Patents Issued in January 28, 2014
  • Patent number: 8639307
    Abstract: Embodiments of the present invention include systems and methods that relate to a sensor with memory. Specifically, one embodiment includes a method of sensor operation, comprising emitting light from a light emitting element of the sensor, detecting the light with a light detecting element of the sensor, storing sensor model identification data within a memory of the sensor, and providing access to the memory to facilitate reading the sensor model identification data with an oximeter monitor.
    Type: Grant
    Filed: June 1, 2006
    Date of Patent: January 28, 2014
    Assignee: Covidien LP
    Inventors: Paul D. Mannheimer, Adnan Merchant, Charles Porges, David Swedlow, Marcia Fein
  • Patent number: 8639308
    Abstract: There is provided a fingertip oximeter that has a plurality of display modes which are presented sequentially in a circulating way, allowing users to easily observe a measurement result from any of surrounding directions. The present invention makes users to be able to observe a measurement result of the fingertip oximeter from any of surrounding directions, without the need of bending his/her finger. Thus, any partial occlusion of the arterial blood capillary can be avoided, so that strength of the pulse will not decrease, and strength of the signal will not be affected. As a result, the precision of the measurement is improved.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: January 28, 2014
    Assignee: Beijing Choice Electronic Technology Co., Ltd.
    Inventors: Feng Xu, Shuhai Liu
  • Patent number: 8639309
    Abstract: A method and system for continually monitoring oxygenation levels in real-time in compartments of an animal limb, such as in a human leg or a human thigh or a forearm, can be used to assist in the diagnosis of a compartment syndrome. The method and system can include one or more near infrared compartment sensors in which each sensor can be provided with a compartment alignment mechanism and a central scan depth marker so that each sensor may be precisely positioned over a compartment of a living organism. The method and system may comprise hardware or software (or both) may adjust one or more algorithms based on whether tissue being monitored was traumatized or is healthy. The method and system can also monitor the relationship between blood pressure and oxygenation levels and activate alarms based on predetermined conditions relating to the oxygenation levels or blood pressure or both.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: January 28, 2014
    Assignee: J&M Shuler, Inc.
    Inventor: Michael Simms Shuler
  • Patent number: 8639310
    Abstract: The disclosure relates to a variety of systems and methods for sensing electrical events about a selected annulus region of the heart and for treating tissue in the selected annulus region. Wherein the system includes a first catheter that has an expandable member, an ablation element, and a lumen configured to allow a second catheter therethrough. The second catheter includes a distal section in a ring shape and a plurality of electrodes coupled around the ring. Optionally a second lumen can be included through the first catheter that allows for contrast media to be delivered to the distal end of the system.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: January 28, 2014
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Peter C. Chen, Alan de la Rama, Cary K. Hata, Vivian Tran
  • Patent number: 8639311
    Abstract: A single sensing probe comprising multiple, spatially separate, sensing sites is utilized to sense neural activity. The sensing probe includes multiple conductors each with multiple sensing sites in a fixed geometric arrangement. The sensing probe is configured to comprise multiple combined sensing sites in polytrode configuration. By appropriately combining the wire groupings at each combined sensing site, activity sensed from a single wire with multiple sensing sites, can be coupled with other wires to unmix signals from the spatially separate sites and leverage the power of combinatorics to maximize total recording bandwidth and single neuron/unit yield per wire and per probe.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: January 28, 2014
    Assignee: Philadelphia Health & Education Corporation
    Inventor: Simon F. Giszter
  • Patent number: 8639312
    Abstract: A system and method for electrically shielding a physiological pathway from electrical noise is disclosed. The method includes the operation of implanting at least one signal microelectrode into a patient such that the signal microelectrode is proximate to the physiological pathway. An additional operation includes substantially enclosing the microelectrode and a section of the physiological pathway with an electrical shielding wrap. The electrical shielding wrap includes a plurality of holes that enable fluid communication of physiological fluids between an inside and outside of the wrap.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: January 28, 2014
    Assignee: University of Utah Research Foundation
    Inventors: Gregory Arthur Clark, David J. Warren, Noah M. Ledbetter
  • Patent number: 8639313
    Abstract: Systems and methods for assessment of sleep quality in adults and children are provided. These techniques include an apparatus worn above the forehead containing the circuitry for collecting and storing physiological signals. The apparatus integrates with a sensor strip and a nasal mask to obtain the physiological signals for the user. The form factor of this apparatus is comfortable, easy to self-apply, and results in less data artifacts than conventional techniques for capturing physiological data for analyzing sleep quality. Neuro-respiratory signals are analyzed using means to extract more accurate definitions of the frequency and severity of sleep discontinuity, sleep disordered breathing and patterns of sleep architecture. Biological biomarkers and questionnaire responses can also be compared to a database of healthy and chronically diseased patients to provide a more accurate differential diagnosis and to help determine the appropriate disease management recommendations.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: January 28, 2014
    Assignee: Advanced Brain Monitoring, Inc.
