Patents Issued in January 2, 2024
  • Patent number: 11859253
    Abstract: A method for identifying and enumerating candidate target cells within a biological fluid specimen is described. The method includes obtaining a biological fluid specimen, preparing the biological fluid specimen by staining cell features in the biological fluid specimen, capturing a digital image having a plurality of color channels of the biological fluid specimen, and applying image analysis to the digital image. A computer program product for identifying candidate target cells within a biological fluid specimen is also described. The computer program comprises instructions to cause a processor to carry out the image analysis.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: January 2, 2024
    Assignee: CellMax Ltd.
    Inventors: Huangpin B. Hsieh, XiaoMing Wang, Jr-Ming Lai, Rui Mei, Hung-Jen Shao, Jen-Chia Wu
  • Patent number: 11859254
    Abstract: Provided herein is technology relating to detecting neoplasia and particularly, but not exclusively, to methods, compositions, and related uses for detecting premalignant and malignant neoplasms such as gastric cancer.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: January 2, 2024
    Assignees: MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH, Exact Sciences Corporation
    Inventors: David A. Ahlquist, William R. Taylor, John B. Kisiel, Tracy C. Yab, Douglas W. Mahoney, Hatim T. Allawi
  • Patent number: 11859255
    Abstract: It is intended to provide a kit or a device for the detection of breast cancer and a method for detecting breast cancer. The present invention provides a kit or a device for the detection of breast cancer, comprising nucleic acid(s) capable of specifically binding to a miRNA in a sample of a subject, and a method for detecting breast cancer, comprising measuring the miRNA in vitro.
    Type: Grant
    Filed: September 14, 2022
    Date of Patent: January 2, 2024
    Assignees: TORAY INDUSTRIES, INC., NATIONAL CANCER CENTER
    Inventors: Satoshi Kondou, Hitoshi Nobumasa, Satoko Kozono, Hiroko Sudo, Junpei Kawauchi, Takahiro Ochiya, Nobuyoshi Kosaka, Makiko Ono, Kenji Tamura
  • Patent number: 11859256
    Abstract: Disclosed is a kit or a device for the detection of stomach cancer and a method for detecting stomach cancer, and provides a kit or a device for the detection of stomach cancer, including a nucleic acid(s) capable of specifically binding to a miRNA(s) in a sample from a subject, and a method for detecting stomach cancer, including measuring the miRNA(s) in vitro.
    Type: Grant
    Filed: September 20, 2022
    Date of Patent: January 2, 2024
    Assignees: TORAY INDUSTRIES, LTD., NATIONAL CANCER CENTER
    Inventors: Satoko Kozono, Hitoshi Nobumasa, Satoshi Kondou, Hiroko Sudo, Junpei Kawauchi, Atsushi Ochiai, Motohiro Kojima
  • Patent number: 11859257
    Abstract: Provided herein are compositions, kits, and methods for detecting methicillin-resistant Staphylococcus aureus (MRSA) nucleic acids. In some embodiments, the compositions, kits, and methods can be used to detect one or more of type i, ii, iii, iv, v, vi, vii, viii, ix, xii, xiii, xiv, xv, or xxi SCCmec right extremity junction (MREJ) MRSA nucleic acids and one or more of mecA, mecC, and/or an additional S. aureus-specific gene.
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: January 2, 2024
    Assignee: Gen-Probe Incorporated
    Inventors: Patrick Peterson, Paul Darby, Matthias Jost, Siobhan Miick, Matthew Brentnall, JoAnn Jackson
  • Patent number: 11859258
    Abstract: An evaporator system used for the production of maple syrup. The evaporator system comprises at least one receptacle for receiving and processing maple water destined to be transformed, a combustion chamber for burning biomass, and a detector of temperature of the combustion.
    Type: Grant
    Filed: September 12, 2022
    Date of Patent: January 2, 2024
    Assignee: LES ÉQUIPEMENTS LAPIERRE INC.
    Inventors: Donald Lapierre, Carl Lapierre, Gabriel Boucher, Luc Brière, André Fillion, Jean-François Goulet
  • Patent number: 11859259
    Abstract: A zinc-plated steel sheet includes a steel sheet having a predetermined chemical composition and a zinc-plated layer. In the steel sheet, steel microstructures in a range of ? thickness to ? thickness, having the center at ¼ thickness from a steel sheet surface, include, by vol %, ferrite: 0% to 10%, bainite: 0% to 30%, tempered martensite: 50% or more, fresh martensite: 0% to 10%, retained austenite: more than 10% and 30% or less, and pearlite: 0% to 5%. In the zinc-plated steel sheet, the amount of hydrogen emitted when the steel sheet is heated to 200° C. from room temperature after removal of the zinc-plated layer is 0.40 ppm or less per mass of the steel sheet, the tensile strength is 1470 MPa or more, and no cracking occurs in a U-shape bending test where a stress equivalent to 1000 MPa is applied for 24 hours.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: January 2, 2024
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Takafumi Yokoyama, Kunio Hayashi, Masahiro Nakata, Yuji Yamaguchi, Satoshi Uchida
  • Patent number: 11859260
    Abstract: A steel sheet has a predetermined chemical composition, in which a metallographic structure in a surface layer region ranging from a surface to a position of 20 ?m from the surface in a sheet thickness direction consists of ferrite and a secondary phase having a volume fraction of 1.0% to 15.0%, the metallographic structure in an internal region ranging from a position of more than 20 ?m from the surface in the sheet thickness direction to a ¼ thickness position from the surface in the sheet thickness direction consists of ferrite and a secondary phase having a volume fraction of 5.0% to 25.0%, the volume fraction of the secondary phase in the surface layer region is less than the volume fraction of the secondary phase in the internal region, and in the surface layer region, the average grain size of the secondary phase is 0.5 ?m to 4.0 ?m.
