Patents Issued in February 3, 2015
  • Patent number: 8943796
    Abstract: A gas turbine engine comprises a high spool, a low spool and an intermediate spool. The high spool comprises a high pressure turbine coupled to a high pressure compressor. The intermediate spool comprises an intermediate pressure turbine coupled to a ducted fan. The low spool comprises a low pressure turbine coupled to an open-rotor propeller. A variable area turbine section positioned between the intermediate pressure turbine and the low pressure turbine variable turbine section is configured to vary an expansion ratio across the intermediate pressure turbine to control rotational speeds of the low spool and the intermediate spool.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: February 3, 2015
    Assignee: United Technologies Corporation
    Inventor: Michael G. McCaffrey
  • Patent number: 8943797
    Abstract: A cylinder head for an internal combustion engine defines first and second intake passages for supplying air through first and second intake valve openings to first and second cylinders. The cylinder head also defines first and second exhaust passages for conveying first and second streams of exhaust gas from first and second exhaust valve openings associated with first and second cylinders. The first exhaust valve opening is disposed outboard of the first intake valve opening, and the second exhaust valve opening is disposed outboard of the second intake valve opening.
    Type: Grant
    Filed: January 17, 2012
    Date of Patent: February 3, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Alan W. Hayman, Eric C. Douse
  • Patent number: 8943798
    Abstract: Various systems and methods are described for detecting ammonia slip. In one example method, an amount of exhaust gas recirculation is reduced when output from an exhaust gas sensor indicates an increase in nitrogen oxide above a threshold amount. When the sensor output increases above a second threshold while the exhaust gas recirculation is reduced, the sensor output is allocated to nitrogen oxide; and when the sensor output does not increase above a second threshold while the exhaust gas recirculation is reduced, the sensor output is allocated to ammonia.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: February 3, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Chris Riffle, Frank M. Korpics, Michiel J. Van Nieuwstadt, Devesh Upadhyay, John Paul Bogema, Jeff Reich
  • Patent number: 8943799
    Abstract: In a control device for an internal combustion engine including an air-fuel ratio sensor that includes a catalyst layer that covers an exhaust gas-side electrode, an oxygen storage capacity of the catalyst layer is acquired based on a sensor output of the air-fuel ratio sensor. The sensor output is corrected if the oxygen storage capacity is higher than a predetermined value and the sensor output is in a predetermined range in the vicinity of the theoretical air-fuel ratio. Preferably, the oxygen storage capacity is calculated by integrating the product of a deviation amount ?A/F of the sensor output with respect to the theoretical air-fuel ratio and a dwell time thereof. A correction period in which a correction operation is performed is set based on the oxygen storage capacity.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: February 3, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Takanori Sasaki
  • Patent number: 8943800
    Abstract: When an internal combustion engine (1) is determined to be in a low-temperature start state (an affirmative determination is made in S120), an air-fuel ratio control apparatus (10) controls the temperature of a downstream detection element (17) of a downstream gas sensor (15) to a downstream target temperature by driving a downstream heater (16) of the downstream gas sensor (15) (S170), and feedback-controls the air-fuel ratio of exhaust gas based on the output of the downstream gas sensor (15) (S190). When the engine (1) is determined not to be in the low-temperature start state (a negative determination is made in S120), the air-fuel ratio control apparatus (10) drives an upstream heater (25) of an upstream gas sensor (22) and feedback-controls the air-fuel ratio of exhaust gas based on the output of the upstream gas sensor (22) (S270).
    Type: Grant
    Filed: January 7, 2014
    Date of Patent: February 3, 2015
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Kenichiro Umemoto, Shuichi Hanai, Koji Nagura
  • Patent number: 8943801
    Abstract: A valve (10) may be used with an internal combustion engine exhaust breathing system (12) and may include a body (60), a partition (62), and a plate (66). The body (60) may define a first port (70) that has a first interior surface (76), and may also define a second port (82) that has a second interior surface (84). The partition (62) may be located within the body (60), may at least partially separate the first port (70) and the second port (82) from each other, and may define an opening (104). The plate (66) may be dimensioned to seat and seal against the opening (104) and against the first and second interior surfaces (76, 84). The plate (66) may rotate, depending on predetermined factors, between a first position and a second position.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: February 3, 2015
    Assignee: BorgWarner Inc.
