Patents Issued in August 27, 2019
  • Patent number: 10393868
    Abstract: Methods, systems, and products determine electromagnetic reflective characteristics of ambient environments. A wireless communications device sends a cellular impulse and receives reflections of the cellular impulse. The cellular impulse and the reflections of the cellular impulse may be compared to determine the electromagnetic reflective characteristics of an ambient environment.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: August 27, 2019
    Assignee: AT&T INTELLECTUAL PROPERTY I, L.P.
    Inventors: Robert Raymond Miller, II, Kevin A. Li, Troy C. Meuninck, James H. Pratt, Horst J. Schroeter, Behzad Shahraray
  • Patent number: 10393869
    Abstract: A method includes receiving a signal, which includes reflections of multiple pulses from one or more targets (24). A Doppler focusing function, in which the reflections of the multiple pulses from each target accumulate in-phase to produce a respective peak associated with a respective delay and a respective Doppler frequency of the target, is evaluated based on the received signal. Respective delays and Doppler frequencies of the targets are estimated based on the Doppler focusing function.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: August 27, 2019
    Assignee: TECHNION RESEARCH & DEVELOPMENT FOUNDATION LTD.
    Inventors: Yonina Eldar, Omer Bar-Ilan
  • Patent number: 10393870
    Abstract: A method of determining spin parameters of a sports ball, such as spin axis and rotation velocity of a golf ball. The spin axis is determined solely from the trajectory of the flying ball, and the rotational velocity is determined from a frequency analysis of a signal provided by a radar, which signal comprises spectrum traces positioned equidistantly in frequency, which frequency distance relates to the spin velocity.
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: August 27, 2019
    Assignee: Trackman A/S
    Inventor: Fredrik Tuxen
  • Patent number: 10393871
    Abstract: A radar system and method of determining a tracking parameter for a target in a radar system is disclosed. A transmitter transmits a source signal at a target and a receiver receives an echo signal from the target corresponding to the source signal. A processor provides a discrete frequency spectrum for the echo signal, shifts the discrete frequency spectrum in frequency space by a selected amount to obtain a shifted spectrum, filters the shifted spectrum using a filter that is shifted in frequency space a same amount as the shifted spectrum, and determines a tracking parameter of the target from a central frequency of the frequency space at which an intensity of the shifted and filtered spectrum is a peak intensity.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: August 27, 2019
    Assignee: GM GLOBAL TECHNOLOGIES OPERATIONS LLC
    Inventors: Igal Bilik, Moshe Laifenfeld, Alexander Pokrass
  • Patent number: 10393872
    Abstract: A bicycle radar system including a camera is disclosed. The system may include a radar unit and a bicycle computing device that are in communication with one another. The radar unit may transmit radar signals, receive return signals (reflections), and process the returned radar signals to determine a location and velocity of one or more targets located in a sensor field behind a user's bicycle. The radar unit may also include an integrated camera to selectively provide images or video of an area behind the bicycle in the camera's field of view. The radar unit may analyze the returned radar signals and images and/or video to track the location of targets located behind the bicycle. The bicycle computing device or the radar unit may also selectively activate the camera based upon the satisfaction of particular conditions.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: August 27, 2019
    Assignee: Garmin Switzerland GmbH
    Inventors: Evangelos V. A. Brisimitzakis, Ross G. Stirling, Kenneth A. Carlson, Franz A. Struwig, Nolan van Heerden
  • Patent number: 10393873
    Abstract: Remote object detection in an automotive vehicle includes an ultrasonic sensor for emitting ultrasonic bursts from an ultrasonic transducer at a standard rate. At least one object is tracked which reflects the ultrasonic bursts to the sensor. The transducer is adaptively set to emit ultrasonic bursts at a reduced rate which is less than the standard rate based on a result of the object tracking. In one embodiment, the ultrasonic bursts are set at the reduced rate when the tracked object is maintaining a stable relative position. The stable relative position may be comprised of the tracked object having a relative velocity less than a threshold. In another embodiment, extrinsic ultrasonic bursts originating from the tracked object and subsequent echoes between the automotive vehicle and the tracked object can be used by the vehicle to monitor the tracked object while emission of bursts from the vehicle are switched off.