    Type: Grant
    Filed: January 7, 2020
    Date of Patent: January 2, 2024
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Masahiro Kubo, Hiroyuki Kawata, Masahiro Saito, Kenichiro Otsuka, Masafumi Azuma
  • Patent number: 11859261
    Abstract: A method for the manufacturing of an object. The method includes receiving a desired alloy composition for the object, depositing a plurality of foils in a stack to form the object, applying heat to the stack at a first temperature to bond the plurality of foils to each other, and applying heat to the stack at a second temperature to homogenize the composition of the stack. The homogenized stack has the desired alloy composition.
    Type: Grant
    Filed: March 10, 2023
    Date of Patent: January 2, 2024
    Assignee: Alloy Enterprises, Inc.
    Inventors: Nicholas Mykulowycz, Alison Forsyth, Alan Lai, Lyle Cheatham
  • Patent number: 11859262
    Abstract: Disclosed in this application are a large-sized high-Nb superalloy ingot and a smelting process thereof. The smelting process includes: vacuum induction melting to prepare a plurality of vacuum induction melting ingots with the same composition which are used for preparing electroslag electrodes with the same number as the vacuum induction melting ingots for use in electroslag remelting, preparing a consumable electrode from the prepared consumable electroslag electrodes, and performing vacuum consumable arc remelting for a plurality of times by using the consumable electroslag electrodes as raw material. A large-sized high-Nb superalloy ingot having a weight of 15 tons or above and a diameter of 800 mm or above can be prepared from such process.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: January 2, 2024
    Assignees: Gaona Aero Material Co., Ltd., Fushun Special Steel Shares Co., Ltd.
    Inventors: Shuo Huang, Guangpu Zhao, Beijiang Zhang, Ran Duan, Heyong Qin, Lianpeng Li, Yingyu Chou, Chao Qi
  • Patent number: 11859263
    Abstract: This application pertains to methods of recovering metals from metal sulfides that involve contacting the metal sulfide with an acidic sulfate solution containing ferric sulfate and a reagent that has a thiocarbonyl functional group, wherein the concentration of reagent in the acidic sulfate solution is sufficient to increase the rate of metal ion extraction relative to an acidic sulfate solution that does not contain the reagent, to produce a pregnant solution containing the metal ions.
    Type: Grant
    Filed: October 19, 2017
    Date of Patent: January 2, 2024
    Assignee: Jetti Resources, LLC
    Inventors: David Dixon, Edouard Asselin, Zihe Ren, Nelson Mora Huertas
  • Patent number: 11859264
    Abstract: Provided are: an alloy powder that can be obtained from a waste lithium ion battery, wherein the alloy powder can be dissolved in an acid solution and enables recovery of metals contained in the alloy powder; and a method for producing the alloy powder. This alloy powder contains Cu and at least one of Ni and Co as constituent components, wherein a portion having a higher concentration of the at least one of Ni and Co than the average concentration in the entire alloy powder is distributed on at least the surface, and the phosphorus grade is less than 0.1% by mass. The method for producing the alloy powder includes a powdering step for powdering a molten alloy using a gas atomization method, the molten alloy containing Cu and at least one of Ni and Co as constituent components and having a phosphorus grade of less than 0.1% by mass.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: January 2, 2024
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Ryo Togashi, Yu Yamashita
  • Patent number: 11859265
    Abstract: A non oriented electrical steel sheet includes, as a chemical composition, by mass %, 1.0% or more and 5.0% or less of Si, wherein a sheet thickness is 0.10 mm or more and 0.35 mm or less, an average grain size is 30 ?m or more and 200 ?m or less, an X1 value defined by X=(2×B50L+B50C)/(3×IS) is less than 0.845, an X2 value defined by X2=(B50L+2×B50D+B50C)/(4×IS) is 0.800 or more, and an iron loss W10/1k is 80 W/kg or less.
