Backward-compatible long training sequences for wireless communication networks
A network device for generating an expanded long training sequence with a minimal peak-to-average ratio. The network device includes a signal generating circuit for generating the expanded long training sequence. The network device also includes an Inverse Fourier Transform for processing the expanded long training sequence from the signal generating circuit and producing an optimal expanded long training sequence with a minimal peak-to-average ratio. The expanded long training sequence and the optimal expanded long training sequence are stored on more than 52 sub-carriers.
Latest Bell Northern Research, LLC Patents:
The present application is a reissue application for U.S. Pat. No. 7,990,842, which was a CONTINUATION of U.S. application Ser. No. 11/188,771, filed Jul. 26, 2005 and issued as U.S. Pat. No. 7,646,703. Said U.S. application Ser. No. 11/188,771 makes reference to, claims priority to and claims benefit from U.S. Application No. 60/591,104, filed Jul. 27, 2004; and U.S. Application No. 60/634,102, filed Dec. 8, 2004. The above-identified applications are hereby incorporated herein by reference in their entirety.
BACKGROUND OF THE INVENTION1. Field of the Invention
The present invention relates generally to wireless communication systems and more particularly to long training sequences of minimum peak-to-average power ratio which may be used by legacy systems.
2. Description of the Related Art
Each wireless communication device participating in wireless communications includes a built-in radio transceiver (i.e., receiver and transmitter) or is coupled to an associated radio transceiver. As is known to those skilled in the art, the transmitter typically includes a data modulation stage, one or more intermediate frequency stages, and a power amplifier. The data modulation stage converts raw data into baseband signals in accordance with a particular wireless communication standard. The intermediate frequency stages mix the baseband signals with one or more local oscillations to produce RF signals. The power amplifier amplifies the RF signals prior to transmission via an antenna.
The receiver is typically coupled to the antenna and includes a low noise amplifier, one or more intermediate frequency stages, a filtering stage, and a data recovery stage. The low noise amplifier receives, via the antenna, inbound RF signals and amplifies the inbound RF signals. The intermediate frequency stages mix the amplified RF signals with one or more local oscillations to convert the amplified RF signal into baseband signals or intermediate frequency (IF) signals. The filtering stage filters the baseband signals or the IF signals to attenuate unwanted out of band signals to produce filtered signals. The data recovery stage recovers raw data from the filtered signals in accordance with a particular wireless communication standard.
Different wireless devices in a wireless communication system may be compliant with different standards or different variations of the same standard. For example, 802.11a an extension of the 802.11 standard, provides up to 54 Mbps in the 5 GHz band. 802.11b, another extension of the 802.11 standard, provides 11 Mbps transmission (with a fallback to 5.5, 2 and 1 Mbps) in the 2.4 GHz band. 802.11g, another extension of the 802.11 standard, provides 20+ Mbps in the 2.4 GHz band. 802.11n, a new extension of 802.11, is being developed to address, among other thins, higher throughput and compatibility issues. An 802.11a compliant communications device may reside in the same WLAN as a device that is compliant with another 802.11 standard. When devices that are compliant with multiple versions of the 802.11 standard are in the same WLAN, the devices that are compliant with older versions are considered to be legacy devices. To ensure backward compatibility with legacy devices, specific mechanisms must be employed to insure that the legacy devices know when a device that is compliant with a newer version of the standard is using a wireless channel to avoid a collision. New implementations of wireless communication protocol enable higher speed throughput, while also enabling legacy devices which might be only compliant with 802.11a or 802.11g to communicate in systems which are operating at higher speeds.
Devices implementing both the 802.11a and 802.11g standards use an orthogonal frequency division multiplexing (OFDM) encoding scheme. OFDM is a frequency division multiplexing modulation technique for transmitting large amounts of digital data over a radio wave. OFDM works by spreading a single data stream over a band of sub-carriers, each of which is transmitted in parallel. In 802.11a and 802.11g compliant devices, only 52 of the 64 active sub-carriers are used. Four of the active sub-carriers are pilot sub-carriers that the system uses as a reference to disregard frequency or phase shifts of the signal during transmission. The remaining 48 sub-carriers provide separate wireless pathways for sending information in a parallel fashion. The 52 sub-carriers are modulated using binary or quadrature phase shift keying (BPSK/QPSK), 16 Quadrature Amplitude Modulation (QAM), or 64 QAM. Therefore, 802.11a and 802.11g compliant devices use sub-carriers −26 to +26, with the 0-index sub-carrier set to 0 and 0-index sub-carrier being the carrier frequency. As such, only part of the 20 Mhz bandwidth supported by 802.11a and 802.11g is use.