    Inventor: Todd R. Peterson
  • Patent number: 8943802
    Abstract: An exhaust gas purification system for an internal combustion engine, which is provided with: a selective reduction type catalyst arranged in an exhaust passage of the internal combustion engine; a low pressure EGR mechanism that is equipped with a low pressure EGR passage for introducing a part of an exhaust gas flowing through a portion of the exhaust passage downstream of a turbine of a centrifugal supercharger to a portion of an intake passage upstream of a compressor as a low pressure EGR gas, and a low pressure EGR valve for changing a channel cross section of the low pressure EGR passage; a supply device.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: February 3, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Bungo Kawaguchi, Tomihisa Oda, Tomomi Onishi, Masaaki Sato, Satoshi Kobayakawa, Takeru Shirasawa
  • Patent number: 8943803
    Abstract: A power system for use with an engine having at least one cylinder, and a piston, a fuel injector, and an exhaust valve associated with the at least one cylinder, is disclosed. The power system may have an exhaust passage, an aftertreatment component disposed within the exhaust passage, and a valve actuator configured to selectively move the exhaust valve. The power system may also have a controller in communication with the fuel injector and the valve actuator. The controller may be configured to make a determination to heat the aftertreatment component, to activate the valve actuator to hold open the exhaust valve as the piston moves through a top-dead-center position to disable the at least one cylinder based on the determination, and to activate the fuel injector to inject fuel into the at least one cylinder while the at least one cylinder is disabled.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: February 3, 2015
    Assignee: Caterpillar Inc.
    Inventor: John S. Pipis, Jr.
  • Patent number: 8943804
    Abstract: A compression-ignition engine (10) comprises an exhaust system (16) with an exhaust gas after-treatment assembly, the after-treatment assembly comprising a three-way catalyst device (30) and an SCR device (34), the three-way catalyst device being arranged upstream the SCR device in close-coupled position with respect to the engine. An engine control unit (47) is provided for controlling operation of the engine. The engine control unit is configured to monitor the temperature of the SCR device and to control the engine to change over from an operation with a lean air/fuel mixture to an operation with a stoichiometric or a rich air/fuel mixture in response to the temperature of the SCR device dropping below a temperature threshold.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: February 3, 2015
    Assignee: Delphi International Operations Luxembourg, S.A.R.L.
    Inventor: Bart Hubert Schreurs
  • Patent number: 8943805
    Abstract: Disclosed is a method for detecting abnormality in a reducing agent 17 replenished to a reducing agent tank 14 in an exhaust emission control device for reduction and removal of NOx through addition of the reducing agent 17 from the tank 14 to a selective reduction catalyst 10 incorporated in an exhaust pipe 9. Presence or absence of NH3 slip is determined when a lowering of NOx removal rate is detected. When the presence of the NH3 slip is detected, it is determined that the selective reduction catalyst 10 is deteriorated; when the absence of the NH3 slip is determined, it is determined that a dilute reducing agent or/and a material other than the reducing agent are replenished into the tank.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: February 3, 2015
    Assignee: Hino Motors, Ltd.
    Inventor: Hironori Narita
  • Patent number: 8943806
    Abstract: In a working gas circulation engine, water vapor contained in exhaust gas after combustion is separated and removed at higher efficiency as compared with the conventional technology, the influence of remaining water vapor is prevented from reducing the ratio of specific heats of working gas and deteriorating the thermal efficiency of the engine. A working gas circulation engine which comprises a circulation passage part which connects an inlet port communicated to a combustion chamber and an exhaust port communicated to the combustion chamber in the exterior of the combustion chamber, supplies fuel, oxygen, and working gas to the combustion chamber to burn the fuel in the combustion chamber, and supplies the working gas contained in the exhaust gas discharged through the exhaust port from the combustion chamber to the combustion chamber through the circulation passage part and the inlet port.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: February 3, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Rentaro Kuroki, Daisaku Sawada, Akira Kato
  • Patent number: 8943807
    Abstract: The present invention relates to a method for achieving reduced emissions at cold start of an internal combustion engine having an exhaust gas after treatment system comprising at least one Diesel Oxygen Catalyst (DOC), at least one Diesel Particulate Filter (DPF) and a Selective Catalytic Reduction (SCR) unit, comprising the steps of: heating the DOC prior to cold starting said internal combustion engine, starting and controlling the internal combustion engine towards low NOx emission when said DOC has reached a predetermined temperature, optimizing the fuel consumption at a given total emission level when said DPF and SCR has reached a predetermined temperature.