    Type: Grant
    Filed: December 8, 2022
    Date of Patent: January 2, 2024
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Ichiro Tanaka, Takeaki Wakisaka, Shun Ota
  • Patent number: 11859266
    Abstract: A product includes a material having: nickel and at least one rare earth element. The at least one rare earth element is present in the material in a weight percentage in a range of about 2% to about 20% relative to a total weight of the material. A method includes forming a material comprising an alloy of nickel and at least one rare earth element. The at least one rare earth element is present in the material in a weight percentage in a range of about 2% to about 20% relative to a total weight of the material.
    Type: Grant
    Filed: February 25, 2022
    Date of Patent: January 2, 2024
    Assignees: Lawrence Livermore National Security, LLC, Eck Industries, Inc., Iowa State University Research Foundation, Inc., University of Tennessee Research Foundation, UT-Battelle, LLC
    Inventors: Scott K. McCall, Alexander Baker, Hunter B. Henderson, Tian Li, Aurelien Perron, Zachary Cole Sims, David Weiss, Ryan T. Ott, Orlando Rios, Max Neveau
  • Patent number: 11859267
    Abstract: A nickel-based alloy composition consisting, in weight percent, of: between 4.0% and 6.9% aluminium, between 0.0% and 23.4% cobalt, between 9.1% and 11.9% chromium, between 0.1% and 4.0% molybdenum, between 0.6% and 3.7% niobium, between 0.0 and 1.0% tantalum, between 0.0% and 3.0% titanium, between 0.0% and 10.9% tungsten, between 0.02 wt. % and 0.35 wt. % carbon, between 0.001 and 0.2 wt. % boron, between 0.001 wt. % and 0.5 wt. %. zirconium, between 0.0 and 0.5% silicon, between 0.0 and 0.1% yttrium, between 0.0 and 0.1% lanthanum, between 0.0 and 0.1% cerium, between 0.0 and 0.003% sulphur, between 0.0 and 0.25% manganese, between 0.0 and 0.5% copper, between 0.0 and 0.5% hafnium, between 0.0 and 0.5% vanadium, between 0.0 and 10.0% iron, the balance being nickel and incidental impurities.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: January 2, 2024
    Assignee: OXFORD UNIVERSITY INNOVATION LIMITED
    Inventors: Roger Reed, David Crudden
  • Patent number: 11859268
    Abstract: A dissolvable alloy, the chemical composition of which comprises aluminum between 2.5% and 9%; zinc between 0.1% and 1.5%; iron between 0.01% and 3%; and magnesium the remainder, such alloy being usable in tools and components of the petroleum industry.
    Type: Grant
    Filed: September 13, 2022
    Date of Patent: January 2, 2024
    Assignee: YPF TECNOLOGIA S.A.
    Inventors: Luis Alberto Aguirre, Reynaldo Martin Romero, Walter Morris
  • Patent number: 11859269
    Abstract: Disclosed are a high strength-ductility matched oxide-particles dispersion steel, a preparation method and application thereof, belonging to the technical field of novel structural materials. The high strength-ductility matched oxide-particles dispersion steel comprises the following components in percentage by mass: chromium (Cr) 11.0-13.0 percent (%), tungsten (W) 1.0-2.0%, vanadium (V) 0.1-0.2%, yttrium (Y) 0.3-0.4%, oxygen (O) 0.05-0.15%, silicon (Si) 1.5-2.5%, carbon (C) ?0.0016%, with iron (Fe) and unavoidable impurities accounting for a rest. The high strength-ductility matched oxide-particles dispersion steel in the present application is prepared, using a powder metallurgical preparation method, by introducing high-content of silicon elements and introducing high-density oxide particles with a complete core-shell structure using a specific heat treatment regime.
    Type: Grant
    Filed: March 23, 2023
    Date of Patent: January 2, 2024
    Assignee: UNIVERSITY OF SCIENCE AND TECHNOLOGY BEIJING
    Inventors: You Wang, Zhangjian Zhou
  • Patent number: 11859270
    Abstract: The present invention pertains to a non-magnesium process to produce Compacted Graphite Iron (CGI) by placing a treatment alloy into a treatment ladle, and then placing an inoculant over the treatment alloy in the treatment ladle and pouring a molten base metal there over. The treatment alloy comprises iron, silicon and lanthanum, wherein lanthanum is 3-30% by weight of the treatment alloy, silicon is 40-50% by weight of the treatment alloy, and the remaining is Iron. Lanthanum in the treatment alloy makes the graphite precipitate as vermiculite (compacted form) instead of flake or spheroids. With extended process window offered by this new process (0.03-0.1% residual lanthanum in the metal) required to make CGI, this new process removes the stringent process control (0.01-0.02% residual magnesium in the metal) dictated by the magnesium process of making CGI.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: January 2, 2024
    Assignee: SNAM ALLOYS PVT LTD
    Inventors: Srikanth Sivaraman, Gowri Subhramanyam, Nadimuthu Srinivasan, Harisankar Radhakrishnan
  • Patent number: 11859271
    Abstract: An example composition may include a plurality of grains including an iron nitride phase. The plurality of grains may have an average grain size between about 10 nm and about 200 nm. An example technique may include treating a composition including a plurality of grains including an iron-based phase to adjust an average grain size of the plurality of grains to between about 20 nm and about 100 nm. The example technique may include nitriding the plurality of grains to form or grow an iron nitride phase.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: January 2, 2024
    Assignee: Regents of the University of Minnesota
    Inventors: Jian-Ping Wang, YanFeng Jiang, Md Mehedi, Yiming Wu, Bin Ma, Jinming Liu, Delin Zhang
  • Patent number: 11859272
    Abstract: In situ alloying of elemental Cu, Cr, and Nb powder using laser melting to form a Cu—Cr2Nb alloy. The elemental powders are initially mixed to form a homogeneous mixture, which mixture is then subjected to laser radiation to melt the mixture. In the melt, the Cr and Nb react to form Cr2Nb, which when cooled form precipitates that are dispersed in a nearly pure Cu matrix to thus dispersion strengthen the material. The methods can be used to additively manufacture a 3D component of Cu—Cr2Nb alloy using a selective laser melting machine.