    Type: Grant
    Filed: October 2, 2017
    Date of Patent: August 27, 2019
    Assignee: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Raymond C. Siciak, Kathryn Hamilton, Mahrdad Damsaz, Vivekananda Krishnamurthy
  • Patent number: 10393874
    Abstract: The disclosure proceeds from a distance measuring device comprising at least one distance measuring unit, which is in particular suitable for a contactless distance measurement, which has at least one transmission device for emitting reference and measurement radiation and at least one sensor device for detecting reference and measurement radiation. It is proposed that, in the distance measuring device according to the disclosure, the reference radiation is embodied as at least one partial beam of divergent radiation emitted by the transmission device.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: August 27, 2019
    Assignee: Robert Bosch GmbH
    Inventors: Bernd Schmidtke, Uwe Skultety-Betz
  • Patent number: 10393875
    Abstract: An adjustable security sensor device is described. The device comprises a time of flight sensor, a user input element, and a processor. The time of flight sensor generates a first set of sample distance measurements based on a first position of the time of flight sensor relative to the reflector, in response to receiving the identification of the first position of the device relative to the reflector. The processor associates the identification of the first position with the first set of sample distance measurements. A second set of sample distance measurements is measured based on a second position of the time of flight sensor relative to the reflector. The processor compares a first range of the first set of sample distance measurements with a second range of the second set of sample distance measurements, and identifies a position of the device relative to the reflector based on the comparison.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: August 27, 2019
    Assignee: Nortek Security & Control LLC
    Inventor: Sivakumar Kathan
  • Patent number: 10393876
    Abstract: A camera device according to one embodiment of the present invention comprises: a light output unit that outputs IR (infrared) light; a light input unit including a plurality of pixels respectively having a first receiving unit and a second receiving unit, and having light that is reflected by an object and input therein after the light is output from the light output unit; and a calculating unit that calculates the distance to the object by using the difference in the amount of light input to the first receiving unit and the second receiving unit of the light input unit. The camera device further comprises a first lens and a second lens disposed between the light output unit and the object, wherein the first lens refracts the light output from the light output unit in a first direction, and the second lens refracts the light output from the light output unit in a second direction.
    Type: Grant
    Filed: January 28, 2015
    Date of Patent: August 27, 2019
    Assignee: LG INNOTEK CO., LTD.
    Inventors: Sang Hyun Lee, Gi Seok Lee, Se Kyu Lee, Sung Ki Jung
  • Patent number: 10393877
    Abstract: Methods and systems for performing three dimensional LIDAR measurements with multiple illumination beams scanned over a three dimensional environment are described herein. In one aspect, illumination light from each LIDAR measurement channel is emitted to the surrounding environment in a different direction by a beam scanning device. The beam scanning device also directs each amount of return measurement light onto a corresponding photodetector. In some embodiments, a beam scanning device includes a scanning mirror rotated in an oscillatory manner about an axis of rotation by an actuator in accordance with command signals generated by a master controller. In some embodiments, the light source and photodetector associated with each LIDAR measurement channel are moved in two dimensions relative to beam shaping optics employed to collimate light emitted from the light source. The relative motion causes the illumination beams to sweep over a range of the three dimensional environment under measurement.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: August 27, 2019
    Assignee: Velodyne Lidar, Inc.
    Inventors: David S. Hall, Pieter J. Kerstens, Mathew Noel Rekow, Stephen S. Nestinger
  • Patent number: 10393878
    Abstract: A vehicle-to-X communication module which is configured to transmit operating data to a satellite navigation module. In this way, supply of operating data to the satellite navigation module can be facilitated and, in particular, in many cases reception of the operating data by Assisted GPS (AGPS) can be dispensed with.
