Vacuum syringe assisted biopsy device
A biopsy device and method are provided for obtaining a tissue sample, such as a breast tissue biopsy sample. The biopsy device includes a disposable probe assembly with an outer cannula having a distal piercing tip, a cutter lumen, and a cutter tube that rotates and translates past a side aperture in the outer cannula to sever a tissue sample. The biopsy device also includes a reusable handpiece with an integral motor and power source to make a convenient, untethered control for use with ultrasonic imaging. The reusable handpiece incorporates a probe oscillation mode to assist when inserting the distal piercing tip into tissue. The motor also actuates a vacuum syringe in coordination with movement of the cutter tube to provide vacuum assistance in prolapsing tissue and retracting tissue samples.
Latest Devicor Medical Products, Inc. Patents:
The present application is a reissue of U.S. Pat. No. 7,828,748, “VACUUM SYRINGE ASSISTED BIOPSY DEVICE” to Hibner, filed 17 Aug. 2006, which is a continuation-in-part of the co-pending and commonly-owned U.S. patent application Ser. No. 11/198,558, “BIOPSY DEVICE WITH REPLACEABLE PROBE AND INCORPORATING VIBRATION INSERTION ASSIST AND STATIC VACUUM SOURCE SAMPLE STACKING RETRIEVAL” to Hibner et al., filed 5 Aug. 2005, issued as U.S. Pat. No. 7,867,173, the disclosure disclosures of which is are hereby incorporated by reference in its their entirety. The present application is also related to U.S. patent application Ser. No. 13/672,037, filed 8 Aug. 2012, a reissue of U.S. Pat. No. 7,828,748, “VACUUM SYRINGE ASSISTED BIOPSY DEVICE” to Hibner, filed 17 Aug. 2006, now abandoned.
FIELD OF THE INVENTIONThe present invention relates in general to biopsy devices, and more particularly to biopsy devices having a cutter for severing tissue, and even more particularly to biopsy devices for multiple sampling with a probe remaining inserted.
BACKGROUND OF THE INVENTIONWhen a suspicious tissue mass is discovered in a patient's breast through examination, ultrasound, MRI, X-ray imaging or the like, it is often necessary to perform a biopsy procedure to remove one or more samples of that tissue in order to determine whether the mass contains cancerous cells. A biopsy may be performed using an open or percutaneous method.
An open biopsy is performed by making a large incision in the breast and removing either the entire mass, called an excisional biopsy, or a substantial portion of it, known as an incisional biopsy. An open biopsy is a surgical procedure that is usually done as an outpatient procedure in a hospital or a surgical center, involving both high cost and a high level of trauma to the patient. Open biopsy carries a relatively higher risk of infection and bleeding than does percutaneous biopsy, and the disfigurement that sometimes results from an open biopsy may make it difficult to read future mammograms. Further, the aesthetic considerations of the patient make open biopsy even less appealing due to the risk of disfigurement. Given that a high percentage of biopsies show that the suspicious tissue mass is not cancerous, the downsides of the open biopsy procedure render this method inappropriate in many cases.
Percutaneous biopsy, to the contrary, is much less invasive than open biopsy. Percutaneous biopsy may be performed using fine needle aspiration (FNA) or core needle biopsy. In FNA, a very thin needle is used to withdraw fluid and cells from the suspicious tissue mass. This method has an advantage in that it is very low-pain, so low-pain that local anesthetic is not always used because the application of it may be more painful than the FNA itself. However, a shortcoming of FNA is that only a small number of cells are obtained through the procedure, rendering it relatively less useful in analyzing the suspicious tissue and making an assessment of the progression of the cancer less simple if the sample is found to be malignant.