    Type: Grant
    Filed: April 20, 2021
    Date of Patent: January 2, 2024
    Assignee: United States of America as Represented by the Administrator of National Aeronautics and Space Administration
    Inventors: David S. Scannapieco, David L. Ellis
  • Patent number: 11859273
    Abstract: The disclosure provides for a layered metal with resistance to hydrogen induced cracking and method of production thereof, comprising a core metal alloy and a skin metal alloy. The core metal alloy comprises twinned boundaries. The core metal alloy has undergone plastic deformation and a heat treatment. The core metal alloy comprises nickel and cobalt. The skin metal alloy is disposed on the core metal alloy, wherein the skin metal alloy comprises an entropy greater than the core metal alloy. The core metal alloy comprises a greater density of twinned boundaries than the skin metal alloy. The skin metal alloy comprises a stacking fault energy of at least about 50 mJ/m2, and the skin metal alloy comprises iron, aluminum, and boron.
    Type: Grant
    Filed: January 10, 2023
    Date of Patent: January 2, 2024
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Shashwat Shukla, Arpana Singh, Michael Linley Fripp
  • Patent number: 11859274
    Abstract: A deposition mask includes: a first surface and a second surface, in which a plurality of through-holes are formed; a pair of long side surfaces connected to the first and second surfaces, and defining a profile of the deposition mask in a longitudinal direction of the deposition mask; and a pair of short side surfaces connected to the first and second surfaces, and defining a profile of the deposition mask in a width direction of the deposition mask. The long side surface includes a first portion that is recessed inside and includes a first end portion positioned along the first surface, and a second end portion positioned along the second surface and positioned inside the first end portion. The through-hole includes a first recess formed on the first surface, and a second recess formed on the second surface and connected to the first recess through a hole connection portion.
    Type: Grant
    Filed: February 28, 2023
    Date of Patent: January 2, 2024
    Assignee: Dai Nippon Printing Co., Ltd.
    Inventors: Yasuhiro Uchida, Sachiyo Matsuura, Chikao Ikenaga
  • Patent number: 11859275
    Abstract: Implementations of the present disclosure generally relate to hardmask films and methods for depositing hardmask films. More particularly, implementations of the present disclosure generally relate to tungsten carbide hardmask films and processes for depositing tungsten carbide hardmask films. In one implementation, a method of forming a tungsten carbide film is provided. The method comprises forming a tungsten carbide initiation layer on a silicon-containing surface of a substrate at a first deposition rate. The method further comprises forming a tungsten carbide film on the tungsten carbide initiation layer at a second deposition rate, wherein the second deposition rate is greater than the first deposition rate.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: January 2, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Vivek Bharat Shah, Anup Kumar Singh, Bhaskar Kumar, Ganesh Balasubramanian
  • Patent number: 11859276
    Abstract: A mask frame includes a first horizontal portion, a second horizontal portion disposed under the first horizontal portion, at least one vertical portion connecting the first horizontal portion and the second horizontal portion and a tensile bar coupled to the first horizontal portion, and the tensile bar is configured to apply a contraction force to the first horizontal portion in a longitudinal direction of the tensile bar.
    Type: Grant
    Filed: November 16, 2021
    Date of Patent: January 2, 2024
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jongyoon Lee, Seungjin Lee
  • Patent number: 11859277
    Abstract: Methods of depositing a metal film are discussed. A metal film is formed on the bottom of feature having a metal bottom and dielectric sidewalls. Formation of the metal film comprises exposure to a metal precursor and an alkyl halide catalyst while the substrate is maintained at a deposition temperature. The metal precursor has a decomposition temperature above the deposition temperature. The alkyl halide comprises carbon and halogen, and the halogen comprises bromine or iodine.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: January 2, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Xi Cen, Kai Wu, Seshadri Ganguli, Xinming Zhang, Norman L. Tam, Abhilash Mayur
  • Patent number: 11859278
    Abstract: Methods of forming carbon polymer films are disclosed. Some methods are advantageously performed at lower temperatures. The substrate is exposed to a first carbon precursor to form a substrate surface with terminations based on the reactive functional groups of the first carbon precursor and exposed to a second carbon precursor to react with the surface terminations and form a carbon polymer film. Processing tools and non-transitory memories to perform the process are also disclosed.