    Type: Grant
    Filed: September 24, 2015
    Date of Patent: August 27, 2019
    Assignee: Continental Teves AG & Co. oHG
    Inventor: Michael Zalewski
  • Patent number: 10393879
    Abstract: A correction data creation unit receives a value of an error used in satellite positioning at a first time interval, and receives a correction value of the error at a second time interval that is a time interval 1/n (n is an integer of two or larger) time interval of the first time interval. The correction data creation unit also corrects the value of the error at the second time interval by using the correction value.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: August 27, 2019
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Masayuki Saito, Masakazu Miya, Yuki Sato, Seigo Fujita, Kazuhiro Terao
  • Patent number: 10393880
    Abstract: A method is disclosed for managing rules or policies in a vehicle having a controllable unit. The method may include determining, at the start of a driving, an active route of the vehicle, selecting a set of control values from multiple stored sets of control values, where one control value of the set of control values corresponds to one predetermined interval of the determined active route, and controlling the at least one controllable unit based on the selected set of control values. The method may also include recording, during the current driving of the vehicle, a set of control result values, where one control result value corresponds to a predetermined interval of the determined active route which the vehicle has driven and, at the end of the driving based on the set of control result values, determining and storing an updated set of control values for the actually driven route.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: August 27, 2019
    Assignee: Volvo Car Corporation
    Inventors: Rickard Arvidsson, Niklas Akerblom
  • Patent number: 10393881
    Abstract: A system and method to obtain vehicle positional information as it is traveling. The method of generating a vehicle path includes obtaining a first position of a vehicle; monitoring an occurrence of a positional trigger event; after the occurrence of the positional trigger event, obtaining a second position of the vehicle; and transmitting the first and second positions to a storage device wherein the first and second positions form the path. The disclosure also provides for a system to generate the path of the vehicle. The system includes a vehicle system module configured to perform the various steps described herein.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: August 27, 2019
    Assignee: GENERAL MOTORS LLC
    Inventors: Nathaniel H. Williams, Marco T. Carnevale, Michael P. Marchione, Billy L. Holbird, II
  • Patent number: 10393882
    Abstract: Example methods disclosed herein include accessing carrier phase measurements and code measurements obtained for a plurality of satellite signals of a global navigation satellite system. Disclosed example methods also include determining an initial set of floating-point ambiguities based on the measurements, the initial set of floating-point ambiguities including inter-frequency bias (IFB). Disclosed example methods further include performing a least squares search process based on the initial set of floating-point ambiguities to determine a set of integer ambiguities and an estimate of the IFB. In some examples, an additional (e.g., wide-lane) filter is used to realize a combination of carrier phase and code IFB. In some examples, IFB estimation is further realized by determining a median of IFB estimates over a window time. In some examples, the resulting IFB estimate and the set of integer ambiguities are used to estimate a position of a receiver, determine a satellite correction signal, etc.
    Type: Grant
    Filed: September 26, 2016
    Date of Patent: August 27, 2019
    Assignee: Deere & Company
    Inventors: Liwen L. Dai, Yujie Zhang
  • Patent number: 10393883
    Abstract: The subject matter disclosed herein relates to determining a background location of a mobile device using one or more signal metrics.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: August 27, 2019
    Assignee: QUALCOMM Incorporated
    Inventors: Marc Anthony Ische, Ahmad Hatami, Ardalan Heshmati, Zoltan F. Biacs, Douglas Neal Rowitch, Dominic Gerard Farmer, Srigouri Kamarsu, Jie Wu
  • Patent number: 10393884
    Abstract: A system and a method for detecting the wearing by a patient of a foot ulcer offloading apparatus are described. The system includes an electronic geolocation device and a data processing equipment item linked to the electronic geolocation device via a communication network, the electronic geolocation device is suitable for being secured to the offloading apparatus and includes electrical power supply means, geolocation data acquisition means and means for transmitting geolocation data over the communication network to the data processing equipment item. The data transmission means is linked to the acquisition means and data processing equipment item is suitable, following the reception of geolocation data transmitted by the electronic geolocation device, for detecting a movement of the foot ulcer offloading apparatus and for deducing therefrom the wearing by the patient of said offloading apparatus.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: August 27, 2019
    Assignee: CREATIVE SPECIFIC SOFTWARE
    Inventor: Ramzi Larbi
  • Patent number: 10393885
    Abstract: Resonant meta-material structures are defined by metallic, dielectric or other materials that form nanoshells or nanomeshes that can be situated proximate to ionizing-radiation-sensitive layers so as to provide ionizing-radiation-dose-dependent optical properties. Such meta-material structures can also define aligned or periodic, semi-random, or other arrangements of nanostructures that are coupled to or include stressed layers. Detection of optical radiation from such structures is used to determine gamma radiation dose or to detect a disturbance of the nanostructure indicating tampering.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: August 27, 2019
    Assignee: Battelle Memorial Institute
    Inventors: Kyle J. Alvine, Bruce E. Bernacki
  • Patent number: 10393886
    Abstract: A mobile radiography system has a moveable transport frame configured to travel across a floor. An adjustable support structure is coupled to the moveable transport frame and an x-ray source is coupled to the adjustable support structure. A power transmitter emits wireless power signals to a digital detector to charge a battery therein. Power signal receiving circuitry in the detector receives the wireless power signals to generate recharging current for the battery.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: August 27, 2019
    Assignee: Carestream Health, Inc.