    Inventors: Philip R. Westbrook, Daniel J. Levendowski, Timothy Zavora, Gene Davis, Djordje Popovic, Chris Berka, Mirko Mitrovic, Bratislav Veljkovic
  • Patent number: 8639314
    Abstract: An in-vivo device, system and a method for imaging a body lumen, typically liquid filled body lumen. The in-vivo device may have a specific gravity of about 1 or a volume to weight ratio that enables it to float. The in-vivo device may include an optical system for viewing through a body lumen liquid and another optical system for viewing through a non liquid medium. The in-vivo device may be moved through the body lumen by the liquid movement in that lumen.
    Type: Grant
    Filed: November 23, 2005
    Date of Patent: January 28, 2014
    Assignee: Given Imaging Ltd.
    Inventors: Zvika Gilad, Amit Pascal
  • Patent number: 8639315
    Abstract: A system for at least partially filling and marking a cavity at a site within a patient's body includes a marker delivery device having a chamber configured to contain a marking substance and having a mechanism configured to expel the marking substance. A quantity of the marking substance is contained within the chamber of the marker delivery device. The marking substance is configured to at least partially fill the cavity and form therein a porous bioabsorbable body. A delivery tube is coupled in fluid communication with the chamber of the marker delivery device. The delivery tube has a distal end with a discharge port through which the marking substance is expelled. A marker is configured to be delivered to the cavity from the distal end of the delivery tube and is configured to remain with the porous bioabsorbable body within the cavity upon the formation thereof.
    Type: Grant
    Filed: May 16, 2013
    Date of Patent: January 28, 2014
    Assignee: Senorx, Inc.
    Inventors: Fred H. Burbank, Michael L. Jones, Frank Louw, Paul Lubock
  • Patent number: 8639316
    Abstract: A medical device performs a method for determining a cardiac event by obtaining a signal comprising cardiac cycle length information in a patient and determining cardiac cycle lengths during an established time interval. Noise is detected during the time interval and a cardiac cycle length corresponding to a time of the detected noise is rejected. Cycle length differences are determined from the cycle lengths not rejected during the time interval. The cardiac event is determined in response to the cycle length differences.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: January 28, 2014
    Assignee: Medtronic, Inc.
    Inventor: Shantanu Sarkar
  • Patent number: 8639317
    Abstract: An implantable medical device such as an implantable pacemaker or implantable cardioverter/defibrillator includes a programmable sensing circuit providing for sensing of a signal approximating a surface electrocardiogram (ECG) through implanted electrodes. With various electrode configurations, signals approximating various standard surface ECG signals are acquired without the need for attaching electrodes with cables onto the skin. The various electrode configurations include, but are not limited to, various combinations of intracardiac pacing electrodes, portions of the implantable medical device contacting tissue, and electrodes incorporated onto the surface of the implantable medical device.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: January 28, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Aaron R. McCabe, Avram Scheiner, Geng Zhang, Douglas R. Daum, Yi Zhang, Quan Ni
  • Patent number: 8639318
    Abstract: Systems, devices and methods for defining, identifying and utilizing composite parameter indices from health-related parameters are disclosed. One aspect is a programmable device having machine executable instructions for performing a method to assist with managing a patient's health. In various embodiments, a first set of at least two health-related parameters is acquired. A first composite parameter is generated using the first set of at least two health-related parameters. Other aspects and embodiments are provided herein.