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: January 2, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Bhaskar Jyoti Bhuyan, Mark Saly, Ahbijit Basu Mallick, Eugene Yu Jin Kong, Bo Qi
  • Patent number: 11859279
    Abstract: The invention relates to a microwave plasma-assisted deposition modular reactor for manufacturing synthetic diamond.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: January 2, 2024
    Assignee: DIAM CONCEPT
    Inventors: Alix Gicquel, François Des Portes
  • Patent number: 11859280
    Abstract: Described herein is a technique capable of improving a film thickness uniformity on a surface of a wafer whereon a film is formed. According to one aspect of the technique of the present disclosure, there is provided a substrate processing apparatus including: a process chamber in which a substrate is processed; a process gas nozzle configured to supply a process gas into the process chamber; an inert gas nozzle configured to supply an inert gas into the process chamber while a concentration of the process gas at the center of the substrate is higher than a concentration required for processing the substrate; and an exhaust pipe configured to exhaust an inner atmosphere of the process chamber; wherein the process gas nozzle and the inert gas nozzle are disposed beside the edge of substrate with a predetermined distance therebetween corresponding to an angle of circumference of 90 to 180 degrees.
    Type: Grant
    Filed: August 22, 2022
    Date of Patent: January 2, 2024
    Assignee: KOKUSAI ELECTRIC CORPORATION
    Inventors: Hidetoshi Mimura, Takafumi Sasaki, Hidenari Yoshida, Yusaku Okajima
  • Patent number: 11859281
    Abstract: Ampoules for a semiconductor manufacturing precursors and methods of use are described. The ampoules include a container with an inlet port and an outlet port. The ampoules comprise an inlet plenum located between the inlet port and the cavity and an outlet plenum located between the outlet port and the cavity. A flow path is defined by a plurality of tubular walls and an ingress openings of the ampoule, through which a carrier gas flows in contact with the precursor.
    Type: Grant
    Filed: December 22, 2022
    Date of Patent: January 2, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Carl White, Mohith Verghese, David Marquardt, Jose Alexandro Romero
  • Patent number: 11859282
    Abstract: Various embodiments include an apparatus to supply gases to a tool. In various examples, the apparatus includes a point-of-use (POU) valve manifold that includes a manifold body to couple to a chamber of the tool. The manifold body has multiple gas outlet ports. A purge-gas outlet port of the manifold body is directed substantially toward the outlet ports. For each of multiple gases to be input to the POU-valve manifold, the POU-valve manifold further includes: a first valve coupled to the manifold body and a divert valve coupled to the first valve. The first valve can be coupled to a gas supply and has a separate gas flow path internal to the manifold body and separate from remaining ones of the gas flow paths. The divert valve diverts the gas during a period when the precursor gas is not to be directed into the chamber by the first valve. Other examples are disclosed.
    Type: Grant
    Filed: July 26, 2022
    Date of Patent: January 2, 2024
    Assignee: Lam Research Corporation
    Inventors: Damodar Rajaram Shanbhag, Nagraj Shankar
  • Patent number: 11859283
    Abstract: Methods for forming an Indium-containing film by a vapor deposition method using a heteroalkylcyclopentadienyl Indium (I) precursor having a general formula: In[R1R2R3R4CpL1] or In[CpL1L2y] wherein Cp represents a cyclopentadienyl ligand; R1 to R4 are each independently H, C1-C4 linear, branched or cyclic alkyls; L1 and L2 are each independently a substituent bonded to the Cp ligand and consisting of an alkyl chain containing at least one heteroatom, such as Si, Ge, Sn, N, P, B, Al, Ga, In, O, S, Se, Te, F, Cl, Br, I; and y=1-4. Examplary heteroalkylcyclopentadienyl Indium (I) precursors include In(Cp(CH2)3NMe2) or In(CpPiPr2).