    Type: Grant
    Filed: June 5, 2013
    Date of Patent: February 3, 2015
    Assignee: Volvo Lastvagnar AB
    Inventors: Lennart Andersson, Bert-Inge Bertilsson
  • Patent number: 8943808
    Abstract: A reductant dosing system for an engine is disclosed. The reductant dosing system may have a supply of reductant, a reservoir configured to hold pressurized reductant, and a pump configured to draw reductant from the supply and discharge reductant at an elevated pressure into the reservoir. The reductant dosing system may also have a plurality of injectors fluidly connected to the reservoir, and a drain valve fluidly connected between the reservoir and the supply.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: February 3, 2015
    Assignee: Caterpillar Inc.
    Inventors: Yongxiang Li, Jinhui Sun
  • Patent number: 8943809
    Abstract: A control apparatus for an internal combustion engine detects an amount of particulate matter contained in an exhaust gas in an exhaust passage, according to an electrical property across electrodes of a particulate matter sensor disposed in the exhaust passage of the internal combustion engine. The term “electrical property” here refers to a property that changes with the amount of particulate matter deposited, for example, a current value of when a predetermined voltage is applied. After the internal combustion engine is started and detection of the amount of the particulate matter is completed, an element section of the particulate matter sensor is set to a predetermined temperature range. The particulate matter deposited on the element section is thereby burned and removed. The control apparatus maintains the element section in the predetermined temperature range after burning and removing the particulate matter until the internal combustion engine stops.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: February 3, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Keiichiro Aoki, Hiroki Nishijima
  • Patent number: 8943810
    Abstract: The present invention is intended to suppress, in an exhaust gas purification system for an internal combustion engine capable of mixing and combusting liquid fuel and compressed natural gas, an excessive rise in temperature of an exhaust gas purification device at the time when the exhaust gas purification device is caused to regenerate. In the exhaust gas purification system for an internal combustion engine according to the present invention, when the liquid fuel and the compressed natural gas are caused to mix and combust in the internal combustion engine at the time of regenerating the exhaust gas purification device, an amount of HC to be supplied to the exhaust gas purification device from an HC supply device is decreased in comparison with the time when only the liquid fuel is caused to combust in the internal combustion engine.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: February 3, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Masahiko Masubuchi
  • Patent number: 8943811
    Abstract: One embodiment of the invention may include a method comprising providing a product comprising a substrate comprising a perovskite catalyst, NOx stored in or on the substrate and particulate matter in or on the substrate; releasing at least some of the stored NOx and oxidizing the released NOx to form NO2, and reacting the NO2 with carbon in the particulate matter to form at least one of CO or CO2.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: February 3, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Wei Li, David B. Brown, Chang H Kim, Gongshin Qi, Steven J. Schmieg
  • Patent number: 8943812
    Abstract: An apparatus for measuring a filling level of a urea container by determining distance using sound waves (ultrasound) emitted by a sensor and echoes thereof, includes a urea container bottom and a sump with an overall height. The sump is adjacent the urea container bottom and located below the level of the urea container bottom. The sump is connected in an open manner to the urea container and bounded at the bottom by a sump bottom. The sensor is accommodated in the vicinity of the sump and, with a sound-emitting surface for emitting sound waves and receiving echoes of the sound waves, is fitted in the urea container with the sound-emitting surface of the sensor at most adjacent the level of the urea container bottom. A motor vehicle having the urea container is also provided.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: February 3, 2015
    Assignee: Emitec Gesellschaft fuer Emissionstechnologie mbH
    Inventors: Sven Schepers, Jan Hodgson
  • Patent number: 8943813
    Abstract: An exhaust gas purifying device for an internal combustion engine includes an inflow case provided with an inlet pipe, a catalyst case in which an oxidizing catalyst for dosing is housed, a filter case in which a soot filter is housed, and an outflow case provided with an outlet pipe, and is attached to an attached target at two attachment points mutually spaced in the axial direction of the cases. At one of the two attachment points, which is defined on the catalyst case, the catalyst case is firmly fixed. At the other attachment point, which is defined on the filter case, the filter case is attached slidably in the axial direction.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: February 3, 2015
    Assignee: Komatsu Ltd.