In 802.11a/802.11g, each data packet starts with a preamble which includes a short training sequence followed by a long training sequence. The short and long training sequences are used for synchronization between the sender and the receiver. The long training sequence of 802.11a and 802.11g is defined such that each of sub-carriers −26 to +26, except for the sub-carrier 0 which is set to 0, has one BPSK consellation constellation point, either +1 or −1.
There exists a need to create a long training sequence of minimum peak-to-average ratio that uses more sub-carriers without interfering with adjacent channels. The inventive long trains training sequence with a minimum peak-to-average power ratio should be usable by legacy devices in order to estimate channel impulse response and to estimate carrier frequency offset between a transmitter and a receiver.
SUMMARY OF THE INVENTIONAccording to one aspect of the invention, there is provided a network device for generating an expanded long training sequence with a minimal peak-to-average ratio. The network device includes a signal generating circuit for generating the expanded long training sequence. The network device also includes an Inverse Fourier Transform for processing the expanded long training sequence from the signal generating circuit and producing an optimal expanded long training sequence with a minimal peak-to-average ratio. The expanded long training sequence and the optimal expanded long training sequence are stored on more than 52 sub-carriers.
According to another aspect of the invention, there is provided a network device for generating an expanded long training sequence with a minimal peak-to-average ratio. The network device includes a signal generating circuit for generating the expanded long training sequence. The network device also includes an Inverse Fourier Transform for processing the expanded long training sequence from the signal generating circuit and producing an optimal expanded long training sequence with a minimal peak-to-average ratio. The expanded long training sequence and the optimal expanded long training sequence are stored on more than 56 sub-carriers.
According to another aspect of the invention, there is provided a network device for generating an expanded long training sequence with a minimal peak-to-average ratio. The network device includes a signal generating circuit for generating the expanded long training sequence. The network device also includes an Inverse Fourier Transform for processing the expanded long training sequence from the signal generating circuit and producing an optimal expanded long training sequence with a minimal peak-to-average ratio. The expanded long training sequence and the optimal expanded long training sequence are stored on more than 63 sub-carriers.
According to another aspect of the invention, there is provided a method for generating an expanded long training sequence with a minimal peak-to-average ratio. The method includes the steps of generating the expanded long training sequence and producing an optimal expanded long training sequence with a minimal peak-to-average ratio. The method also includes the step of storing the expanded long training sequence and the optimal expanded long training sequence on more than 52 sub-carriers.
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention that together with the description serve to explain the principles of the invention, wherein:
Reference will now be made to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings.
The present invention provides an expanded long training sequence of minimum peak-to-average power ratio and thereby decreases power back-off. The inventive expanded long training sequence may be used by 802.11a or 802.11g devices for estimating the channel impulse response and by a receiver for estimating the carrier frequency offset between the transmitter clock and receiver clock. The inventive expanded long training sequence is usable by 802.11a or 802.11g systems only if the values at sub-carriers −26 to +26 are identical to those of the current long training sequence used in 802.11a and 802.11g systems. As such, the invention utilized utilizes the same +1 or −1 binary phase shift key (BPSK) encoding for each new sub-carrier and the long training sequence of 802.11a or 802.11g systems is maintained in the present invention.
In a first embodiment of the invention, the expanded long training sequence is implemented in 56 active sub-carriers including sub-carriers −28 to +28 except the 0-index sub-carrier which is set to 0. In another embodiment, an expanded long training sequence is implemented using 63 active sub-carriers, i.e., all of the active sub-carriers (−32 to +31) except the 0-index sub-carrier which is set to 0. In both embodiments of the invention, orthogonality is not affected, since a 64-point orthogonal transform is used to generate the time-domain sequence. Additionally, the output of an auto-correlator for computing the carrier frequency offset is not affected by the extra sub-carriers.
It should be appreciated by one skilled in art, that the present invention may be utilized in any device that implements the OFDM encoding scheme. The foregoing description has been directed to specific embodiments of this invention. It will be apparent, however, that other variations and modifications may be made to the described embodiments, with the attainment of some or all of their advantages. Therefore, it is the object of the appended claims to cover all such variations and modifications as come within the true spirit and scope of the invention.