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: January 2, 2024
    Assignee: L'Air Liquide Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georges Claude
    Inventors: Antoine Bruneau, Takashi Ono, Christian Dussarrat
  • Patent number: 11859284
    Abstract: A shower head structure and a plasma processing apparatus are provided. The shower head structure includes a plate body with a first zone and a second zone on a first surface. A plurality of first through holes are in the first zone, each of the first through holes having a diameter uniform with others of the first through holes. A plurality of second through holes are in the second zone. The first zone is in connection with the second zone, and the diameter of each of the first through holes is greater than a diameter of each of the second through holes. A plasma processing apparatus includes the shower head structure is also provided.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: January 2, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Huan-Chieh Chen, Jhih-Ren Lin, Tai-Pin Liu, Shyue-Shin Tsai, Keith Kuang-Kuo Koai
  • Patent number: 11859285
    Abstract: A processing apparatus includes: a processing container having a substantially cylindrical shape; a gas nozzle extending in a longitudinal direction of the processing container along an inside of a side wall of the processing container; an exhaust body formed on the side wall on an opposite side of the processing container to face the processing gas nozzle; and an adjustment gas nozzle configured to eject a concentration adjustment gas toward a center of the processing container. The adjustment gas nozzle is provided within an angle range in which the exhaust body is formed at a central angle with reference to the center of the processing container in a plan view from the longitudinal direction.
    Type: Grant
    Filed: September 13, 2021
    Date of Patent: January 2, 2024
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Hiroki Iriuda, Kuniyasu Sakashita
  • Patent number: 11859286
    Abstract: A semiconductor manufacturing apparatus according to the present embodiment includes a first gas feeder, a first gas processor and a second gas feeder. The first gas feeder is provided above a stage on which a substrate is to be placed and feeds a first gas to the substrate. The first gas processor supplies high frequency power to the stage and renders the first gas fed from the first gas feeder into plasma. The second gas feeder is provided above the stage and feeds a second gas more difficult to render into plasma than the first gas to an outer periphery of the first gas having been rendered into plasma.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: January 2, 2024
    Assignee: Kioxia Corporation
    Inventors: Yuya Matsubara, Hiroshi Kubota
  • Patent number: 11859287
    Abstract: A protective coating system includes a turbine engine component substrate formed of a ceramic matrix composite material, an environmental barrier coating layer including a rare earth disilicate material formed directly on the substrate, and a thermal barrier coating layer including a porous rare earth monosilicate material having a metal silicate material infiltrated within at least a portion of the pores formed directly on the environmental barrier coating layer.
    Type: Grant
    Filed: July 27, 2021
    Date of Patent: January 2, 2024
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: John Downs, Mehrad Mehr, Bahram Jadidian
  • Patent number: 11859288
    Abstract: A corrosion-resistant member including: a metal base material (10); a corrosion-resistant coating (30) formed on the surface of the base material (10); and a buffer layer (20) formed between the base material (10) and the corrosion-resistant coating (30). The base material (10) contains a main element having the highest mass content ratio among elements contained in the base material (10) and a trace element having a mass content ratio of 1% by mass or less. The corrosion-resistant coating (30) contains at least one kind selected from magnesium fluoride, aluminum fluoride, and aluminum oxide. The buffer layer (20) contains an element of the same kind as the trace element, and the content ratio obtained by energy dispersive X-ray analysis of the element of the same kind as the trace element contained in the buffer layer (20) is 2% by mass or more and 99% by mass or less.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: January 2, 2024
    Assignee: Resonac Corporation
    Inventors: So Miyaishi, Masahiro Okubo, Masayuki Yoshimura, Wataru Sakane, Teppei Tanaka, Saeko Nakamura, Saori Yamaki
  • Patent number: 11859289
    Abstract: To provide a Sn-based plated steel sheet excellent in yellowing resistance, coating film adhesiveness, and sulfurization blackening resistance without performing the conventional chromate treatment. A Sn-based plated steel sheet of the present invention includes: a steel sheet; a Sn-based plating layer located on at least one surface of the steel sheet; and a coating layer located on the Sn-based plating layer, wherein: the Sn-based plating layer contains 0.10 to 15.00 g/m2 of Sn per side in terms of metal Sn; the coating layer contains a Zr oxide and a Mn oxide; a content of the Zr oxide is 0.20 to 50.00 mg/m2 per side in terms of metal Zr; a content of the Mn oxide in terms of metal Mn is 0.01 to 0.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: January 2, 2024
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Shintaro Yamanaka, Shigeru Hirano
  • Patent number: 11859290
    Abstract: An example hydraulic system component of a machine includes a protective coating deposited by high velocity air fuel (HVAF) thermal spray, exhibiting high adhesion strengths and surface morphologies that promote lubricant adhesion and reduce the leakage of oil and/or hydraulic fluid from the hydraulic system. The coating may have surface roughness with RZ values less than 2 ?m and hardness of 1000 Vickers or greater. The HVAF coating may be thinner than conventional coatings with thicknesses less than 100 ?m. The HVAF coating may be deposited on a variety of steel components with adhesion strengths greater than those achieved by high velocity oxygen fuel (HVOF). The HVAF coating may be formed without time consuming roughening and/or post-grind operations, resulting in cost savings compared to conventional coatings. The coatings may have operational lifetimes of 1000 hours or more.
    Type: Grant
    Filed: December 8, 2021
    Date of Patent: January 2, 2024
    Assignee: Caterpillar Inc.