During a core needle biopsy, a small tissue sample is removed allowing for a pathological assessment of the tissue, including an assessment of the progression of any cancerous cells that are found. The following patent documents disclose various core biopsy devices and are incorporated herein by reference in their entirety: U.S. Pat. No. 6,273,862 issued Aug. 14, 2001; U.S. Pat. No. 6,231,522 issued May 15, 2001; U.S. Pat. No. 6,228,055 issued May 8, 2001; U.S. Pat. No. 6,120,462 issued Sep. 19, 2000; U.S. Pat. No. 6,086,544 issued Jul. 11, 2000; U.S. Pat. No. 6,077,230 issued Jun. 20, 2000; U.S. Pat. No. 6,017,316 issued Jan. 25, 2000; U.S. Pat. No. 6,007,497 issued Dec. 28, 1999; U.S. Pat. No. 5,980,469 issued Nov. 9, 1999; U.S. Pat. No. 5,964,716 issued Oct. 12, 1999; U.S. Pat. No. 5,928,164 issued Jul. 27, 1999; U.S. Pat. No. 5,775,333 issued Jul. 7, 1998; U.S. Pat. No. 5,769,086 issued Jun. 23, 1998; U.S. Pat. No. 5,649,547 issued Jul. 22, 1997; U.S. Pat. No. 5,526,822 issued Jun. 18, 1996; and US Patent Application 2003/0199753 published Oct. 23, 2003 to Hibner et al.
At present, a biopsy instrument marketed under the trade name MAMMOTOME is commercially available from ETHICON ENDO-SURGERY, INC. for use in obtaining breast biopsy samples. This device generally retrieves multiple core biopsy samples from one insertion into breast tissue with vacuum assistance. In particular, a cutter tube is extended into a probe to cut tissue prolapsed into a side aperture under vacuum assistance and then the cutter tube is fully retracted between cuts to extract the sample.
With a long probe, the rate of sample taking is limited not only by the time required to rotate or reposition the probe but also by the time needed to translate the cutter. As an alternative to this “long stroke” biopsy device, a “short stroke” biopsy device is described in the following commonly assigned patent applications: U.S. patent application Ser. No. 10/676,944, “Biopsy Instrument with Internal Specimen Collection Mechanism” filed Sep. 30, 2003 in the name of Hibner et al.; and U.S. patent application Ser. No. 10/732,843, “Biopsy Device with Sample Tube” filed Dec. 10, 2003 in the name of Cicenas et al. The cutter is cycled across the side aperture, reducing the sample time. Several alternative specimen collection mechanisms are described that draw samples through the cutter tube, all of which allow for taking multiple samples without removing the probe from the breast.
The vacuum assistance presented at the side aperture provides a further benefit of reducing the accumulation of bodily fluids around the probe that may tend to interfere with taking a diagnostic image, may impede subsequent insufflation and marker deployment, leave an undesirable hematoma at the biopsy site, and/or result in external bleeding that is a biohazard and may increase the patient's discomfort.
While the vacuum assistance has a number of benefits, some practitioners prefer to perform core biopsy procedures with simpler devices that do not include a control module with graphical user interface, electronic control, vacuum generation and control, and other features. In addition to the desire to reduce capital costs, it is also generally desirable to reduce the need to tether a hand-held biopsy device to sources of mechanical motion, vacuum supply, electrical power and control. Such tethers may tend to impede positioning of the biopsy device, introduce tripping hazards, and increase set up time.
Therefore, while these multiple sample core biopsy instruments have numerous advantages, it is believed that the diagnostic and therapeutic advantages of the core biopsy procedures would be seen as more desirable if vacuum assistance could be incorporated in a more convenient manner.
SUMMARY OF THE INVENTIONThe present invention addresses these and other problems of the prior art by providing a biopsy device that has a probe cannula that is inserted into tissue to obtain a core biopsy sample by translating a cutter with the probe cannula. Vacuum assistance to prolapse tissue for sampling is advantageously provided by an integral vacuum container whose internal pressure is reduced from atmospheric pressure by actuation of a single motor that also translates the cutter to sever biopsy samples.
In one aspect of the invention, a biopsy device handpiece has a motorized translation drive mechanism that engages and operates a disposable probe assembly that also translates a vacuum plunger of a vacuum syringe. A cutter tube translating within a cutter lumen severs tissue that is prolapsed therein under the urging from vacuum supplied by the vacuum syringe.
These and other objects and advantages of the present invention shall be made apparent from the accompanying drawings and the description thereof.