    Inventor: Scott T. MacLaughlin
  • Patent number: 10393887
    Abstract: The present invention discloses one or more compounds that oscillate between a first state and a second state due to absorption of high energy, with the oscillations facilitating prevention of solarization of a glass system for reuse while generating scintillations for determining existence of high radiation energy. The generation of scintillations have a duration that is commensurate with a duration of the irradiation of the glass system, and cease when irradiation is ceased without affecting the glass system.
    Type: Grant
    Filed: July 17, 2016
    Date of Patent: August 27, 2019
    Inventors: Ashot A. Margaryan, Alfred A. Margaryan
  • Patent number: 10393888
    Abstract: Provided is a method of manufacturing a laminated scintillator panel having a structure in which a scintillator layer and a non-scintillator layer are repeatedly laminated in a parallel direction perpendicular to incidence of radiation, characterized by including a step of joining the scintillator layer and the non-scintillator layer. The present invention provides a method of manufacturing a lattice-shaped laminated scintillator panel capable of enlarging the area and increasing the thickness with means completely different from a prior art in which a silicon wafer is used.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: August 27, 2019
    Assignee: Konica Minolta, Inc.
    Inventors: Hiromichi Shindou, Tadashi Arimoto
  • Patent number: 10393889
    Abstract: A device and method for reading an exposed imaging plate generate read-out light and utilize a deflection unit to direct the read-out light in a scanning movement over the imaging plate. The deflection unit has a micromirror to deflect impinging read-out light towards the imaging plate. The micromirror can swivel about a first swivel axis and about a second swivel axis distinct from the first. A detector unit detects fluorescent light emitted from the imaging plate at locations where the read-out light impinges. An evaluating unit evaluates signals received from the detector unit and builds up an image that is stored in the imaging plate. The evaluating unit takes into account, when evaluating the signals received from the detector unit, that points on the imaging plate are subjected to the read-out light variably often and/or for variable time lengths while the micromirror oscillates about the first and the second swivel axis.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: August 27, 2019
    Assignee: DÜRR DENTAL AG
    Inventors: Bernd Philipps, Michael Weber, Alexander Hack
  • Patent number: 10393890
    Abstract: In an X-ray imaging device according to a first embodiment, an X-ray detector has a configuration in which scintillator elements are defined by light-shielding walls in a lattice shape. Among X-rays incident on the X-ray detector, X-rays incident on the light-shielding walls are not converted into scintillator light and are transmitted by the X-ray detector. Accordingly, by causing X-rays to be incident on the X-ray detector in which the scintillator elements are defined by the light-shielding walls in a lattice shape, an area in which X-rays 3a transmitted by a subject M are incident on the X-ray detector can be limited to an arbitrary range. Accordingly, since a detection mask can be omitted in the X-ray imaging device which is used for EI-XPCi, it is possible to reduce a manufacturing cost of the X-ray imaging device.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: August 27, 2019
    Assignee: SHIMADZU CORPORATION
    Inventors: Koichi Tanabe, Shingo Furui, Toshinori Yoshimuta, Kenji Kimura, Akihiro Nishimura, Taro Shirai, Takahiro Doki, Satoshi Sano, Akira Horiba, Toshiyuki Sato
  • Patent number: 10393891
    Abstract: Various embodiments described herein may include a detector array for a CT imaging system. The detector array includes a pixel array in which each pair of adjacent pixels in the pixel array may be separated by a collimator (e.g., located between each row and column of the pixel array) that absorbs photons and each pixel in the pixel array includes a sub-pixel array. The collimator absorbs photons that strike at a boundary between adjacent pixels. Each sub-pixel may have an anode that is connected to an ASIC channel. When a sub-pixel in a pixel detects a photon, signals of a plurality of sub-pixels in the pixel are automatically summed, including the sub-pixel that detected the photon.
    Type: Grant
    Filed: May 3, 2016
    Date of Patent: August 27, 2019
    Assignee: REDLEN TECHNOLOGIES, INC.
    Inventors: Kris Iniewski, Glenn Bindley
  • Patent number: 10393892
    Abstract: A circuit (300) for detecting the appearance of x-rays with a view to triggering a radiological image capture, comprising a set (301) of photodiodes that is connected to a ground (GD), an amplifying circuit (302) and a capacitor (C2), the amplifying circuit (302) comprising an amplifier (AMP) and a voltage source (GEN) and being connected, via a first input, to the output of the set (301) of photodiodes, the capacitor (C2) being connected between the ground (GD) and a second input of the amplifier (AMP), the detecting circuit (300) being characterized in that the amplifying circuit (302) is configured to carry out in succession the steps of: Charging the capacitor (C2) with a reference voltage (Vref) generated by the voltage source (GEN); Isolating the second input of the amplifier (AMP) from the voltage source (GEN); and Integrating the current generated by the set (301) of photodiodes.