    Type: Grant
    Filed: October 29, 2012
    Date of Patent: January 28, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: John D. Hatlestad, Jeffrey E. Stahmann, Qingsheng Zhi
  • Patent number: 8639319
    Abstract: An ECG monitoring system for ambulatory patients includes a small multi-electrode patch that adhesively attaches to the chest of a patient. A reusable battery-powered ECG monitor clips onto the patch and receives patient electrical signals from the electrodes of the patch. A processor continuously processes received ECG signals and stores the signals in memory in the monitor. Processed ECG signals and cardiac event information are sent wirelessly to a cellphone handset for relay to a monitoring center. The ECG monitor is contained in a watertight sealed case with only electrical contacts on the outside of the case. The electrical contacts electrically couple the ECG monitor to the electrodes of the patch during patient monitoring and to a charger during recharge of the battery.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: January 28, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Steven Hugh, Earl Herleikson, Shannon Fong, Thomas Solosko, Brett Cross
  • Patent number: 8639320
    Abstract: A muscle-activity diagnosis apparatus includes: an acquiring section acquiring a myoelectric signal from a test subject; using the myoelectric signal as an original signal, a transformed-signal generating section generating a transformed signal by performing Hilbert transformation and inverse Fourier transformation on the original signal; a phase-velocity calculation section calculating a phase velocity of the myoelectric signal on the basis of phases of the original signal and the transformed signal; and on the basis of a plurality of feature quantities of a waveform of the myoelectric signal in a unit time and the plurality of feature quantities including at least a size of amplitude of the myoelectric signal and the calculated phase velocity, a state-identifying section identifying an activity state of a muscle of a predetermined part of a body of the test subject for each of the unit time.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: January 28, 2014
    Assignee: Sony Corporation
    Inventors: Takashi Tomita, Akane Sano, Haruo Oba
  • Patent number: 8639321
    Abstract: A method may include placing a first device on a first side of a skin portion of a subject and transferring a material through the skin portion of the subject from the first device to a subdermal second device disposed on a second side of the skin portion of the subject.
    Type: Grant
    Filed: February 18, 2013
    Date of Patent: January 28, 2014
    Assignee: The Invention Science Fund I, LLC
    Inventors: Roderick A. Hyde, Jordin T. Kare, Dennis J. Rivet, Lowell L. Wood, Jr.
  • Patent number: 8639322
    Abstract: Various aspects of the present subject matter provide an implantable medical device. In various embodiments, the device comprises a pulse generator, a lead, a sensor, and a controller. The pulse generator generates a baroreflex stimulation signal as part of a baroreflex therapy. The lead is adapted to be electrically connected to the pulse generator and to be intravascularly fed into a heart. The lead includes an electrode to be positioned in or proximate to the heart to deliver the baroreflex signal to a baroreceptor region in or proximate to the heart. The sensor senses a physiological parameter regarding an efficacy of the baroreflex therapy and provides a signal indicative of the efficacy. The controller is connected to the pulse generator to control the baroreflex stimulation signal and to the sensor to receive the signal indicative of the efficacy of the baroreflex therapy. Other aspects are provided herein.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: January 28, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Ronald W. Heil, Jr., Avram Scheiner, Imad Libbus
  • Patent number: 8639323
    Abstract: The present invention includes systems, devices, and methods relating to the monitoring of the functional maturation of biological interventions effecting cardiac pacing; the systems, devices, and methods including an implantable electronic pulse generator delivering artificial cardiac pacing; a means for halting the electronic pulse generator delivering artificial cardiac pacing at predetermined data collection intervals; and a sensor for recording and storing data on one or more intrinsic physiological parameters of cardiac pacing during the predetermined data collection intervals.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: January 28, 2014
    Assignee: Medtronic, Inc.
    Inventors: Vinod Sharma, Deborah A. Jaye, Daniel Sigg
  • Patent number: 8639324
    Abstract: An implantable or ambulatory medical device can include a cardiac signal sensing circuit configured to provide a sensed cardiac depolarization signal of a heart of a subject, a respiration sensing circuit configured to provide a signal representative of respiration of the subject, and a control circuit communicatively coupled to the cardiac signal sensing circuit and the respiration circuit. The control circuit includes a tachyarrhythmia detection circuit configured to determine heart rate using the depolarization signal, determine a respiration parameter of the subject using the respiration signal, calculate a ratio using the determined heart rate and the determined respiration parameter, generate an indication of tachyarrhythmia when the calculated ratio satisfies a specified detection ratio threshold value, and provide the indication of tachyarrhythmia to a user or process.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: January 28, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Efdal Elferri, Randall L. McPherson, Donald L. Hopper, Gary T. Seim, James O. Gilkerson, Dan Li, David L. Perschbacher
  • Patent number: 8639325
    Abstract: A method for extinguishing a cardiac arrhythmia utilizes destructive interference of the passing of the reentry wave tip of an anatomical reentry through a depolarized region created by a relatively low voltage electric field in such a way as to effectively unpin the anatomical reentry. Preferably, the relatively low voltage electric field is defined by at least one unpinning shock(s) that are lower than an expected lower limit of vulnerability as established, for example, by a defibrillation threshold test. By understanding the physics of the electric field distribution between cardiac cells, the method permits the delivery of an electric field sufficient to unpin the core of the anatomical reentry, whether the precise or estimated location of the reentry is known or unknown and without the risk of inducting ventricular fibrillation. A number of embodiments for performing the method are disclosed.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: January 28, 2014
    Assignee: Washington University
    Inventors: Igor R. Efimov, Valentin I. Krinski, Vladimir P. Nikolski
  • Patent number: 8639326
    Abstract: An implantable medical device operates to promote intrinsic ventricular depolarization according to a pacing protocol. When a cardiac rate exceeds a predetermined threshold, the implantable medical device modifies the pacing protocol parameters to promote AV synchrony.