    Inventors: Daniel Joseph Sordelet, Kurt Steven Goslovich, Steven Jon Henderson
  • Patent number: 11859291
    Abstract: A substrate steel of the comprising from 0.01 to 0.60 wt. % of La, from 0.0 to 0.65 wt. % of Ce; from 0.06 to 1.8 wt. % of Nb up to 2.5 wt. % of one or more trace elements and carbon and silicon may be treated in an oxidizing atmosphere to product a coke resistant surface coating of MnCr2O4 having a thickness up to 5 microns.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: January 2, 2024
    Assignee: NOVA Chemicals (International) S.A.
    Inventors: Vasily Simanzhenkov, Hany Farag, Leslie Benum, Billy Santos, Kathleen Donnelly, Nobuyuki Sakamoto, Kunihide Hashimoto, Michael Gyorffy
  • Patent number: 11859292
    Abstract: A method for surface modification of a titanium substrate or a titanium alloy substrate comprising: a) applying at least one beta phase stabiliser to a surface of the titanium substrate or titanium alloy substrate; and b) heating the surface so as to alloy titanium with the at least one beta phase stabiliser.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: January 2, 2024
    Assignee: Callidus Welding Solutions Pty Ltd
    Inventors: Daniel Fabijanic, Gary Lantzke, Joseph Ellis
  • Patent number: 11859293
    Abstract: Methods to partially decrease reflectivities of at least two regions on a mirror platform relative to a reflectivity of a third region are taught. A first region is defined on a surface of the mirror platform. The first region is a media display device viewing area. A second region is defined on the surface of the mirror platform. The second region is a back lit area. A first material is selectively disposed onto a rear surface of the mirror platform outside of the first region and outside of the second region. The first material increases the reflectivity of the mirror platform outside of the first region and outside of the second region. When the mirror platform is viewed from a front side a reflectivity of a third region, which is outside of the first region and outside of the second region, is greater than a reflectivity of either the first region or the second region; and a reflectivity of the first region is different than a reflectivity of the second region.
    Type: Grant
    Filed: April 4, 2021
    Date of Patent: January 2, 2024
    Assignee: ELECTRIC MIRROR, LLC
    Inventors: James V. Mischel, Jr., James V. Mischel, Sr.
  • Patent number: 11859294
    Abstract: The present disclosure relates to a W18O49/CoO/NF self-supporting electrocatalytic material and a preparation method thereof, the W18O49/CoO/NF self-supporting electrocatalytic material comprises: a foamed nickel substrate, and a W18O49/CoO composite nano material generated on the foamed nickel substrate in situ; preferably, wherein the W18O49/CoO composite nano material comprises CoO nanosheets attached directly to the foamed nickel substrate, and W18O49 nanowires attached to the nanosheets.
    Type: Grant
    Filed: October 15, 2021
    Date of Patent: January 2, 2024
    Assignee: SHAANXI UNIVERSITY OF SCIENCE & TECHNOLOGY
    Inventors: Jianfeng Huang, Guojuan Hai, Liyun Cao, Liangliang Feng
  • Patent number: 11859295
    Abstract: A GaON/ZnO photoelectrode involving a nanoarchitectured photocatalytic material deposited onto a surface of a conducting substrate, and the nanoarchitectured photocatalytic material containing gallium oxynitride nanoparticles interspersed in zinc oxide nanoparticles, as well as methods of preparing the GaON/ZnO photoelectrode. A method of using the GaON/ZnO photoelectrode for solar water electrolysis is also provided.
    Type: Grant
    Filed: August 26, 2022
    Date of Patent: January 2, 2024
    Assignee: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Ahsanulhaq Qurashi, Ibrahim Khan
  • Patent number: 11859296
    Abstract: A method for producing 2,5-furandicarboxylic acid (FDCA) by electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF) is provided, where the catalytic oxidation is conducted using an electrolytic cell; the electrolytic cell is a three-electrode electrolytic cell or a two-electrode electrolytic cell; an anode used is a monolithic electrode; the monolithic electrode includes a carrier and a catalytically active substance loaded on the carrier; and the catalytically active substance includes cobaltosic oxide particle-encapsulated nitrogen-doped carbon nanowires. The method has high activity and high selectivity, and the anodic catalyst is highly tolerant to HMF.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: January 2, 2024
    Assignee: NINGBO INSTITUTE OF MATERIALS TECHNOLOGY & ENGINEERING, CHINESE ACADEMY OF SCIENCES
    Inventors: Chunlin Chen, Zhenqiang Zhou, Jian Zhang
  • Patent number: 11859297
    Abstract: In this disclosure, a process of recycling acid, base and the salt reagents required in the Li recovery process is introduced. A membrane electrolysis cell which incorporates an oxygen depolarized cathode is implemented to generate the required chemicals onsite. The system can utilize a portion of the salar brine or other lithium-containing brine or solid waste to generate hydrochloric or sulfuric acid, sodium hydroxide and carbonate salts. Simultaneous generation of acid and base allows for taking advantage of both chemicals during the conventional Li recovery from brines and mineral rocks. The desalinated water can also be used for the washing steps on the recovery process or returned into the evaporation ponds. The method also can be used for the direct conversion of lithium salts to the high value LiOH product. The method does not produce any solid effluent which makes it easy-to-adopt for use in existing industrial Li recovery plants.