    Type: Grant
    Filed: January 10, 2017
    Date of Patent: August 27, 2019
    Assignee: TELEDYNE E2V SEMICONDUCTORS SAS
    Inventors: Christine Charrat, Caroline Papaix, Stéphane Gesset
  • Patent number: 10393893
    Abstract: Methods of detecting high atomic weight materials in a volume such as a truck or cargo container are disclosed. The volume is scanned with an X-ray imaging system and a muon detection system. Using the output data of the muon detection system, the exit momentum and incoming and outgoing tracks of each muon are reconstructed. A muon scattering statistical model is calculated using the muon exit momentum and the incoming and outgoing tracks of the muon. A most likely scattering density map is determined according to the muon-scattering statistical model and an X-ray statistical model. A visual representation of the most likely scattering density map is displayed.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: August 27, 2019
    Assignee: Lingacom Ltd.
    Inventors: David Yaish, Yosef Kolkovich, Amnon Harel
  • Patent number: 10393894
    Abstract: Systems and methods for neutron detection using tensioned metastable fluid detectors, using a single atom spectroscopy approach.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: August 27, 2019
    Assignee: Purdue Research Foundation
    Inventors: Rusi Pesi Taleyarkhan, Thomas Francis Grimes
  • Patent number: 10393895
    Abstract: A calibration method for calibrating at least one gamma radiation detector includes a monolithic scintillation crystal. The calibration method comprises obtaining event data for a plurality of scintillation events. The event data for each scintillation event includes a plurality of location sensitive signals observed by the at least one gamma radiation detector to be calibrated, applying an unsupervised learning algorithm to embed the event data on a low-dimensional manifold, and obtaining calibration data considering the low-dimensional manifold embedding.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: August 27, 2019
    Assignee: MOLECUBES
    Inventor: Samuel Espana Palomares
  • Patent number: 10393896
    Abstract: Systems and methods of real-time in-situ sub-surface imaging are described herein.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: August 27, 2019
    Assignee: GEORGIA STATE UNIVERSITY RESEARCH FOUNDATION, INC.
    Inventor: WenZhan Song
  • Patent number: 10393897
    Abstract: This disclosure is related to marine seismic sources, for example marine seismic sources known in the art as benders. Some embodiments of this disclosure use Lorentz forces to produce seismic energy. For example, magnets and wire coils may be attached to one or more plates of a marine seismic source, and the Lorentz interaction between them may cause deformation of the plates to produce seismic energy. Such marine seismic sources may be components of a marine seismic survey system, and may be used in a method of marine seismic surveying. Methods of making marine seismic sources are also disclosed.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: August 27, 2019
    Assignee: PGS Geophysical AS
    Inventors: Mattias Oscarsson, Oeystein Traetten, Rune Voldsbekk, Rune Toennessen
  • Patent number: 10393898
    Abstract: A method, system and a marine node for recording seismic waves underwater. The node includes a first module configured to house a seismic sensor; bottom and top plates attached to the first module; a second module removably attached to the first module and configured to slide between the bottom and top plates the second module including a first battery and a data storage device; and a third module removably attached to the first module and configured to slide between the bottom and top plates, the third module including a second battery.
    Type: Grant
    Filed: August 23, 2016
    Date of Patent: August 27, 2019
    Assignee: Seabed Geosolutions B.V.
    Inventor: Peter Maxwell
  • Patent number: 10393899
    Abstract: Method for locating fault lines or surfaces in 2-D or 3-D seismic data based on the fact that fault discontinuities in the space domain span a wide range in a local slowness (slope) domain, whereas other dipping events in the space domain data, such as noise, tend to be coherent, and hence will appear focused in the slowness dimension. Therefore, the method comprises decomposing the seismic data (102) by a transformation to the local slowness domain, preferably using Gaussian slowness period packets as the local slowness or slope decomposition technique, thereby avoiding problems with the data stationary assumption. In the local slowness domain, faults may be identified (104) using the principle mentioned above, i.e. that faults are represented as a truncation in the space domain data, hence they will appear broadband in the slowness dimension.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: August 27, 2019
    Assignee: ExxonMobil Upstream Research Company
    Inventors: William Curry, Ethan Nowak, Fuxian Song
  • Patent number: 10393900
    Abstract: Disclosed is a method for characterizing the evolution of a reservoir by determining a seismic wavelet which links observed seismic data to a sequence of reflectivities. The method comprises obtaining seismic data (200) representing seismic changes which have occurred between a first time and a second time, said seismic data comprising a plurality of seismic traces; and performing an optimization operation simultaneously (230) on the seismic traces so as to optimize for said seismic wavelet. The optimization operation may be performed without using known reflectivity data as an input.