    Type: Grant
    Filed: January 21, 2005
    Date of Patent: January 28, 2014
    Assignee: Medtronic, Inc.
    Inventors: Mattias Rouw, Willem Boute, Peter M. Van Dam
  • Patent number: 8639327
    Abstract: Methods of nerve signal differentiation, methods of delivering therapy using such nerve signal differentiation, and to systems and devices for performing such methods. Nerve signal differentiation may include locating two electrodes proximate nerve tissue and differentiating between efferent and afferent components of nerve signals monitored using the two electrodes.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: January 28, 2014
    Assignee: Medtronic, Inc.
    Inventors: Xiaohong Zhou, John Edward Burnes, Lilian Kornet, Richard N. M. Cornelussen
  • Patent number: 8639328
    Abstract: Methods and/or devices are disclosed herein for monitoring cardiac impedance signal and delivering therapy to a patient's heart based upon the monitored cardiac impedance.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: January 28, 2014
    Assignee: Medtronic, Inc.
    Inventors: Douglas A. Hettrick, Todd M. Zielinski, Eduardo Warman, Shantanu Sarkar
  • Patent number: 8639329
    Abstract: Disclosed are apparatus and methods that provide the ability to electrical stimulate a physical system, and actively eliminate interference with signal acquisition (artifacts) that arises from the stimulation. The technique implemented in the circuits and methods for eliminating interference connects a discharge path to a physical interface to the system to remove charge that is built-up during stimulation. By placing the discharge path in a feedback loop that includes a recording preamplifier and AC-coupling circuitry, the physical interface is brought back to its pre-stimulation offset voltage. The disclosed apparatus and methods may be used with piezoelectric transducers, ultrasound devices, optical diodes, and polarizable and non-polarizable electrodes. The disclosed apparatus can be employed in implantable devices, in vitro or in vivo setups with vertebrate and invertebrate neural tissue, muscle fibers, pancreatic islet cells, osteoblasts, osteoclasts, bacteria, algae, fungi, protists, and plants.
    Type: Grant
    Filed: August 29, 2006
    Date of Patent: January 28, 2014
    Assignee: Georgia Tech Research Corporation
    Inventors: Edgar A. Brown, James D. Ross, Richard A. Blum, Stephen P. DeWeerth
  • Patent number: 8639330
    Abstract: A system, method, or device classifies an arrhythmia according to the temporal order in which a depolarization wave associated with a particular heart contraction is received at a plurality of electrodes. One or more antiarrhythmia therapies is mapped to each arrhythmia classification. When a particularly classified arrhythmia is detected, the correspondingly mapped therapy list is selected and an appropriate antiarrhythmia therapy delivered. In one example, the particular therapy delivered in response to an arrhythmia depends at least in part on its historical success in treating arrhythmias of that classification.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: January 28, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Julio C. Spinelli, Qingsheng Zhu, Jeffrey E. Stahmann, Andrew P. Kramer
  • Patent number: 8639331
    Abstract: Systems and methods for arrhythmia therapy in MRI environments are disclosed. Various systems disclosed utilize ATP therapy rather than ventricular shocks when patients are subjected to electromagnetic fields in an MRI scanner bore and shock therapy is not available. As the patient is moved out from within the scanner bore and away from the MRI scanner, the magnetic fields diminish in strength eventually allowing a high voltage capacitor within the IMD to charge if necessary. The system may detect when the electromagnetic fields no longer interfere with the shock therapy and will transition the IMD back to a normal operational mode where shock therapy can be delivered. Then, if the arrhythmia still exists, the system will carry out all of the system's prescribed operations, including the delivery of electric shocks to treat the arrhythmia.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: January 28, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Scott R. Stubbs, James O. Gilkerson, Diane Schuster
  • Patent number: 8639332
    Abstract: A method and device for delivering therapy that includes an electrode to sense cardiac signals and to deliver a therapy, a therapy delivery module coupled to the electrode to deliver a therapy via the electrode in response to the sensed cardiac signals, a sensor emitting light and detecting emitted light scattered by a tissue volume adjacent the optical sensor to generate a corresponding detected light intensity output signal, a control module coupled to the sensor to control light emission of the sensor in response to delivering the therapy, and a controller coupled to the therapy delivery module and the sensor, the controller configured to determine tissue oxygenation measurements in response to the output signal, determine a tissue oxygenation trend in response to the tissue oxygenation measurements, and determine whether the delivered therapy restored cardiac hemodynamic function in response to the determined tissue oxygenation trend.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: January 28, 2014
    Assignee: Medtronic, Inc.