Claims
1. A wireless communications device, comprising: Sub-carrier −28 −27 −26 −25 −24 −23 −22 Encoding +1 +1 +1 +1 −1 −1 +1 Sub-carrier −14 −13 −12 −11 −10 −9 −8 Encoding +1 +1 +1 −1 −1 +1 +1 Sub-carrier 1 2 3 4 5 6 7 Encoding +1 −1 −1 +1 +1 −1 +1 Sub-carrier 15 16 17 18 19 20 21 Encoding +1 +1 −1 −1 +1 −1 +1 Sub-carrier −21 −20 −19 −18 −17 −16 −15 Encoding +1 −1 +1 −1 +1 +1 +1 Sub-carrier −7 −6 −5 −4 −3 −2 −1 Encoding −1 +1 −1 +1 +1 +1 +1 Sub-carrier 8 9 10 11 12 13 14 Encoding −1 +1 −1 −1 −1 −1 −1 Sub-carrier 22 23 24 25 26 27 28 Encoding −1 +1 +1 +1 +1 −1 −1.
- a signal generator that generates an extended long training sequence; and
- an Inverse Fourier Transformer operatively coupled to the signal generator,
- wherein the Inverse Fourier Transformer processes the extended long training sequence from the signal generator and provides an optimal extended long training sequence with a minimal peak-to-average ratio, and
- wherein at least the optimal extended long training sequence is carried by a greater number of subcarriers than a standard wireless networking configuration for an Orthogonal Frequency Division Multiplexing scheme,
- wherein the optimal extended long training sequence is carried by exactly 56 active sub-carriers, and
- wherein the optimal extended long training sequence is represented by encodings for indexed sub-carriers −28 to +28, excluding indexed sub-carrier 0 which is set to zero, as follows:
2. The wireless communications device according to claim 1, wherein at least the optimal extended long training sequence is carried by at least 56 active sub-carriers.
3. The wireless communications device according to claim 2, wherein the at least 56 active sub-carriers correspond to at least indexed sub-carriers −28 to +28.
4. The wireless communications device according to claim 2 1, wherein the optimal extended long training sequence has a minimum peak-to-average power ratio of 3.6 dB.
5. The wireless communications device according to claim 1, wherein at least the optimal extended long training sequence is carried by at least 63 active sub-carriers.
6. The wireless communications device according to claim 5, wherein the at least 63 active sub-carriers correspond to at least indexed sub-carriers −32 to +31.
7. The wireless communications device according to claim 5, wherein the optimal extended long training sequence has a minimum peak-to-average power ratio of 3.6 dB.
8. The wireless communications device according to claim 1, wherein a binary phase shift key encoding is used for each sub-carrier above the +26 indexed sub-carrier and below the −26 indexed sub-carrier.
9. The wireless communications device according to claim 1, wherein the Inverse Fourier Transformer comprises at least one of the following: an Inverse Fast Fourier Transformer and or an Inverse Discrete Fourier Transformer.
10. The wireless communications device according to claim 1, wherein the wireless communications device comprises one or more of the following: a personal digital assistant, a laptop computer, a personal computer, a processor, and a cellular phone.
11. The wireless communications device according to claim 1, wherein the wireless communications device comprises a wireless mobile communications device.
12. The wireless communications device according to claim 1, wherein the wireless communications device comprises one or more of the following: an access point and a base station.
13. The wireless communications device according to claim 1, wherein the wireless communications device is backwards compatible with legacy wireless local area network devices.
14. The wireless communications device according to claim 1, wherein the optimal extended long training sequence is longer than a long training sequence used by a legacy wireless local area network device in accordance with a legacy wireless networking protocol standard.
15. The wireless communications device according to claim 14, wherein the legacy wireless local area network device uses the optimal extended long training sequence to estimate a carrier frequency offset even though the optimal extended long training sequence is longer than the long training sequence that is specified by the legacy wireless networking protocol standard.
16. The wireless communications device according to claim 15, wherein the long training sequence that is specified by the legacy wireless networking protocol standard is maintained in the extended long training sequence or the optimal extended long training sequence.
17. The wireless communications device according to claim 1, wherein the wireless communications device decreases power back-off.
18. The wireless communications device according to claim 1, wherein the wireless communications device registers with one or more of the following: an access point and a base station.