    Type: Grant
    Filed: August 9, 2022
    Date of Patent: January 2, 2024
    Assignee: Mangrove Water Technologies Ltd.
    Inventors: Saad Dara, Beniamin Zahiri
  • Patent number: 11859298
    Abstract: A waste powered hydrogen production system includes a generator set structured to receive associated gas from an oil extraction system and to produce electrical power by combustion of the gas. The waste powered hydrogen production system further includes an electrolyzer structured to receive wastewater from the oil extraction system, to receive the electrical power produced by the generator set, and produce hydrogen therefrom.
    Type: Grant
    Filed: February 6, 2023
    Date of Patent: January 2, 2024
    Assignee: Cummins Power Generation Inc.
    Inventors: Rishi Chandra, Luke Dewey, Abdullah Marta, Jaimie E. Hamilton-Antonson, Dario Patricio Escobar Larenas
  • Patent number: 11859299
    Abstract: An electrolyzer system comprises a stack of one or more electrolyzer cells, each electrolyzer cell comprising first and second half cells respectively comprising first and second electrodes and a separator between the first half cell and the second half cell, wherein a current is applied between the first and second electrodes. The system further comprises first and second electrolyte feed streams for respectively feeding a first electrolyte solution at a first inlet temperature to the first half cells and a second electrolyte solution at a second inlet temperature to the second half cells, first and second electrolyte outlet streams for respectively withdrawing the first and second electrolyte solutions from the first half cells and second half cells, and a temperature control apparatus to control the first inlet temperature at a first specified temperature and to control the second inlet temperature at a second specified temperature.
    Type: Grant
    Filed: February 1, 2023
    Date of Patent: January 2, 2024
    Assignee: Verdagy, Inc.
    Inventors: Thomas H. McWaid, Gal Mariansky, Shizhao Su
  • Patent number: 11859300
    Abstract: Methods and electroplating systems for controlling plating electrolyte concentration on an electrochemical plating apparatus for substrates are disclosed. A method involves: (a) providing an electroplating solution to an electroplating system; (b) electroplating the metal onto the substrate while the substrate is held in a cathode chamber of an electroplating cell of electroplating system; (c) supplying the make-up solution to the electroplating system via a make-up solution inlet; and (d) supplying the secondary electroplating solution to the electroplating system via a secondary electroplating solution inlet. The secondary electroplating solution includes some or all components of the electroplating solution. At least one component of the secondary electroplating solution has a concentration that significantly deviates from its target concentration.
    Type: Grant
    Filed: June 27, 2022
    Date of Patent: January 2, 2024
    Assignee: Lam Research Corporation
    Inventors: Zhian He, Shantinath Ghongadi, Quan Ma, Hyungjun Hur, Cian Sweeney, Quang Nguyen, Rezaul Karim, Jingbin Feng
  • Patent number: 11859302
    Abstract: An electroplating apparatus includes an anode and a cathode, a power supply, a regulating plate, and a controller. The power supply is electrically connected to the anode and the cathode. The regulating plate is disposed between the anode and the cathode. The regulating plate includes an insulation grid plate and a plurality of wires. The controller is electrically connected to the plurality of wires to control a state of an electromagnetic field around the plurality of wires. An electroplating method is also provided.
    Type: Grant
    Filed: March 28, 2022
    Date of Patent: January 2, 2024
    Assignee: Unimicron Technology Corp.
    Inventors: Heng-Ming Nien, Chih-Chiang Lu, Chih-Kai Chan, Shih-Lian Cheng
  • Patent number: 11859303
    Abstract: A plating apparatus for depositing metal on a substrate, comprising a membrane frame (14), a catholyte inlet pipe (30) and a center cap (40). The membrane frame (14) has a center passage (144) which passes through the center of the membrane frame (14). The catholyte inlet pipe (30) is connected to the center passage (144) of the membrane frame (14). The center cap (40) is fixed at the center of the membrane frame (14) and covers over the center passage (144) of the membrane frame (14). The top of the center cap (40) has a plurality of first holes (42). The catholyte inlet pipe (30) supplies catholyte to the center cap (40) through the center passage (144) of the membrane frame (14), and the catholyte is supplied to a center area of the substrate through the first holes (42) of the center cap (40).
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: January 2, 2024
    Assignee: ACM RESEARCH (SHANGHAI), INC.
    Inventors: Zhaowei Jia, Hongchao Yang, Chenhua Lu, Jian Wang, Hui Wang