    Inventors: Jonathan L. Kuhn, Can Cinbis, David A. Anderson, William J. Havel
  • Patent number: 8639333
    Abstract: A medical device and associated method control the delivery of a cardiac pacing therapy by selecting first and second pacing sites along a first ventricle of a patient's heart and delivering the pacing therapy by pacing the first ventricle using the first pacing site during the periods of a first ventricular pacing mode and using the second pacing site during periods of a second ventricular pacing mode. In one embodiment, the device determines activation times at multiple sites along a ventricle in response to pacing pulses being delivered to the opposite ventricle. A first pacing site is selected in response to the activation time determination. The device delivers the pacing therapy by pacing the first ventricle using the first pacing site during periods of the first ventricular pacing mode.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: January 28, 2014
    Assignee: Medtronic, Inc.
    Inventors: Robert W. Stadler, Aleksandre T. Sambelashvili, Vincent E. Splett
  • Patent number: 8639334
    Abstract: Response to cardiac resynchronization therapy is predicted for a given stimulation site so that an atrioventricular delay of an implantable device administering cardiac resynchronization therapy may be set to a proper amount. The first deflection of ventricular depolarization is measured, such as through a surface electrocardiogram or through an intracardiac electrogram measured by a lead positioned in the heart at the stimulation site. The maximum deflection of the ventricular depolarization is then measured by the lead positioned at the stimulation site. The interval of time between the first deflection and the maximum deflection of the ventricular depolarization is compared to a threshold to determine whether the stimulation site is a responder site. If the interval is larger than the threshold, then the site is a responder and the atrioventricular delay of the implantable device may be set to less than the intrinsic atrioventricular delay of the patient.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: January 28, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Julio Spinelli, Yinghong Yu
  • Patent number: 8639335
    Abstract: Various techniques for disabling a first implantable medical device (IMD) by modulation of therapeutic electrical stimulation delivered by a second medical device are described. One example method includes delivering therapeutic electrical stimulation from a more recently implanted second IMD at a higher average rate than the previously implanted first IMD so that only the more recently implanted IMD will administer therapy, and modulating stimulation by the more recently implanted IMD in order to send a disable command to the previously implanted IMD.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: January 28, 2014
    Assignee: Medtronic, Inc.
    Inventors: David J. Peichel, Wing Kam Li, Gregory A. Haider, David P. Dvorak
  • Patent number: 8639336
    Abstract: A method for operating an implantable medical device includes delivering a plurality of pacing pulses to an atria of a patient's heart and monitoring intrinsic atrial activity to detect intrinsic atrial contractions between one or more of the plurality of pacing pulses. The method further includes detecting atrial undersensing as a function of the detection of intrinsic atrial contractions.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: January 28, 2014
    Assignee: Pacesetter, Inc.
    Inventors: Gene A. Bornzin, Peter Boileau, Jeffery D. Snell
  • Patent number: 8639337
    Abstract: A system and method for passively testing a cardiac pacemaker in which sensing signal amplitudes and lead impedance values are measured and stored while the pacemaker is functioning in its programmed mode. The amplitude and impedance data may be gotten and stored periodically at regular intervals to generate a historical record for diagnostic purposes. Sensing signal amplitudes may also be measured and stored from a sensing channel which is currently not programmed to be active as long as the pacemaker is physically configured to support the sensing channel. Such data can be useful in evaluating whether a switch in the pacemaker's operating mode is desirable.