    Inventors: Toshiyuki Kamei, Hiroshi Yamamoto
  • Patent number: 8943814
    Abstract: A warm-up system for an exhaust system of an internal combustion engine includes an electronic control unit that performs warm-up control for warming up an exhaust system component upon start-up of the internal combustion engine and a failure diagnosis performing module of the electronic control unit that performs failure diagnosis for the exhaust system component after the completion of warm-up of the exhaust system component. If the internal combustion engine repeatedly stops before completion of the failure diagnosis for a predetermined period of time, then the electronic control unit changes the warm-up control performed upon start-up of the internal combustion engine to a control that raises the temperature of the exhaust system component more quickly than the warm-up control performed during the predetermined period.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: February 3, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Daisuke Shibata, Toru Kidokoro, Hiroshi Sawada, Kazuya Takaoka
  • Patent number: 8943815
    Abstract: A heat exchanger is provided for an exhaust system of an internal combustion engine. The exchanger has a thermoelectric generator which comprises a hot side and a cold side with a heating pipe arranged on one hot side of the thermoelectric generator, and with a cooling pipe arranged on one cold side of the thermoelectric generator. The thermoelectric generator the heating pipe, and the cooling pipe are stacked in a stack direction on top of one another and form a pipe stack, in which the respective thermoelectric generator, heating pipe and cold pipe extend parallel to one another in a longitudinal direction of the pipe stack. An increased energetic efficiency is obtained. A heat transfer structure has a heat transfer capability favoring a heat transfer between the respective pipe and the respective media conducted therein.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: February 3, 2015
    Assignee: Eberspacher Exhaust Technology GmbH & Co. KG
    Inventor: Andreas Resch
  • Patent number: 8943816
    Abstract: A mounting system for connecting an after-treatment component to a frame is disclosed. The mounting system may have a front center bracket connectable to a front end of the after-treatment component. The mounting system may further have a front link, which may have a first end connected to the front center bracket and a second end connectable to the frame. The mounting system may also have a rear center bracket connectable to a rear end of the after-treatment component. In addition, the mounting system may have a rear link, which may have a first end connected to the rear center bracket and a second end connectable to the frame.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: February 3, 2015
    Assignee: Electro-Motive Diesel, Inc.
    Inventors: Stephen M. Bednarz, Satyajit Gowda
  • Patent number: 8943817
    Abstract: An embodiment of a system and method for moving an object in one axis includes one or more fluid inflatable containers which are arranged to transmit fluid pressure to a plunger, such that a flexible membrane of the fluid inflatable container engages with the plunger and forms a rolling lobe in response to changes in volume. The fluid inflatable containers are enclosed within an enclosure or drum, and a shaft runs axially through the center of the enclosure. The system further includes one or more control valves operably connected to the one or more fluid inflatable containers for controlling the volume of fluid in the one or more containers. By changing the volume of fluid in the one or more containers the object is moved. In an embodiment an arced plunger is used to assist in creating the rolling lobe.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: February 3, 2015
    Assignee: CBE Global Holdings, Inc.
    Inventors: Jonathan N. Blitz, Peter Childers, James Carucci, Ronald Draper
  • Patent number: 8943818
    Abstract: A hydraulic device includes a switch-over valve 1140 provided at a section of a sub-passage 1105 located downstream of a location where a first bypass passage 1117 is connected and located upstream of a primary regulator 1110. The switch-over valve 1140 is switched between a blocked state, where supply of hydraulic oil to a section of the sub-passage 1105 located downstream of the switch-over valve 1140 is blocked, and a communication state, where supply of hydraulic oil to the section of the sub-passage 1105 located downstream of the switch-over valve 1140 is permitted. In the hydraulic device, when the switch-over valve 1140 is switched to the communication state, as a discharge performance of a main pump 1102 increases, a first check valve 1118 closes. Supply paths for hydraulic oil discharged from the sub-pump 1103 are automatically switched in accordance with the discharge performance of the main pump 1102.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: February 3, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yusuke Ogata, Koichi Tanaka, Nobuaki Takahashi, Kenji Matsuo, Naofumi Nishida
  • Patent number: 8943819
    Abstract: A hydraulic system includes a variable displacement first pump, a first linear actuator fluidly connected to the first pump via a first closed-loop circuit, a variable displacement second pump, and second and third linear actuators fluidly connected to the second pump in parallel via a second closed-loop circuit. The system also includes a variable displacement third pump, a fourth linear actuator fluidly connected to the third pump via a third closed-loop circuit, a variable displacement fourth pump, and a first rotary actuator fluidly connected to the fourth pump via a fourth closed-loop circuit. The system further includes a second rotary actuator fluidly connected to the second pump in parallel with the second and third linear actuators. The system also includes a third rotary actuator fluidly connected to the third pump in parallel with the fourth linear actuator.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: February 3, 2015
    Assignee: Caterpillar Inc.