While the specification concludes with claims particularly pointing out and distinctly claiming the present invention, it is believed the same will be better understood by reference to the following description, taken in conjunction with the accompanying drawings in which:
Turning to the Drawings, wherein like numerals denote like components throughout the several views, in
With particular reference to
Alternatively, instead of “hard-walled” lateral lumen 44 separated from the cutter lumen 46 along its length, applications consistent with the present invention may have a cylindrical probe cannula (not shown) wherein the cutter tube 36 is positioned off-center to translate across a side aperture. A “soft-walled” lateral lumen may then be defined as a space between an outer diameter of the cutter tube and an inner diameter of the cylindrical probe cannula.
In
A proximal end of the cutter tube 36 receives a cutter gear 62 having distal and proximal reduced diameter bearing surfaces 64, 66 on each longitudinal side of a rotation spur gear section 68, which engage the reusable handpiece 12 for rotation and for longitudinal translation through a distally open longitudinal aperture 70 formed in the lower handle tray 16. A straw assembly 72 is also engaged by the reusable handpiece 12 through the longitudinal aperture 70 to reciprocate longitudinally into a proximal opening of the cutter tube 36 and cutter gear 62 to encompass and retract tissue samples. A vacuum source conduit 74 communicates between the vacuum syringe assembly 18 and the bottom cover 48 of the disposable probe assembly 14.
In
With particular reference to
In
Returning to
In
With particular reference to
With particular reference to
In
A first output drive shaft 240 distally presents a right angle prismatic end 242 shaped to engage the beveled and slotted end 138 of the rotation shaft 128 that passes through a lower right hole 244 in the distal bulkhead 94. A cylindrical spacer 246 is received over a distal cylindrical portion 248 of the first output shaft 240, taking up the space between the rotation shaft 128 and the proximal bulkhead 224. A distally open recess 250, formed as part of the container 237 that communicates from below with the recess 236, is shaped to receive a proximal cylindrical end 252 of the first output drive shaft 240 and encompasses cylindrical bearing 254 as well as a small spur gear segment 256, which is distal thereto and engages the large spur gear 234 of the multiplier gear assembly 228.
A second output drive shaft 258 distally presents a right angle prismatic end 260 to engage the proximal slotted end 142 of the translation shaft 130 that extends through a low left hole 262 in the distal bulkhead 94. A cylindrical spacer 264 is received over a distal cylindrical portion 266 of the second output drive shaft 258 proximal to the right angle prismatic end 260 and distal to a wider diameter hub segment 268 that is encompassed by and pinned to a large spur gear 270 that engages the small spur gear 226 of the multiplier gear assembly 228. Proximal to the hub segment 268 is a wide spacer segment 272 and then a narrow cylindrical end 274 that receives a cylindrical bearing 276 that resides within a correspondingly-sized, distally open recess 278 that communicates from the left with the recess 236 and is formed as part of the same container 237.
The distal and proximal bulkheads 94, 224 are structurally attached to one another in parallel alignment traverse to the longitudinal axis of the biopsy device 10 by cylindrical legs 280 molded to and proximally projecting from rectangular comers of the distal bulkhead 94 and fastened to the proximal bulkhead 224. In addition, a pin 282 passes through holes 281, 283 longitudinally aligned in the distal and proximal bulkheads, 94, 224 respectively along a top surface.
When the slide button 28 is moved distally to the jackhammer position, the sliding spur gear 218 disengages from the small spur gear 226 and engages a large spur gear 284 of a rotary camming gear assembly 286. A camming shaft 286 from distal to proximal includes a distal cylindrical end 288, a cam wheel 290, a mid-shaft portion 292 that receives the upwardly directed strike pin 150 of the proximally projecting bolt 148, a wide diameter hub 294 that is encompassed by and pinned to the large spur gear 284, and a proximal cylindrical end 296. A distal cylindrical bearing 298 is received within a proximally open container 300 projecting distally from the distal bulkhead 94 and in turn receives the distal cylindrical end 288 of the camming shaft 286. A proximal cylindrical bearing 302 is received within a distally projecting and open cylinder 304 formed on the proximal bulkhead 224 and in turn receives the proximal cylindrical end 296 of the camming shaft 286.
As the camming shaft 286 rotates clockwise as viewed from behind, the cam wheel 290 presents a proximal surface to the distal edge of the strike pin 150 that is more proximal until the interrupted portion of the camming wheel 290 is presented, allowing the strike pin 150 to return to a distal position under the urging of the distal biasing of the right and left compression springs 114, 118.