19. The wireless communications device according to claim 1, wherein the extended long training sequence or the optimal extended long training sequence is encoded using binary phase shift key encoding on each of the 56 active subcarriers.
20. The wireless communications device according to claim 1, comprising:
- a symbol mapper operatively coupled to the signal generator, wherein the symbol mapper receives coded bits and generates symbols for each of 64 subcarriers of an Orthogonal Frequency Division Multiplexing sequence.
21. The wireless communications device according to claim 14, wherein the legacy wireless networking protocol standard for the Orthogonal Frequency Division Multiplexing scheme corresponds to exactly 52 active subcarriers.
22. The wireless communications device according to claim 21, wherein, for a long training sequence of the legacy wireless networking protocol standard, the indexed sub-carrier 0 is set to zero and encodings for the indexed sub-carriers −26 to +26 excluding the indexed sub-carrier 0 are: Sub-carrier −26 −25 −24 −23 −22 −21 −20 Encoding +1 +1 −1 −1 +1 +1 −1 Sub-carrier −13 −12 −11 −10 −9 −8 −7 Encoding +1 +1 −1 −1 +1 +1 −1 Sub-carrier 1 2 3 4 5 6 7 Encoding +1 −1 −1 +1 +1 −1 +1 Sub-carrier 14 15 16 17 18 19 20 Encoding −1 +1 +1 −1 −1 +1 −1 Sub-carrier −19 −18 −17 −16 −15 −14 Encoding +1 −1 +1 +1 +1 +1 Sub-carrier −6 −5 −4 −3 −2 −1 Encoding +1 −1 +1 +1 +1 +1 Sub-carrier 8 9 10 11 12 13 Encoding −1 +1 −1 −1 −1 −1 Sub-carrier 21 22 23 24 25 26 Encoding +1 −1 +1 +1 +1 +1.
23. The wireless communications device according to claim 22, wherein:
- the Inverse Fourier Transformer comprises an Inverse Fast Fourier Transformer or an Inverse Discrete Fourier Transformer;
- the wireless communications device comprises one or more of the following: a personal digital assistant, a laptop computer, a personal computer, a cellular phone, an access point, a processor, and a base station;
- the wireless communications device is backwards compatible with the legacy wireless local area network device;
- the legacy wireless local area network device uses the optimal extended long training sequence to estimate a carrier frequency offset even though the optimal extended long training sequence is longer than the long training sequence that is specified by the legacy wireless networking protocol standard;
- the wireless communications device decreases power back-off;
- the extended long training sequence or the optimal extended long training sequence is encoded using binary phase shift key encoding on each of the 56 active subcarriers; and
- the wireless communications device further comprises a symbol mapper operatively coupled to the signal generator, wherein the symbol mapper receives coded bits and generates symbols for each of 64 subcarriers of an Orthogonal Frequency Division Multiplexing sequence.
24. The wireless communications device according to claim 1, wherein at least one output of the Inverse Fourier Transformer is operatively coupled to at least one digital-to-analog converter.
25. The wireless communications device according to claim 1, wherein at least one output of the Inverse Fourier Transformer is operatively coupled to multiple digital-to-analog converters.
26. The wireless communications device according to claim 1, wherein an input of the signal generator is operatively coupled to a frequency-domain windower.
27. The wireless communications device according to claim 1, wherein an output of the Inverse Fourier Transformer is operatively coupled to a time-domain windower.
28. The wireless communications device according to claim 27, wherein an output of the time-domain windower is operatively coupled to at least one digital-to-analog converter.
29. The wireless communication device according to claim 1, wherein an output of the Inverse Fourier Transformer is operatively coupled to a digital transmit filter.
30. The wireless communications device according to claim 1, wherein an output of the Inverse Fourier Transformer is operatively coupled to a parallel-to-serial convertor.