    Inventor: Michael L. Knussman
  • Patent number: 8943820
    Abstract: A method of controlling a pump and motor system having at least one of a variable displacement pump and a variable displacement motor. The method may comprise providing an engine drivingly coupled to a primary load and a secondary load, the secondary load being driven by the pump and motor system. The method may also comprise sensing a change in engine speed in response to a change in the primary load. The method may further comprise changing the engine speed to compensate for the primary load change. The method may further comprise changing a displacement of the at least one variable displacement pump and the variable displacement motor to maintain a constant secondary load.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: February 3, 2015
    Assignee: Caterpillar Inc.
    Inventors: Douglas J. Carlton, Corwin E. Storer
  • Patent number: 8943821
    Abstract: A wave power plant includes a platform and at least one coupling member. The at least one coupling member is mounted in such a way as to perform an orbital movement which has a predetermined direction of movement and from which a torque usable for energy conversion can be tapped. A torque compensation device is provided which is designed to essentially compensate or neutralize a reactive torque generated by tapping the usable torque.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: February 3, 2015
    Assignee: Robert Bosch GmbH
    Inventors: Benjamin Hagemann, Nik Scharmann
  • Patent number: 8943822
    Abstract: A system is disclosed for use with an engine. The system may have an intake manifold configured to direct air into combustion chambers of the engine. The system may also have an auxiliary device and an exhaust manifold configured to direct exhaust from the combustion chambers of the engine through the auxiliary device to the atmosphere. The system may additionally have a conduit associated with fewer than all of the combustion chambers of the engine and extending to the auxiliary device in parallel with the exhaust manifold, and an auxiliary valve disposed within the conduit and selectively movable between a flow-passing position and a flow-blocking position.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: February 3, 2015
    Assignee: Electro-Motive Diesel, Inc.
    Inventor: Teoman Uzkan
  • Patent number: 8943823
    Abstract: A fluid handling system for a use with an engine is provided. The fluid-handling system may have a first turbine connected to receive a portion of an exhaust flow from the engine, a first compressor driven by the first turbine to pressurize an airflow, and a heat exchanger configured to receive a remaining portion of the exhaust flow from the engine and the airflow from the first compressor. The fluid-handling system may also have a second turbine connected to receive the airflow from the heat exchanger, and a generator driven by the second turbine to generate power.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: February 3, 2015
    Assignee: Caterpillar Inc.
    Inventor: Scott B. Fiveland
  • Patent number: 8943824
    Abstract: A water turbine for producing energy in flowing water systems, which can be easily adapted to different usage conditions and enables comparatively high efficiency. The turbine has blades that are pivotably disposed between turbine wheels by joints on the outside circumference of the turbine wheels. An inflatable element is disposed on at least one of the blades and extends parallel to the axis of rotation of the wheels.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: February 3, 2015
    Inventor: Hasan Hüseyin Isik
  • Patent number: 8943825
    Abstract: A Helmholtz damper for a combustor of a gas turbine includes first and second damping volumes. The combustor has a combustion chamber disposed in a housing and closed off by a front plate at which a plurality of burners are exchangeably fastened. The burners are supplied with fuel via fuel lances which extend from outside the housing through a bushing of the housing to the associated burner. The first damping volume has a first end and a second end, the first end of the first damping volume being configured to attach a connecting passage extending to a front panel such that the Helmholtz damper is connectable with the front plate of the combustion chamber in place of one of the burners. The second damping volume has a first end and a second end and is arranged in series with the first damping volume along an axis of the Helmholtz damper with the first end of the second damping volume being detachably connected to the second end of the first damping volume so as to form a combined larger damping volume.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: February 3, 2015
    Assignee: Alstom Technology Ltd.
    Inventors: Fulvio Magni, Martin Andrea Von Planta, Frank Grimm, Dariusz Nowak, Mischa Schaerer
  • Patent number: 8943826
    Abstract: A combustor of a gas turbine engine is fed with liquid ammonia and that liquid ammonia is burned to drive a turbine. Inside the exhaust passage of the gas turbine engine, an NOX selective reduction catalyst is arranged. Inside the intake air which flows into the compressor, liquid ammonia is fed. This liquid ammonia is used to cool the intake air. The NOX which is contained in the exhaust gas is reduced by the unburned ammonia which is exhausted into the exhaust passage by the NOX selective reduction catalyst.