In
With particular reference to
A valve control rod 325 has a distal actuating portion 326 extending distally out of the valve bore 318 with a distal end positionable under the downwardly open portion of the longitudinal trough 310. The valve control rod 325 also has a valve spool portion 327 that longitudinally translates within the valve bore 318 to selectively position between a first position and a second position. A proximal O-ring 328 near a proximal end of the valve spool portion 327 and a distal O-ring 329 are spaced such that the first position entails the O-rings 328, 329 bracketing the central and distal ports 320, 322 and the second position entails the O-rings 328, 329 bracketing the proximal and central ports 321, 320, respectively.
In
In
A straw holder 342 of the straw assembly 72 includes a distal sleeve 344 with a leftward projection 346 near its distal end and attached at its proximal left edge to an elongate splint member 348 having a midpoint indented feature 350 and attached along its proximal rightward surface to a proximal sleeve 352. A straw 354 is received through the proximal sleeve 352, to the right of the elongate splint member 348, through the distal sleeve 344, and on through a rear dynamic seal 356 attached to a proximal end of the cutter gear 62, and into the cutter tube 36. A support plate 358 traversely fastened to an aft surface of the probe support body 60 has a downwardly open notch 360 that allows connection of the proximal 90 degree fitting 319 and passage of the distal vacuum pump rod 317. An upper guide hole 362 receives the proximal sleeve 352 of the straw holder 342.
A straw hook wire 364 keeps the straw assembly 72 in place upon the probe support body 60 prior to engagement with the reusable handpiece 12. A curled lower right end passes into leftwardly opening 365 along the top right surface of the proximal block portion 316 of the probe support body 60 into a small mounting block 366 extending upwardly from a right side with a downwardly inserted pin 368 passing through the curled lower right end to hold the straw hook wire 364 in place. The straw hook wire 364 has a horizontal portion attached to the curled end that passes under the straw 354 and elongate splint member 348, bending upward within the midpoint indented feature 350 and then bending leftward and horizontally again through a lateral slot 370 in a vertical wire support member 372 formed onto a left side of the top surface of the proximal block. portion 316. It should be appreciated that engagement of the reusable handpiece 12 forces the left portions of the straw hook wire 364 out of engagement with the midpoint indented feature 350 as a rib feature 373 (
With further reference to
With particular reference to
An upper narrowed projection 410 of the connection block 404 is fastened to a proximal end of the distal vacuum pump rod 317 (
With particular reference to
In use, in
In
In
In
In
It should be appreciated that any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein, will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art, given the benefit of the present disclosure, that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the spirit and scope of the appended claims.
While advantageous sequencing allows vacuum to be stored and used in relation to two carriages, applications consistent with the present invention may include other operable coupling of a motor contained in a hand-held proximal portion of a biopsy device, such as coupling the motor to turn a vacuum pump that evacuates a fixed volume vacuum accumulator. As another example, the motor may wind up a reel that positions a plunger of a vacuum syringe.
As another example, for imaging modalities such as magnetic resonance imaging (MRI), the power supplies, control circuitry and motor may be selected from technologies that are inherently immune to a strong magnetic field and/or shielded to avoid transmission of radio frequency (RF) interference that may create artifacts in the diagnostic images. Alternatively or in addition, certain components may be remote to the hand-held device such as the DC motor connected by a mechanical drive cable.
As yet another example, instead of segregating the vacuum syringe assembly to the disposable probe assembly, a vacuum container that is evacuated or otherwise causes to contain a low pressure by a motor-driven mechanism may be part of a reusable handpiece pneumatic conduits that communicate to a probe assembly.
Claims
1. A biopsy device, comprising:
- a probe cannula defining an internal passage;
- a proximal portion attached to the probe cannula positionable to insert the probe cannula into tissue;
- a cutter reciprocally received by the probe cannula to sever a tissue sample received in the probe cannula;
- a pneumatic container attached with the proximal portion and operably configured to communicate a low pneumatic pressure contained within the pneumatic container with the probe cannula;
- a motor contained in the proximal portion operatively coupled to translate the cutter, wherein the motor is further operatively coupled to reduce pneumatic pressure in the pneumatic container; and
- a frame assembly positioned within the biopsy device adjacent the proximal portion and attached to the probe cannula, wherein the frame assembly is longitudinally movable within the biopsy device, wherein the motor is further operably configured to impart a longitudinal to reciprocating motion to the frame assembly during insertion of the probe cannula into tissue.
