994., Proceedings of the Third International Conference on Publication Date: Sep. 28-30, 1994, On pp. 187-194.
- RFC 4120—“The Kerberos Network Authentication Service V5,” Neuman et al., Network Working Group, Jul. 2005.
- Sandrasegaran, Hsang, Identity Management in Vertical Handovers for UMTS-WLAN Networks, 2005 IEEE.
- Schroeder, SDSC's Installation and Development of Kerberos, San Diego Supercomputer Center, San Diego, CA, Sep. 20, 1995, p. 1-11.
- Search Security, “Search Security.com Definitions”, Jun. 4, 2007, http://searchsecurity.techtarget.com/sDefinition/0,,sid14—gci212437,00.html.
- Shim, S.S.Y et al., “Federated identity management” Computer; vol. 38, Issue 12, Dec. 2005 pp. 120-122.
- Shin, D. et al., “Ensuring information assurance in federated identity management”, Performance, Computing, and Communications, 2004 IEEE International Conference on 2004 pp. 821-826.
- Siddiqi, J. et al., “Secure ICT Services for Mobile and Wireless Communications: A Federated Global Identity Management Framework”, Information Technology: New Generations, 2006. ITNG 2006. Third International Conference on Apr. 10-12, 2006 pp. 351-357.
- Sixto Ortiz, Jr., “One-Time Password Technology”, vol. 29, Issue 15, Apr. 13, 2007, http://www.processor.com/editorial/article.asp?article=articles%2Fp2915%2F30p15%2F30p15.asp.
- Subject 2.15. What do I need to do to setup cross-realm authentication?, http://www.cmf.nrl.navy.mil/CCS/people/kenh/kerberos-fag. html. Jul. 8, 2010.
- The SLAPD and SLURPD Administrator's Guide, University of Michigan Release 3.3 Apr. 30, 1996, available at http://www.umich.edu/˜dirsvcs/Idap/doc/guides/slapd/guide.pdf.
- Turbo Fredriksson, “LDAPv3.” printed from http://www.bayour.com/LDAPv3-HOWTO.html, pp. 2-65, 2001.
- U.S. Appl. No. 11/311,215, Amendment and Response to Office Action filed Jun. 14, 2010.
- U.S. Appl. No. 11/311,215, Claims in “red-line” form as amended by the applicant.
- U.S. Appl. No. 11/311,215, Claims in “red-line” form as amended by the Examiner.
- U.S. Appl. No. 95/001,872 Reexamination Action Closing Prosecution mailed Jan. 23, 2013.
- U.S. Application No. 95/001,872 Reexamination Office Action mailed Aug. 6, 2012.
- U.S. Application No. 95/001,872 Reexamination Office Action mailed Mar. 1, 2012.
- U.S. Appl. No. 95/001,872 Reexamination Office Action Response filed Apr. 30, 2012.
- U.S. Application No. 95/001,872 Reexamination Order Granting Inter Partes Reexamination mailed Mar. 1, 2012.
- U.S. Appl. No. 95/001,872 Reexamination Petition Decision mailed Jul. 18, 2012.
- U.S. Appl. No. 95/001,872 Reexamination Request for Inter Partes Reexamination filed Jan. 12, 2012.
- U.S. Appl. No. 95/001,872 Reexamination Response to Office Action filed Oct. 5, 2012, including Exhibits K, L, L-1, L-2, L-3, and L-4.
- U.S. Appl. No. 95/001,872 Reexamination Right of Appeal Notice mailed Apr. 23, 2013.
- U.S. Appl. No. 95/001,872, Inter Partes Reexamination , Third Party Requester's Comments on the Patent Owner Response to Aug. 6, 2012 Office Action, dated Nov. 1, 2012.
- U.S. Appl. No. 95/001,872, Inter Partes Reexamination Renewed Petition (Third Party Requester to Response to Mar. 1, 2012 Office Action), dated Aug. 9, 2012.
- U.S. Appl. No. 95/001,872, Inter Partes Reexamination, Decision Denying Petition (Third Party's Petition filed Aug. 9, 2012), dated Nov. 1, 2012.
- Ventuneac et al., A policy-based security framework for Web-enabled applications, Proceeding ISICT '03, Proceedings of the 1st International Symposium on Information and Communication Technologies, pp. 487-492.
- Vintela Group Policy Technology Preview, “Extending the Power of Group Policy and Windonws Active Directory to configuration of Unix and Linux users and systems”, Version 0.1, May 2004.
- Wedgetail Communications; “Security Assertion Markup Language (SAML)”, 2004.
- Weitzner, D.J., “In Search of Manageable Identity Systems”, IEEE Internet Computing, vol. 10, Issue 6, Nov.-Dec. 2006 pp. 84-86.
- Windows 2000 Kerberos Authentication White Paper, Microsoft Windows 2000 Server, pp. 1-5 and 41-42. Jul. 12, 2010.
- Withers, Integrating Windows 2000 and Unix Using Kerberos, the Journal for Unix Systems Administrators, vol. 10, No. 12, Dec. 2001. http://seann.herdejurgen.com/resume/samag.com/html/v10/il2/a5.htm.
- Dec. 6, 2013 Listing of Related Applications.
- Windows 2000 Active Directoryby Alistair G. Lowe-Norris, Chapters 8 and 9, pp. 177-245, published Jan. 2000 (WAD).
- U.S. Appl. No. 95/001,458, Inter Partes Reexamination Request of co-owned U.S. Patent No. 7,617,501.
Type: Grant
Filed: Mar 7, 2013
Date of Patent: Jan 6, 2015
Assignee: Dell Software, Inc. (Aliso Viejo, CA)
Inventors: John Joseph Bowers (Provo, UT), Matthew T Peterson (Lindon, UT)
Primary Examiner: Lisa Lewis
Application Number: 13/789,529
International Classification: G06F 21/00 (20130101); H04L 29/06 (20060101);