    Type: Grant
    Filed: January 14, 2009
    Date of Patent: February 3, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shunsuke Kasuga, Atsushi Watanabe, Shin-ichiro Tanaka, Osamu Azegami
  • Patent number: 8943827
    Abstract: A gas turbine engine with a fuel air heat exchanger located in the high pressure plenum. The heat exchanger includes at least one air conduit and at least one fuel conduit in heat exchange relationship with one another, with a fuel flow communication between a fuel source and fuel distribution members of the combustor being provided at least partly through the at least one fuel conduit, and the at least one air conduit defining a fluid flow communication between the high pressure plenum and an engine component to be cooled by the compressed air.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: February 3, 2015
    Assignee: Pratt & Whitney Canada Corp.
    Inventors: Lev Alexander Prociw, Eduardo Hawie
  • Patent number: 8943828
    Abstract: This invention relates to a lean premix burner of a gas-turbine engine with an annular central body 2, which, while being essentially concentric to a burner center axis 1, is provided with an annular duct 4 connected to a supply line 3 and with a film applicator 5 which conically widens at the fuel exit side and into whose radially inward area at least one fuel exit opening 6 issues which is connected to the annular duct, characterized in that the film applicator 5 has, adjacently to and downstream of the fuel exit openings 6 in the area facing the fuel exit side 8, a step-like, annular protruding area 7 disposed radially to the burner center axis.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: February 3, 2015
    Assignee: Rolls-Royce Deutschland Ltd & Co KG
    Inventors: Imon-Kalyan Bagchi, Waldemar Lazik
  • Patent number: 8943829
    Abstract: This invention relates to a lean premix burner of a gas-turbine engine with an annular central body 2, which, while being essentially concentric to a burner center axis 1, is connected to a film applicator 3, which conically widens at the fuel exit side, as well as to an outer ring 4 concentrically arranged to the burner center axis 1 and surrounding at least the film applicator 3 at a certain distance, characterized in that an annular flow-guiding element 6 is provided in an annular duct 5 formed between the outer ring 4 and the film applicator 3 which, in the axial direction of the annular duct 5, is at least partly situated outside of the outer ring 4.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: February 3, 2015
    Assignee: Rolls-Royce Deutschland Ltd & Co KG
    Inventors: Imon-Kalyan Bagchi, Waldemar Lazik
  • Patent number: 8943830
    Abstract: A porous metallic mat is provided. The porous metallic mat includes a plurality of fibers and a protective coating. The plurality of fibers is sintered into a mat configuration. The protective coating is provided on the porous metallic mat. The protective coating includes a diffusion aluminide configured to provide oxidation resistance to the porous metallic mat.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: February 3, 2015
    Assignee: Solar Turbines Inc.
    Inventors: Arun K. Bhattacharya, Jose M. Aurrecoechea
  • Patent number: 8943831
    Abstract: The lance of a burner includes a body that defines a first duct with first nozzles for injecting a liquid fuel and a second duct with second nozzles for injecting a gaseous fuel. Outlets of the first nozzles are spaced apart from outlets of the second nozzles. The body includes a third duct with third and fourth nozzles for injecting air. The third nozzles surround an axis of the first nozzles and the fourth nozzles surround an axis of the second nozzles.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: February 3, 2015
    Assignee: Alstom Technology Ltd
    Inventors: Adnan Eroglu, Johannes Buss, Andrea Ciani
  • Patent number: 8943832
    Abstract: A fuel nozzle for use with a turbine engine is described herein. The fuel nozzle includes a housing that is coupled to a combustor liner defining a combustion chamber. The housing includes an endwall that at least partially defines the combustion chamber. A plurality of mixing tubes extends through the housing for channeling fuel to the combustion chamber. Each mixing tube of the plurality of mixing tubes includes an inner surface that extends between an inlet portion and an outlet portion. The outlet portion is oriented adjacent the housing endwall. At least one of the plurality of mixing tubes includes a plurality of projections that extend outwardly from the outlet portion. Adjacent projections are spaced a circumferential distance apart such that a groove is defined between each pair of circumferentially-apart projections to facilitate enhanced mixing of fuel in the combustion chamber.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: February 3, 2015
    Assignee: General Electric Company
    Inventors: Jong Ho Uhm, Thomas Edward Johnson
  • Patent number: 8943833
    Abstract: A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: February 3, 2015
    Assignee: United Technologies Corporation
    Inventors: Richard S. Tuthill, Dustin W. Davis, Zhongtao Dai
  • Patent number: 8943834
    Abstract: A gas turbine combustor includes a combustion cylinder, a premixing tube, and a pressure injection unit. Holes are formed in a peripheral wall of the premixing tube in a tangential direction. An inner wall is provided in the peripheral wall while having a gap therefrom. The compressed air in the gap forms a swirl flow. The compressed air and injected fuel supplied into the inner wall form straight flows each with a predetermined cross-section area in the inner wall under no influence of the swirl flow. They are combusted in the combustion cylinder via a protruding wall. The flame is stably retained at an appropriate position apart from the top portion of the combustion cylinder to improve durability without being excessively heated. This may prevent deterioration in durability of the combustion cylinder by the heat by retaining the flame at the appropriate position in the combustion cylinder.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: February 3, 2015
    Assignees: Niigata Power Systems Co., Ltd.