    Type: Grant
    Filed: February 9, 2015
    Date of Patent: August 27, 2019
    Assignee: Total S.A.
    Inventors: Thomas David Blanchard, Pierre Daniel Thore, Christian Hubans
  • Patent number: 10393901
    Abstract: Methods and systems of generating seismic images from primaries and multiples are described. Methods separate pressure data into up-going pressure data and down-going pressure data from pressure data and vertical velocity data. Irregularly spaced receiver coordinates of the down-going and up-going pressure data are regularized to grid points of a migration grid and interpolation is used to fill in down-going and up-going pressure data at grid points of the migration grid. A seismic image is calculated at grid points of the migration grid based on the interpolated and regularized down-going pressure data and the interpolated and regularized up-going pressure data. The seismic images are high-resolution, have lower signal-to-noise ratio than seismic images generated by other methods, and have reduced acquisition artifacts and crosstalk effects.
    Type: Grant
    Filed: August 16, 2016
    Date of Patent: August 27, 2019
    Assignee: PGS Geophysical AS
    Inventors: Shaoping Lu, Norman Daniel Whitmore, Jr., Alejandro Antonio Valenciano Mavilio, Nizar Chemingui
  • Patent number: 10393902
    Abstract: A method may include providing a sensor in a first wellbore segment, providing a sensor in a second wellbore segment, observing upgoing acoustic waves or downgoing acoustic waves with the sensors, and separating the upgoing acoustic waves and/or the downgoing acoustic waves from a total wavefield. The first wellbore segment and the second wellbore segment may be separated by a distance. At least one of the wellbore segments may be non-vertical and/or the first wellbore segment may not be parallel to the second wellbore segment. The first wellbore segment may be part of a first set of wellbores and the second wellbore segment may be part of a second set of wellbores. The separated upgoing and downgoing acoustic waves may be used to generate deghosted data.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: August 27, 2019
    Assignee: SHELL OIL COMPANY
    Inventors: Johan Cornelis Hornman, Peter Berkeley Wills, Jorge Luis Lopez, Albena Alexandrova Mateeva
  • Patent number: 10393903
    Abstract: An acoustic logging tool includes a support structure and a set of acoustic transducers coupled to the support structure. The set of acoustic transducers includes a first acoustic transducer and a second acoustic transducer facing the same direction. Each of the first and second acoustic transducers includes a substrate having a first end, a second end, a first side, and a second side. Each acoustic transduce further includes a first piezoelectric element coupled to the first side of the substrate and a second piezoelectric element coupled to the second side of the substrate. The first and second ends of the substrate extend beyond the first and second piezoelectric elements and are fixed to the support structure.
    Type: Grant
    Filed: October 6, 2015
    Date of Patent: August 27, 2019
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Jing Jin, Chung Chang
  • Patent number: 10393904
    Abstract: Predicting downhole acoustic tool responses due to stress-induced anisotropy by performing at least the following: receiving a plurality of input data corresponding to at least one well site comprising a wellbore; constructing a three-dimensional geomechanical model based at least in part on the input data; creating at least one near field versus far field stress distribution that corresponds to the wellbore from the three-dimensional geomechanical model; creating, at least one near wellbore versus far-field velocity distribution using the at least one near field versus far field stress distribution; comparing the downhole acoustic tool response property that indicates a downhole acoustic tool's penetration depth for a subsurface geological formation with the near wellbore velocity fields; and flagging, where the downhole acoustic tool response property stays within the near-wellbore velocity field.
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: August 27, 2019
    Assignee: Weatherford Technology Holdings, LLC
    Inventors: Mojtaba Pordel Shahri, Jennifer Anne Market, Mohammadreza Safariforoshani, Ovunc Mutlu
  • Patent number: 10393905
    Abstract: A method for torsional wave logging in a borehole of a subterranean formation. The method includes obtaining a torsional wave measurement of the borehole, wherein the torsional wave measurement represents characteristics of a torsional wave propagating within a cylindrical layered structure associated with the borehole, wherein the cylindrical layered structure comprises the subterranean formation and a completion of the borehole, analyzing, by a computer processor, the torsional wave measurement to generate a quality measure of the completion, and displaying the quality measure of the completion.