    Type: Grant
    Filed: October 13, 2011
    Date of Patent: January 28, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Vickie L. Conley, James O. Gilkerson, David L. Perschbacher
  • Patent number: 8639338
    Abstract: A power source longevity monitor is configured for an implantable medical device. An energy counter counts the amount of energy used by the implantable medical device. A voltage monitor monitors the voltage of the power source. A calculator predicts the power source longevity using the energy longevity estimate and the voltage longevity estimate.
    Type: Grant
    Filed: April 2, 2013
    Date of Patent: January 28, 2014
    Assignee: Medtronic, Inc.
    Inventors: Charles R. Rogers, Donald R. Merritt, Craig L. Schmidt, Mukul Jain
  • Patent number: 8639339
    Abstract: A telemetry system is presented for enabling wireless communications between an implantable medical device and an external device in a manner which reduces the power requirements of the implantable device by duty cycling its wireless communication circuitry. A wakeup scheme for the implantable device is provided in which the external device transmits a data segment containing a repeating sequence of special wakeup characters in order to establish a communications session with the implantable device. The wakeup scheme may be designed to operate in the context of a handshaking protocol for collision avoidance.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: January 28, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Joseph E. Bange, Allan T. Koshiol, Karen M. Kramer, Paul Holmquist, Thomas J. Harris
  • Patent number: 8639340
    Abstract: A connector sleeve includes a lumen adapted to receive a medical lead connector wherein a retention element engages a retention edge formed at a distal end of a connector element included on the lead connector. The connector sleeve further includes a contact element adapted to electrically engage the lead connector element within the lumen and an external conductive surface electrically coupled to the contact element and adapted for electrical engagement within the connector bore of an implantable medical device.
    Type: Grant
    Filed: August 6, 2003
    Date of Patent: January 28, 2014
    Assignee: Medtronic, Inc.
    Inventors: John L. Sommer, Douglas S. Hine, Douglas N. Hess
  • Patent number: 8639341
    Abstract: Hermetically sealed assemblies, for example, that include IC chips, are configured for incorporation within a connector terminal of an implantable medical electrical lead, preferably within a contact member of the terminal. An assembly may include two feedthrough subassemblies, welded to either end of the contact member, to form an hermetic capsule, in which an IC chip is enclosed, and a tubular member, which allows a lumen to extend therethrough, along a length of the terminal. A multi-electrode lead may include multiplexer circuitry, preferably a switch matrix element and a communications, control and power supply element that are electrically coupled to the contact member and to another contact member of the terminal. Each pair of switch matrix switches allows for any two of the electrodes to be selected, in order to deliver a stimulation vector, via stimulation pulses from a device/pulse generator, to which the connector terminal is connected.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: January 28, 2014
    Assignee: Medtronic, Inc.
    Inventors: John Louis Sommer, Joseph Michael D'Sa, Joyce K Yamamoto, Brad C Tischendorf, James D Reinke, Andrew J Thom, Thomas P Miltich, William John Taylor, Kenneth C Gardeski, Larry Earl Tyler, Jeffrey O York, Gordon O Munns
  • Patent number: 8639342
    Abstract: A method for altering operation of a nerve related to a given body condition includes the steps of identifying at least one nerve root of a nerve related to the given body condition; laparoscopically implanting at least one electrode on the nerve root; and operating the electrode to electrostimulate the nerve root and alter operation of the nerve.
    Type: Grant
    Filed: September 17, 2012
    Date of Patent: January 28, 2014
    Inventor: Marc Possover
  • Patent number: 8639343
    Abstract: An electronic stimulation system to be worn in, behind or on a human ear having a casing; a detection device to sense breathing activity from a human being and to generate a detection signal; electronics within the casing and having a controller connected to the detection device to process the detection signal and generate a control signal when the controller has determined that the human being is in a state of developing apnoea; a stimulation device to receive the control signal from the electronics and to provide stimuli to one or more points of the human ear; wherein when the electronic stimulation system is worn in, behind or on the human ear, the stimulation device is pushed against a predetermined portion of the human ear.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: January 28, 2014
    Assignee: NasoPhlex B.V.