2. The biopsy device of claim 1, wherein the pneumatic container comprises a vacuum syringe comprising a vacuum cylinder and a plunger, the motor operatively coupled to the plunger.
3. The biopsy device of claim 1, wherein the probe cannula comprises a cylindrical probe tube having a side aperture sized to admit prolapsed tissue, the cutter comprising a cutter tube axially offset within the probe tube to closely reciprocate past the side aperture.
4. The biopsy device of claim 1, wherein the probe cannula comprises a cutter lumen having a side aperture, the cutter comprising a cutter tube sized to reciprocate within the cutter lumen, further comprising a lateral lumen distally communicating with the side aperture and defining the internal passage.
5. The biopsy device of claim 1, further comprising a straw assembly positioned proximal to the cutter tube, the motor further operatively configured to longitudinally translate the straw assembly through the cutter tube to retract a severed tissue sample.
6. The biopsy device of claim 5, further comprising a straw carriage received on a translation shaft coupled to the straw assembly.
7. The biopsy device of claim 1, further comprising a cutter carriage received on a translation shaft coupled to the cutter.
8. The biopsy device of claim 7, wherein the pneumatic container comprises a vacuum cylinder and plunger, the biopsy device further comprising a vacuum pump shuttle retracted by movement of the cutter carriage to position the plunger in the vacuum cylinder to create a low pressure.
9. The biopsy device of claim 7, further comprising a vacuum assistance valve operably switched by the cutter carriage to communicate a low pressure from the pneumatic container to the probe cannula.
10. The biopsy device of claim 1, further comprising a handpiece cover containing a motor driven carriage assembly and comprising a probe assembly, the probe assembly further comprising a cover engageable to the handpiece cover and attached to the probe cannula, the pneumatic container attached to a selected one of the handpiece cover and the probe assembly cover.
11. The biopsy device of claim 1, wherein the probe cannula comprises a cylindrical probe tube having a side aperture sized to admit prolapsed tissue, the cutter comprising a cutter tube axially offset within the probe tube to closely reciprocate past the side aperture.
12. The biopsy device of claim 1, wherein the probe cannula comprises a cutter lumen having a side aperture, the cutter comprising a cutter tube sized to translate within the cutter lumen, further comprising a lateral lumen distally communicating with the side aperture and defining the internal passage.
13. The biopsy device of claim 1, further comprising a motor driven carriage assembly and a straw assembly positioned proximal to the cutter, the motor driven carriage assembly further operatively configured to longitudinally translate the straw assembly through the cutter to retract a severed tissue sample.
14. The biopsy device of claim 13, further comprising a translation shaft rotated by the motor, and a straw carriage received on the translation shaft coupled to the straw assembly.
15. The biopsy device of claim 1, further comprising a motor driven carriage assembly and a translation shaft rotated by the motor, wherein a cutter carriage is received on the translation shaft coupled to the cutter.
16. The biopsy device of claim 15, wherein the pneumatic container comprises a vacuum syringe comprising a vacuum cylinder and a plunger, wherein the biopsy device further comprises a vacuum pump shuttle retracted by movement of the cutter carriage to position the plunger in the vacuum cylinder to create a low pressure.
17. A biopsy device, comprising:
- a biopsy needle including a lateral tissue receiving feature;
- a low pneumatic pressure source in fluid communication with the biopsy needle, wherein the low pneumatic pressure source is operably configured to communicate a low pneumatic pressure to the biopsy needle;
- a cutter longitudinally translatable relative to the biopsy needle, wherein the cutter is operable to sever tissue prolapsed into the lateral tissue receiving feature of the biopsy needle;
- a valve assembly in communication with the biopsy needle, wherein the valve assembly is operable to selectively communicate atmospheric air to the biopsy needle based on the longitudinal position of the cutter;
- a motor operable to translate the cutter, wherein the motor is further operable to actuate the low pneumatic pressure source while simultaneously driving the cutter; and
- a frame assembly positioned within the biopsy device and attached to the biopsy needle, wherein the frame assembly is longitudinally movable within the biopsy device, wherein the motor is further operably configured to impart a longitudinal reciprocating motion to the frame assembly during insertion of the biopsy needle into tissue.