5479444 | December 26, 1995 | Malkamaki et al. |
5914933 | June 22, 1999 | Cimini et al. |
6438173 | August 20, 2002 | Stantchev |
6941156 | September 6, 2005 | Mooney |
7203245 | April 10, 2007 | Murphy |
7254171 | August 7, 2007 | Hudson |
7318185 | January 8, 2008 | Khandani et al. |
7319889 | January 15, 2008 | Goris et al. |
7324605 | January 29, 2008 | Maltsev et al. |
7349436 | March 25, 2008 | Maltsev et al. |
7392015 | June 24, 2008 | Farlow et al. |
7394865 | July 1, 2008 | Borran et al. |
7433418 | October 7, 2008 | Dogan et al. |
7444134 | October 28, 2008 | Hansen et al. |
7453793 | November 18, 2008 | Jones, IV et al. |
7539260 | May 26, 2009 | van Zelst et al. |
7599332 | October 6, 2009 | Zelst et al. |
7646703 | January 12, 2010 | Trachewsky et al. |
7742388 | June 22, 2010 | Shearer et al. |
8204554 | June 19, 2012 | Goris et al. |
8416862 | April 9, 2013 | Aldana et al. |
8457232 | June 4, 2013 | van Zelst et al. |
8477594 | July 2, 2013 | Trachewsky et al. |
8792432 | July 29, 2014 | Martin et al. |
20030043887 | March 6, 2003 | Hudson |
20040008803 | January 15, 2004 | Aldrovandi et al. |
20040093545 | May 13, 2004 | Khandani et al. |
20040264585 | December 30, 2004 | Borran et al. |
20050233709 | October 20, 2005 | Gardner et al. |
20050265219 | December 1, 2005 | Murphy et al. |
20050286474 | December 29, 2005 | van Zelst et al. |
20060002361 | January 5, 2006 | Webster et al. |
20060120447 | June 8, 2006 | Trachewsky et al. |
20060209890 | September 21, 2006 | MacMullan et al. |
20060209892 | September 21, 2006 | MacMullan et al. |
20070002749 | January 4, 2007 | Sondur et al. |
20070047671 | March 1, 2007 | Chen |
20070060073 | March 15, 2007 | Boer et al. |
20100110876 | May 6, 2010 | Trachewsky et al. |
WO2004030265 | April 2004 | WO |
- “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5 GHZ Band,” IEEE Std 802. 11a-1999 (Supplement to IEEE Std 802.11-1999), Dec. 30, 1999, pp. 1-90, IEEE, United States.
- Ogawa, Yasutaka et al. “A MIMO-OFDM System for High-Speed Transmission,” 2003 IEEE 58th Vehicular Technology Conference, Oct. 9, 2003, pp. 493-497, IEEE, Orland, United States.
- Abhayawardhana, V. S. et al., “Frequency Scaled Time Domain Equalization for OFDM in Broadband Fixed Wireless Access Channels,” 2002 IEEE Wireless Communications and Networking Conference Record, Mar. 21, 2002, pp. 67-72, IEEE, Orland, United States.
- Liebetreu, John et al., “Modifications to OFDM FFT-256 mode for supporting mobile operation,” IEEE C802.16e-03/12, Mar. 3, 2003, pp. 0-8, IEEE.
- Decision: Settlement Prior to Institution of Trial; IPR 2019-01174; dated Dec. 11, 2019.
- Decision: Settlement Prior to Institution of Trial; IPR 2019-01345; dated Dec. 11, 2019.
- Decision: Settlement Prior to Institution of Trial; IPR 2019-01437; dated Dec. 11, 2019.
- Order Granting Joint Motion for Dismissal as to Counts III and IV of BNR's Complaint and Partial Dismissal of Counts I and II of Coolpad's Counterclaims; C.A. No. 3:18-cv-1783-CAB-BLM; dated Oct. 7, 2019.
- Order Granting Joint Morion to Dismiss; Case No. 18-CV-1785-CAB-BLM; dated Aug. 5, 2019.
- Order Granting Joint Motion for Dismissal as to Counts 3 and 6 of BNR's Amended Complaint and Counts VI, VII, X, and XI of ZTE Corporation, ZTE (TX), Inc., and ZTE (USA) Inc.'s Counterclaims; C.A. No. 3:18-cv-1786-CAB-BLM; dated Oct. 4, 2019.
- Order Granting Joint Motion for Dismissal as to Counts III and VI of BNR's Second Amended Complaint; C.A. No. 3:18-cv-1784-CAB-BLM; dated Oct. 21, 2019.
Type: Grant
Filed: Nov 18, 2019
Date of Patent: Jul 6, 2021
Assignee: Bell Northern Research, LLC (Chicago, IL)
Inventors: Jason Alexander Trachewsky (Menlo Park, CA), Rajendra T. Moorti (Mountain View, CA)
Primary Examiner: Mark Sager
Application Number: 16/686,468