    Type: Grant
    Filed: August 16, 2016
    Date of Patent: August 27, 2019
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Bikash K. Sinha, Sandip Bose, Jiaqi Yang, Ting Lei, Tarek M. Habashy, Smaine Zeroug, Ma Luo
  • Patent number: 10393906
    Abstract: To provide a method and device for detecting buried metal, whereby it is possible to radio (wirelessly) transmit a synchronizing signal, and, when the frequency band of the transmission signal is restricted, to problem synchronous detection using a reference signal having a frequency equal to or greater than the frequency band.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: August 27, 2019
    Assignee: FUJI TECOM INC.
    Inventors: Masaru Tsunasaki, Kenshi Kubota
  • Patent number: 10393907
    Abstract: The invention relates to a method and a measuring arrangement for detecting an object (3) hidden behind an article (1). The method comprises the following steps: applying a first alternating voltage (5) to a first sensor (7); applying a second alternating voltage (9) to a second sensor (11) arranged adjacent to the first sensor (7); determining an effect (15) of the article (1) on at least one of the alternating voltages (5, 9) depending on a distance (13) of the sensor (7, 11) to the article (1); determining a change (17) in the dependent effect (15) occurring during a movement (19) of the sensor (7, 11) along the article (1); and detecting the object (3) in accordance with the change (17) of the dependent effect (15).
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: August 27, 2019
    Assignee: ZIRCON CORPORATION
    Inventor: Gerd Reime
  • Patent number: 10393908
    Abstract: A bobbin for holding inductive coils includes features that yield a smaller overall size and prevent irregular and asymmetric coil windings. The bobbin comprises a central hub and a single flange that extends from a middle circumference of the hub. The bobbin includes no end flanges at the ends of the central hub, reducing the height of the bobbin. The interface between the flange and the hub is a sharp corner with little or no radius, facilitating regular and symmetrical coil geometries. Coil assemblies can be attached to the respective two sides of the flange concentrically with the hub. Each coil assembly can be formed by winding a transmitter coil, then winding a receiver coil concentrically over the transmitter coil. Conductive pins that extend from the outer edge of the flange interface the coil lead wires to a printed circuit board of an inductive sensor or other device.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: August 27, 2019
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Roberto S. Santos, Yongyao Cai, Boeun Uy
  • Patent number: 10393909
    Abstract: The present invention features a unique system of interdependent methods to greatly improve data acquired via the Differential Target Antenna Coupling (“DTAC”) method, which transmits electromagnetic (“EM”) fields and measures the primary EM field and the secondary EM fields generated in subsurface targets. These new data correction techniques provide improvements, in orders of magnitude, to the measured DTAC response accuracy. This improvement allows for greater depth of investigation, improved target location, and enhanced target characteristics.
    Type: Grant
    Filed: October 11, 2017
    Date of Patent: August 27, 2019
    Assignee: Arizona Board of Regents on Behalf of the University of Arizona
    Inventor: Ben K. Sternberg
  • Patent number: 10393910
    Abstract: A composite electromagnetic (EM) system and method for measuring naturally occurring magnetic fields and controlled magnetic fields. The composite EM system includes a housing, an audio-magnetotelluric (AMT) system attached to the housing and measuring natural magnetic fields generated by earth, a frequency-domain EM (FDEM) system attached to the housing and measuring controlled magnetic fields generated by a controlled source, and a position and orientation (POS) system attached to the housing and configured to calculate an orientation and a position of the AMT system and housing relative to the earth. The housing is configured to be attached to an aircraft for being airborne while measuring the natural magnetic fields and the controlled magnetic fields.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: August 27, 2019
    Assignee: CGG SERVICES SAS
    Inventor: Philip Miles
  • Patent number: 10393911
    Abstract: A nuclear magnetic resonance (NMR) logging tool includes a pulsed magnetic field source which provides an NMR logging pulse sequence having a reduced interecho interval (TE). A controller in communication with the pulsed magnetic field source provides a pulse sequence designed to substantially align an echo peak with a measurement deadtime boundary, yielding a partial spin echo data recovery which is at least partially compensated by a substantially higher measurement density.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: August 27, 2019
    Assignee: Halliburton Energy Services, Inc.