18. The biopsy device of claim 17, wherein the lateral tissue receiving feature is an aperture.
19. The biopsy device of claim 17, wherein the cutter is longitudinally translatable within the biopsy needle.
2853071 | September 1958 | Saffir |
3630192 | December 1971 | Jamshidi |
3719086 | March 1973 | Bannister et al. |
3994297 | November 30, 1976 | Kopf |
4051852 | October 4, 1977 | Villari |
4600014 | July 15, 1986 | Beraha |
4782833 | November 8, 1988 | Einhorn |
5234000 | August 10, 1993 | Hakky et al. |
5406959 | April 18, 1995 | Mann |
5439457 | August 8, 1995 | Yoon |
5526822 | June 18, 1996 | Burbank et al. |
5532168 | July 2, 1996 | Marantz |
5601585 | February 11, 1997 | Banik et al. |
5645209 | July 8, 1997 | Green et al. |
5649547 | July 22, 1997 | Ritchart et al. |
5769086 | June 23, 1998 | Ritchart et al. |
5775333 | July 7, 1998 | Burbank et al. |
5873967 | February 23, 1999 | Clark et al. |
5876329 | March 2, 1999 | Harhen |
5928164 | July 27, 1999 | Burbank et al. |
5964716 | October 12, 1999 | Gregoire et al. |
5980469 | November 9, 1999 | Burbank et al. |
6007497 | December 28, 1999 | Huitema |
6017316 | January 25, 2000 | Ritchart et al. |
6042593 | March 28, 2000 | Storz et al. |
6077230 | June 20, 2000 | Gregoire et al. |
6083177 | July 4, 2000 | Kobren et al. |
6086544 | July 11, 2000 | Hibner et al. |
6120462 | September 19, 2000 | Hibner et al. |
6142946 | November 7, 2000 | Hwang et al. |
6213957 | April 10, 2001 | Milliman et al. |
6228055 | May 8, 2001 | Foerster et al. |
6231522 | May 15, 2001 | Voegele et al. |
6273862 | August 14, 2001 | Privitera et al. |
6402701 | June 11, 2002 | Kaplan et al. |
6409970 | June 25, 2002 | Phifer |
6428486 | August 6, 2002 | Ritchart et al. |
6436054 | August 20, 2002 | Viola et al. |
6485436 | November 26, 2002 | Truckai et al. |
6488636 | December 3, 2002 | Bryan et al. |
6527731 | March 4, 2003 | Weiss et al. |
6544194 | April 8, 2003 | Kortenbach et al. |
6620111 | September 16, 2003 | Stephens et al. |
6626849 | September 30, 2003 | Huitema et al. |
6638235 | October 28, 2003 | Miller et al. |
6659338 | December 9, 2003 | Dittmann et al. |
6758824 | July 6, 2004 | Miller |
6849080 | February 1, 2005 | Lee et al. |
6986748 | January 17, 2006 | McAlister et al. |
7025098 | April 11, 2006 | Osborne |
7025732 | April 11, 2006 | Thompson et al. |
7185681 | March 6, 2007 | Romano |
7189206 | March 13, 2007 | Quick et al. |
7204811 | April 17, 2007 | Kortenbach et al. |
7226424 | June 5, 2007 | Ritchart et al. |
7252641 | August 7, 2007 | Thompson et al. |
7276032 | October 2, 2007 | Hibner |
7278991 | October 9, 2007 | Morris et al. |
7402140 | July 22, 2008 | Spero et al. |
7419472 | September 2, 2008 | Hibner et al. |
7442171 | October 28, 2008 | Stephens et al. |
7445739 | November 4, 2008 | Tsonton et al. |
7470237 | December 30, 2008 | Beckman et al. |
7497833 | March 3, 2009 | Miller |
7556622 | July 7, 2009 | Mark et al. |
7575556 | August 18, 2009 | Speeg et al. |
7662109 | February 16, 2010 | Hibner |
7740594 | June 22, 2010 | Hibner |
7740596 | June 22, 2010 | Hibner |
7740597 | June 22, 2010 | Cicenas et al. |
7749172 | July 6, 2010 | Schwindt |
7753857 | July 13, 2010 | Hibner |
7758515 | July 20, 2010 | Hibner |
7806834 | October 5, 2010 | Beckman et al. |