    Inventors: Masamichi Koyama, Shigeru Tachibana
  • Patent number: 8943835
    Abstract: A combustor for a gas turbine engine is disclosed. The combustor is described as comprising a dome plate coupled to a liner thereof, with at least one heat shield comprised of a ceramic matrix composite coupled at the aft end of the dome plate. Also described is a method for assembling a combustor for a gas turbine engine, including releasing a metal alloy heat shield from a dome plate and providing a ceramic matrix composite heat shield as replacement.
    Type: Grant
    Filed: May 10, 2010
    Date of Patent: February 3, 2015
    Assignee: General Electric Company
    Inventors: Donald Michael Corsmeier, Mark Eugene Noe, Michael Todd Radwanski, Oliver Roghe, Jessica Licardi Subit, Ming Xie
  • Patent number: 8943836
    Abstract: Disclosed herein are embodiments of combined cycle power plants having elevated exhaust pressure from a steam turbine. The elevated exhaust pressure from the steam turbine may result in an elevated condensate pressure and temperature. A cooling system removes sensible heat from the condensate. The elevated condensate temperature results in a greater temperature difference between the condensate and the working medium in the cooling system. The amount of heat that is dissipated by the cooling system is proportionate to the heat transfer surface and the temperature difference between the condensate and the working medium. As a result of the greater temperature difference, a smaller cooling system configured to operate with a higher temperature condensate may be utilized in place of a larger cooling system configured to operate with lower temperature condensate. By reducing the size of the cooling system, the overall size of the combined cycle power plant may be reduced.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: February 3, 2015
    Assignee: NRG Energy, Inc.
    Inventors: Steven Andrew Rose, Christopher James Doyle
  • Patent number: 8943837
    Abstract: A fluid management apparatus and method, the apparatus including: a fluid conduit for the passage of a dispersion containing particulate matter; a laser arranged to provide laser light inside the fluid conduit; wherein, in use, the laser light heats the particulate matter sufficiently to generate incandescence; one or more sensors for detecting the incandescence of the particulate matter so as to determine a characteristic of the dispersion; and an electromagnetic wave generator operable to provide electromagnetic waves inside the fluid conduit at a position downstream of the laser light so as to vaporize at least a portion of the dispersion.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: February 3, 2015
    Assignee: Rolls-Royce PLC
    Inventors: Ian C. D. Care, John D. Black
  • Patent number: 8943838
    Abstract: An integrated turbomachine plant is provided and includes a combustor a turbomachine operably connected to the combustor and including a compressor and a turbine expander, a pathway to flow compressed air from the compressor through the turbine expander to heat the compressed air, an additional pathway by which high temperature fluids output from the turbomachine are employed to heat the compressed air and an air separation unit operably connected to the pathway and configured to separate the heated compressed air into oxygen and oxygen-depleted air.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: February 3, 2015
    Assignee: General Electric Company
    Inventors: Ashok Kumar Anand, John Edward Sholes, Veerapan Muthaiah
  • Patent number: 8943839
    Abstract: A gas turbine engine includes a first spool, a first gear system connected to and driven by the first spool, a second spool, and a second gear system connected to and driven by the second spool. A first starter-generator has a first shaft with a switchable coupling connected to the first shaft. The switchable coupling selectively couples the first starter-generator to the first gear system when the switchable coupling is in a first position and selectively couples the first starter-generator to the second gear system when the switchable coupling is in a second position.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: February 3, 2015
    Assignee: United Technologies Corporation
    Inventors: Brian D. Merry, Gabriel L. Suciu
  • Patent number: 8943840
    Abstract: A mounting assembly 2 for mounting a gearbox 10 to a gas turbine engine, comprising a mount ring 4 and a spigot pin 8 having a flange 22 at one end. The spigot pin 8 extends radially outwardly through a bore 14 in the mount ring 4 for engagement with a gearbox 10 and the flange 22 locates against a radially inner surface of the mount ring 4. The bore 14 supports the spigot pin 8 and dissipates forces exerted on the spigot pin 8, for example forces generated during a fan blade-off event.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: February 3, 2015
    Assignee: Rolls-Royce PLC
    Inventor: Keith Williams
  • Patent number: 8943841
    Abstract: Disclosed is a liquefied natural gas storage apparatus. The apparatus includes a heat insulated tank and liquefied natural gas contained in the tank. The tank has heat insulation sufficient to maintain liquefied natural gas therein such that most of the liquefied natural gas stays in liquid. The contained liquefied natural gas has a vapor pressure from about 0.3 bar to about 2 bar. The apparatus further includes a safety valve configured to release a part of liquefied natural gas contained in the tank when a vapor pressure of liquefied natural gas within the tank becomes higher than a cut off pressure. The cut off pressure is from about 0.3 bar to about 2 bar.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: February 3, 2015
    Assignee: Daewoo Shipbuilding & Marine Engineering Co., Ltd.