    Inventor: Songhua Chen
  • Patent number: 10393912
    Abstract: A method is disclosed of inverting three dimensional fluid property distribution. The method includes comparing a detected NMR signal with a plurality of modeled signal values derived from precomputed values of NMR signal contribution values at prechosen (T1, T2, D) value tuples; identifying one or more modeled signals satisfying domain constraints and in respect of which an objective function involving a respective detected NMR signal and a modeled signal is optimized; selecting one or more of the solutions resulting in optimized objective; and using each selected optimized solution to characterize the one or more properties of fluid in the formation. The method also includes processing the resulting solutions as e.g. graphical or tabular data. Also disclosed is apparatus for performing the method.
    Type: Grant
    Filed: July 2, 2015
    Date of Patent: August 27, 2019
    Assignee: Weatherford Technology Holdings, LLC
    Inventors: Hamed Chok, Endre Anderssen
  • Patent number: 10393913
    Abstract: The disclosure provides methods and systems for evaluating formation geometry and petrophysical properties directly from raw electromagnetic measurements. The methods involve using a downhole tool to measure a property of a formation at multiple depths of investigation and calculating geometry and petrophysical property information by direct inversion from raw measurements acquired by the tool. The system includes a tool for measuring a formation property at different depths of investigation and a processor for calculating geometry and petrophysical information by direct inversion from the raw measurements acquired by the tool.
    Type: Grant
    Filed: April 17, 2014
    Date of Patent: August 27, 2019
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Josselin Kherroubi, Ollivier Faivre, Jean-Marc Donadille
  • Patent number: 10393914
    Abstract: Methods and systems for detecting nuclear material concealed within an enclosure are provided. An ionized air density is measured at one or more locations outside of the enclosure. The presence of the concealed nuclear material is detected, for each of the one or more locations, based on a characteristic of the measured ionized air density indicative of concealed nuclear materials.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: August 27, 2019
    Assignees: US Gov't Represented By Secretary Of The Navy Chief Of Naval Research, Temple University Of The Commonwealth System Of Higher Education
    Inventors: Rongjia Tao, Dong Ho Wu
  • Patent number: 10393915
    Abstract: The present specification discloses methods for inspecting an object. The method includes scanning an object in a two-step process. In the primary scan, a truck or cargo container (container) is completely scanned with a fan beam radiation, the transmitted radiation is measured with an array of detectors, and the transmission information and optionally the fission signatures are analyzed to determine the presence of high-density, high-Z and fissionable materials. If the container alarms in one or more areas, the areas are subjected to a secondary scan. This is done by precisely repositioning the container to the location of the suspect areas, adjusting the scanning system to focus on the suspect areas, performing a stationary irradiation of the areas, and analyzing the measured feature signatures to clear or confirm the presence of SNM.
    Type: Grant
    Filed: May 9, 2014
    Date of Patent: August 27, 2019
    Assignee: Rapiscan Systems, Inc.
    Inventors: Tsahi Gozani, Joseph Bendahan, Michael Joseph King, Timothy John Shaw, John David Stevenson
  • Patent number: 10393916
    Abstract: In one possible implementation, a computer-readable tangible medium includes instructions that direct a processor to access one or more wellbore properties and a plurality of well fluid properties. Instructions are also present that direct the processor to access a distance between a proposed location of an inlet to a multiphase production logging tool and an emulsion generation location in a wellbore. Further instructions instruct the processor to predict a drop size distribution of emulsified water in the well fluid at the proposed location of the inlet to the multiphase production logging tool. Additional instructions instruct the processor to compute an estimated error in water holdup detected by the multiphase production logging tool based on the drop size distribution, and recommend deployment of a pulsed neutron logging tool in the wellbore when the estimated error in the water holdup is above a preset threshold.
    Type: Grant
    Filed: March 15, 2016
    Date of Patent: August 27, 2019
    Assignees: SCHLUMBERGR TECHNOLOGY CORPORATION, SAUDI ARABIAN OIL COMPANY
    Inventors: Shouxiang Mark Ma, Dmitry Eskin, Wael Abdallah, Shawn David Taylor
  • Patent number: 10393917
    Abstract: A tool can include an X-ray tomography device to evaluate cement in a downhole environment. The X-ray tomography device includes an X-ray beam source configured to transmit an X-ray beam at a first predetermined angle. The beam angle may be set by a capillary device coupled to the X-ray beam source. An energy dispersive, multi-pixel photon detector is configured to count detected backscatter photons received at a second predetermined angle and determine an energy spectrum for the detected photons. A density map of the cement may be generated in response to the number of detected photons. Additional apparatus, systems, and methods are disclosed.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: August 27, 2019
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Yike Hu, Weijun Guo