7819819 | October 26, 2010 | Quick et al. |
7828745 | November 9, 2010 | McAlister et al. |
7828748 | November 9, 2010 | Hibner |
7846107 | December 7, 2010 | Hoffman et al. |
7854706 | December 21, 2010 | Hibner |
7854707 | December 21, 2010 | Hibner et al. |
7867173 | January 11, 2011 | Hibner et al. |
7896817 | March 1, 2011 | Garrison |
7918804 | April 5, 2011 | Monson et al. |
7985239 | July 26, 2011 | Suzuki |
8002713 | August 23, 2011 | Heske et al. |
8016772 | September 13, 2011 | Heske et al. |
8038627 | October 18, 2011 | Hibner |
8109885 | February 7, 2012 | Heske et al. |
8118755 | February 21, 2012 | Hibner et al. |
8177728 | May 15, 2012 | Hibner et al. |
8177729 | May 15, 2012 | Hibner et al. |
8206316 | June 26, 2012 | Hibner et al. |
8235913 | August 7, 2012 | Hibner et al. |
8241226 | August 14, 2012 | Hibner et al. |
8262586 | September 11, 2012 | Almazan et al. |
8568335 | October 29, 2013 | Monson et al. |
20020076355 | June 20, 2002 | Phifer |
20020082518 | June 27, 2002 | Weiss et al. |
20020120212 | August 29, 2002 | Ritchart et al. |
20030125639 | July 3, 2003 | Fisher et al. |
20030199753 | October 23, 2003 | Hibner et al. |
20040153003 | August 5, 2004 | Cicenas et al. |
20050049521 | March 3, 2005 | Miller et al. |
20050065453 | March 24, 2005 | Shabaz et al. |
20050082518 | April 21, 2005 | Weiss et al. |
20050165328 | July 28, 2005 | Heske et al. |
20050215921 | September 29, 2005 | Hibner et al. |
20050215922 | September 29, 2005 | Tsonton et al. |
20060041230 | February 23, 2006 | Davis |
20060074344 | April 6, 2006 | Hibner |
20060074345 | April 6, 2006 | Hibner et al. |
20060258955 | November 16, 2006 | Hoffman et al. |
20070032741 | February 8, 2007 | Hibner et al. |
20070032742 | February 8, 2007 | Monson |
20070112751 | May 17, 2007 | Pyun |
20070213630 | September 13, 2007 | Beckman et al. |
20070239067 | October 11, 2007 | Hibner |
20080004545 | January 3, 2008 | Garrison |
20080082021 | April 3, 2008 | Ichikawa et al. |
20080195066 | August 14, 2008 | Speeg et al. |
20080214955 | September 4, 2008 | Speeg et al. |
20100075664 | March 25, 2010 | Maucksch |
20100106053 | April 29, 2010 | Videbaek et al. |
20100152610 | June 17, 2010 | Parihar et al. |
20100160816 | June 24, 2010 | Parihar et al. |
20100160819 | June 24, 2010 | Parihar et al. |
20100160824 | June 24, 2010 | Parihar et al. |
20120226193 | September 6, 2012 | Hibner et al. |
20120245485 | September 27, 2012 | Hibner et al. |
20130150750 | June 13, 2013 | Monson et al. |
2581264 | September 2007 | CA |
0890339 | January 1999 | EP |
0 995 400 | April 2000 | EP |
1 520 518 | April 2005 | EP |
1 642 533 | April 2006 | EP |
1 832 234 | December 2007 | EP |
1889573 | February 2008 | EP |
1 932 482 | June 2008 | EP |
2 018 601 | October 1979 | GB |
2397242 | July 2004 | GB |
2021770 | October 1994 | RU |
WO 03/077768 | September 2003 | WO |
WO 2004/016177 | February 2004 | WO |
WO 2004/052179 | June 2004 | WO |
WO 2004/052212 | June 2004 | WO |
WO 2004/075728 | September 2004 | WO |
WO 2006/005342 | January 2006 | WO |
WO 2006/005343 | January 2006 | WO |
WO 2006/124489 | November 2006 | WO |
WO 2007/019152 | February 2007 | WO |
WO 2007/021904 | February 2007 | WO |
WO 2007/112751 | October 2007 | WO |
- European Search Report dated Dec. 1, 2005 for Application No. EP 05256035.