    Inventors: Jung Han Lee, Jung Ho Choi, Sung Kon Han, Dong Kyu Choi, Young Sik Moon
  • Patent number: 8943842
    Abstract: A process and apparatus that includes a cryogenic source for providing a cryogenic fluid for vaporization, a cryogenic pump in fluid flow communication with the cryogenic source for increasing the pressure of the cryogenic fluid, an unfired vaporizer coolant circuit 110 in fluid flow communication with the cryogenic pump and adapted to accept the cryogenic fluid to form a heated stream, a direct-fired vaporizer downstream and in fluid flow communication with the unfired vaporizer coolant circuit 110 and adapted to accept the heated stream from the unfired vaporizer coolant circuit to form a superheated stream; and a diesel engine power unit 118 to provide power to the cryogenic pump, the unfired vaporizer coolant circuit 110, and the direct-fired vaporizer.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: February 3, 2015
    Assignee: Air Products and Chemicals, Inc.
    Inventors: John Charles Street, Paul Martin Davis
  • Patent number: 8943843
    Abstract: A method and machine for producing fresh and cool air, dew drinking water, hot air for the dryer, hot water for bathing or other purposes using an energy-saving and environmentally-friendly multipurpose air conditioning as a generator of dew drinking water, hot water and dryer. Mixture of fresh outdoor air and returned air from the rooms passed to the evaporator coils to condense the moisture from the air to produce pure and fresh dew drinking water and cool fresh air, where the air is then flown back into the room. Municipal water or other water then dip the hot discharge line to subcool the refrigerant before entering the condenser thus saving energy and at the same time produce hot water that can be used for bathing or other purposes. Hot air coming from air-cooled condensers can be used as a dryer.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: February 3, 2015
    Inventors: Budhi Haryanto, Arda Rahardja Lukitobudi
  • Patent number: 8943844
    Abstract: An air conditioning system includes a dehumidifier, a regenerator, and a refrigeration system. The dehumidifier removes water from a first airflow using a liquid desiccant. The regenerator transfers water from the dilute desiccant into a second airflow. The refrigeration system can be selectively used to provide heat to the desiccant in the regenerator to more effectively remove the water from the dilute desiccant. An external heat source can also be used to heat the desiccant in the regenerator to more effectively remove the water from the dilute desiccant. The refrigeration system and the external heat source can each be used separately to heat the desiccant, or the desiccant can be heated by both heat sources simultaneously.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: February 3, 2015
    Assignee: DuCool Ltd.
    Inventor: Dan Forkosh
  • Patent number: 8943845
    Abstract: An appliance for conditioning air of an associated room and an associated method for controlling an air conditioner are disclosed, the controller selectively adjusting operation of the air conditioning appliance based on historical operating data. The controller adjusts a set-point of the appliance for a preselected period of time in response to the historical operating data of the appliance when the appliance operates in an energy savings mode. The controller is configured to receive and process data relating to the rate of change in the temperature. Further, an override feature may be included to maintain operation of the appliance in a normal operation mode if ambient temperature reaches a predetermined threshold value. Another feature is that the controller determines whether the compressor has been operational less than a preselected period of time and, if so, the compressor is operated until such time period has elapsed.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: February 3, 2015
    Assignee: General Electric Company
    Inventors: Robert Lafleur, John K. Besore, Natarajan Venkatakrishnan