    Inventor: Gerrit Johannis De Vos
  • Patent number: 8639344
    Abstract: Polymer materials are useful as electrode array bodies for neural stimulation. They are particularly useful for retinal stimulation to create artificial vision, cochlear stimulation to create artificial hearing, or cortical stimulation many purposes. The pressure applied against the retina, or other neural tissue, by an electrode array is critical. Too little pressure causes increased electrical resistance, along with electric field dispersion. Too much pressure may block blood flow. Common flexible circuit fabrication techniques generally require that a flexible circuit electrode array be made flat. Since neural tissue is almost never flat, a flat array will necessarily apply uneven pressure. Further, the edges of a flexible circuit polymer array may be sharp and cut the delicate neural tissue. By applying the right amount of heat to a completed array, a curve can be induced.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: January 28, 2014
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert Jay Greenberg, Neil Hamilton Talbot, Jordan Matthew Neysmith, James Singleton Little, Brian V. Mech, Mark Humayun, Dilek Guven, Anne-Marie de Merlier Ripley
  • Patent number: 8639345
    Abstract: A device for electrostimulation of the eye is provided with a spectacles-like supporting frame (11) which has a nose part (12) and an arrangement (17, 18), connected to the nose part (12), for holding the supporting frame (11) on the head of the patient, wherein at least one stimulation electrode (26, 27) is arranged on the nose part (12). Furthermore, provision is made for at least two electrode holders (22, 23, 24, 25) on the nose part (12), between which electrode holders an interchangeable, wire-shaped stimulation electrode (26, 27) is clamped (FIG. 1).
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: January 28, 2014
    Assignee: Okuvision GmbH
    Inventors: Carmen Eipper, Walter G. Wrobel
  • Patent number: 8639346
    Abstract: A method of operating a medical device comprises updating a regulatory approval status stored in at least one of the medical device or a second device operable to communicate with the medical device, and enabling or disabling the at least one function in the medical device based on the regulatory approval status. The regulatory approval status corresponds to at least one function performable by the medical device.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: January 28, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael Seeberger, Scott Vanderlinde, James Kalgren, Par Lindh, Kristine M. Larsen-Kelly, Mitchell Lanz, Jeffrey M. Thompson, John A. Dyjach
  • Patent number: 8639347
    Abstract: Embodiments disclosed herein are directed to systems including an internal power transmitter that delivers energy out of a living subject to power at least one external device that is in communication with the internal power transmitter, and related apparatuses, devices, and methods of use.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: January 28, 2014
    Assignee: The Invention Science Fund I, LLC
    Inventors: Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Dennis J. Rivet, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 8639348
    Abstract: Systems and methods of providing life support are provided. A life support system includes a first life support device that has a control unit and is configured to apply a life support protocol to a subject. The first life support device also includes a memory unit that can store life support protocol information, and the control unit can provide the life support protocol information to a second life support device. The control unit can also receive operating instructions from the second life support device based on the life support protocol information, and can implement the operating instructions.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: January 28, 2014
    Assignee: Zoll Medical Corporation
    Inventor: Frederick J. Geheb
  • Patent number: 8639349
    Abstract: In an embodiment, a system includes a biocompatible photonic device configured for disposal within a living subject and a location-indicating aid associated with the photonic device. The location-indicating aid is configured to facilitate locating the biocompatible photonic device within the living subject. Related apparatuses and methods of use are also disclosed.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: January 28, 2014
    Assignee: The Inventions Science Fund I, LLC
    Inventors: Roderick A. Hyde, Muriel Y. Ishikawa, Dennis J. Rivet, Lowell L. Wood, Victoria Y. H. Wood
  • Patent number: 8639350
    Abstract: A method of operating an implantable medical device (IMD) includes demodulating a data signal incoming to the IMD, serially storing demodulated data received in the data signal in a first serial buffer register, transferring the received demodulated data to a parallel buffer register from the first serial buffer register, wherein the parallel buffer register operates according to a clock signal having a lower frequency than a clock signal used to operate a serial buffer register, switching the serial storing of demodulated data to a second serial buffer register during the transferring of the received demodulated data to the parallel buffer register, and alternating the serial storing of the received data between the first and second serial buffer registers.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: January 28, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Thomas J. Harris, Ron A. Balczewski
  • Patent number: 8639351
    Abstract: System and methods for adjusting electrical therapy based on impedance changes are disclosed herein. A method in accordance with a particular embodiment includes applying a therapeutic electrical signal to a patient via an implanted portion of a patient stimulation system that includes a signal delivery device in electrical communication with a target neural population of the patient. The electrical signal is delivered in accordance with a signal delivery parameter having a first value. Using the implanted portion of the patient stimulation system, a change in an impedance of an electrical circuit that includes the signal delivery device is detected. Based at least in part on the detected impedance change, the method can further include automatically adjusting the value of the signal delivery parameter from the first value to a second value different from the first, without human intervention.