- European Search Report dated Jun. 13, 2007 for Application No. 07250402.
- European Search Report dated Dec. 11, 2007 for PCT Application No. 07253220.
- European Search Report dated Dec. 20, 2007 for EPO Application No. 07253220.
- European Examination Report dated May 13, 2008 for Application No. EP 07250402.
- European Search Report dated Sep. 29, 2010 for Application No. EP 10251076.
- European Search Report dated Apr. 5, 2012 for Application No. EP 11193357.
- European Communication dated Jun. 25, 2007 for Application No. EP 05256035.
- International Search Report dated Jul. 18, 2007 for Application No. PCT/US 06/30022.
- Written Opinion dated Apr. 26, 2010 for Application No. EP 08252524.
- Rejection dated Apr. 4, 2008 for U.S. Appl. No. 11/736,117.
- Final Rejection dated Sep. 26, 2008 for U.S. Appl. No. 11/782,961.
- US Re Issue U.S. Appl. No. 13/672,037 filed Nov. 8, 2012.
- U.S. Appl. No. 14/040,798, filed Sep. 30, 2013.
- Australian Patent Examination Report No. 1, dated Sep. 23, 2014, for Application No. AU 2012216247.
- Australian Notice of Acceptance, dated Nov. 30, 2015, for Application No. AU 2012216247.
- Australian Patent Examination Report No. 1, dated Sep. 5, 2014 for Application No. AU 2013205334.
- Canadian Office Action dated Jul. 8, 2014 for Application No. CA 2,597,847, 2 pgs.
- Canadian Office Action dated Sep. 7, 2015 for Application No. CA 2,597,847, 3 pgs.
- Indian Office Action dated Jul. 31, 2014 for Application No. 521/KOLNP/2008, 2 pgs.
- U.S. Appl. No. 60/874,792, filed Dec. 13, 2006, Hibner, John A.
- U.S. Appl. No. 60/869,736, filed Dec. 13, 2006, Hibner, John A.
- U.S. Appl. No. 11/782,893, filed Jul. 25, 2007, Garrison, William.
- EnCor MRI Specifications and Breast Biopsy System, SenoRx, 2005, pp. 102.
- ISR dated Jul. 18, 2007 for PCT Application No. PCT/US 06/30022.
- Non-final Rejection dated Mar. 20, 2008 for U.S. Appl. No. 11/782,963.
- Final Rejection dated Sep. 26, 2008 for U.S. Appl. No. 11/782,963.
- Non Final Rejection dated Oct. 6, 2008 for U.S. Appl. No. 11/736,117.
- International Search Report dated Sep. 27, 2007 for Application No. PCT/US06/30022.
- International Search Report dated Dec. 18, 2008 for Application No. PCT/US2008/058627.
- European Search Report dated Nov. 14, 2007 for Application No. 07250926.
- European Search Report dated Apr. 3, 2009 for Application No. 08252518.
- European Search Report dated Apr. 3, 2009 for Application No. 08252524.
- European Examination Report dated Mar. 19, 2009 for Application No. 07250926.
- Patentability Report and Written Opinion dated Feb. 5, 2008 for Application No. PCT/US2006/030022.
- Supplemental European Search Report dated Dec. 16, 2009 for Application No. EP06789155.
- European Communication dated Apr. 26, 2010 for Application No. 08252524.
Type: Grant
Filed: Jul 16, 2012
Date of Patent: Sep 6, 2016
Assignee: Devicor Medical Products, Inc. (Cincinnati, OH)
Inventor: John A. Hibner (Mason, OH)
Primary Examiner: Beverly M. Flanagan
Application Number: 13/507,652
International Classification: A61B 10/00 (20060101); A61B 10/02 (20060101); A61B 17/00 (20060101);