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: January 28, 2014
    Assignee: Nevro Corporation
    Inventors: Jon Parker, Andre B. Walker, Udai Singh
  • Patent number: 8639352
    Abstract: A filar includes an inner conductive core that is formed of a low-resistivity material such as silver having a resistivity of less than 20 ?? per centimeter. A conductive coil is provided around the core to form a filar. This coil is formed of a biocompatible alloy or super alloy having an ultimate tensile strength (UTS) of between 150 kilo pounds per square inch (ksi) and 280 ksi at room temperature. Examples of such alloys include CoCrMo, CoFeCrMo, and CoFeNiCrMo. In one specific embodiment, the alloy is MP35N (CoNiCrMo), which may be low-titanium (“low-ti”) MP35N. One or more such filars may be included within a wire. This wire may be carried by an implantable medical apparatus such as a lead, lead extension, or catheter. The wire may electrically couple elements such as connector electrodes to conducting electrodes or sensors.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: January 28, 2014
    Assignee: Medtronic, Inc.
    Inventors: Ling Wang, Bernard Q. Li
  • Patent number: 8639353
    Abstract: The invention concerns an electrical connection device (1) designed to be implanted inside an animal's body to provide an electrical connection between several electrical wires, characterized in that it comprises: a housing (10) comprising at least one opening (11) formed at the surface of said housing (10) at the end of at least one cavity formed inside the housing (10), said cavity being designed to receive a first electrical wire through opening (11); electrical interconnection means (8) to establish an electrical connection between said first electrical wire and at least one second electrical wire; a means for maintaining the position of the first electrical wire in the corresponding cavity, said position maintenance means having a cam (13) rotatably mounted in the housing to compress said first electrical wire against the inner walls of the cavity during rotation of cam (13) in a direction tending to insert said first electrical wire inside the corresponding cavity.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: January 28, 2014
    Assignee: Centre Hospitalier Universitaire de Rouen
    Inventor: Pierre Sabin
  • Patent number: 8639354
    Abstract: In an embodiment, a lead system includes a cuff electrode to secure to a nerve, a first lead portion defining a longitudinal axis, and a second lead portion. An anchor may be between the first lead portion and the second lead portion to secure to non-nerve structure. A connector may extend from the second lead portion to connect to a pulse generator. Electrode elements are spaced apart along the cuff body. The cuff electrode may include a first resilient arcuate-shaped portion extending in a first circumferential direction and having a first arc length; and a second resilient arcuate-shaped portion integrally formed with the first arcuate-shaped portion, extending in a second circumferential direction, and having a second arm length greater that the first arc length. The second arcuate-shaped portion overlaps the first arcuate-shaped portion, The first and second arcuate-shaped portions define a lumen having a substantially re-closable opening.
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: January 28, 2014
    Assignee: Cyberonics, Inc.
    Inventors: Stephen L. Bolea, Thomas B. Hoegh, Bruce J. Persson, Robert E. Atkinson, Scott T. Mazar
  • Patent number: 8639355
    Abstract: A lead assembly for an implantable medical device includes a lead body having a proximal end and a distal end. A length of the lead body extends from the proximal end to the distal end and a width of the lead body is transverse to the length. One or more electrodes are disposed proximate a distal end of the lead body. One or more insulative elements are coupled to the one or more electrodes to insulate a first portion of the one or more electrodes such that a second portion of the one or more electrodes is exposed for delivering electrical signals. The one or more insulative elements each have a width greater than the width of the lead body.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: January 28, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Brian D. Soltis
  • Patent number: 8639356
    Abstract: Defibrillator lead designs and methods for manufacturing a lead having attachment between a fibrosis-limiting material covering, a shocking coil electrode, and an implantable lead body are disclosed herein. An electrode coil fitting is disposed within the shocking coil electrode. In an option, the fibrosis limiting material extends past the ends of the electrode coil, and is wrapped between the coil electrode and the electrode coil member.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: January 28, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Devon N. Arnholt