Patents Issued in January 30, 2024
  • Patent number: 11884550
    Abstract: Shaped gel articles that are formed within a mold cavity and that retain the size and shape of the mold cavity upon removal from the mold cavity, sintered articles prepared from the shaped gel articles, and methods of making the sintered articles are provided. The shaped gel articles are formed from a casting sol that contains colloidal silica particles that are treated with a surface modification composition that includes a silane surface modification agent having a radically polymerizable group. The sintered article has a shape identical to the mold cavity (except in regions where the mold cavity was overfilled) and to the shaped gel article but reduced in size proportional to the amount of isotropic shrinkage.
    Type: Grant
    Filed: August 16, 2017
    Date of Patent: January 30, 2024
    Assignee: 3M Innovative Properties Company
    Inventors: Kathleen M. Humpal, Melissa A. Lackey, Brant U. Kolb, Paul D. Pennington, Mark J. Hendrickson
  • Patent number: 11884551
    Abstract: A precipitated silica having a broad particle size distribution and large median particle size as well as its method of manufacture is provided. The precipitated silica has a CTAB surface area SCTAB in the range from 40 to 300 m2/g, a difference between BET surface area SBET and CTAB surface area SCTAB of at least 35 m2/g, a width of the particle size distribution Ld, measured by centrifugal sedimentation, of at least 1.5, an amount of aluminium WA1 in the range from 0.5 to 7.0 wt %, and a median particle size d50, measured by centrifugal sedimentation, such that for a given value of CTAB surface area SCTAB and amount of aluminium WAl, parameter A, defined by the following equation: A=|d50|+0.782×|SCTAB|?8.524×|WAl|.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: January 30, 2024
    Assignee: RHODIA OPERATIONS
    Inventors: Emmanuelle Allain Najman, Fabien Stocklouser, Pascaline Garbey, Caroline Fayolle, Sylvaine Neveu, Laurent Guy
  • Patent number: 11884552
    Abstract: This disclosure provides systems, methods, and apparatus related to lithium metal oxyfluorides. In one aspect, a method for manufacturing a lithium metal oxyfluoride having a general formula Li1+x(MM?)zO2-yFy, with 0.6?z?0.95, 0<y?0.67, and 0.05?x?0.4, the lithium metal oxyfluoride having a cation-disordered rocksalt structure, includes: providing at least one lithium-based precursor; providing at least one redox-active transition metal-based precursor; providing at least one redox-inactive transition metal-based precursor; providing at least one fluorine-based precursor comprising a fluoropolymer; and mixing the at least one lithium-based precursor, the at least one redox-active transition metal-based precursor, the at least redox-inactive transition metal-based precursor, and the at least one fluorine-based precursor comprising a fluoropolymer to form a mixture.
    Type: Grant
    Filed: October 15, 2021
    Date of Patent: January 30, 2024
    Assignee: The Regents of the University of California
    Inventors: Juhyeon Ahn, Dongchang Chen, Guoying Chen
  • Patent number: 11884553
    Abstract: This magnesium oxide powder contains secondary particles in which a plurality of primary particles of magnesium oxide having a crystal phase and a grain boundary phase are at least partially fused together by the grain boundary phase, and a median diameter obtained by a laser diffraction scattering method is 300 ?m or less.
    Type: Grant
    Filed: December 1, 2021
    Date of Patent: January 30, 2024
    Assignee: UBE MATERIAL INDUSTRIES, LTD.
    Inventors: Isamu Fujikawa, Masamichi Nakagawa, Takashi Hamaoka, Takeshi Himoto, Seiji Yamaguchi, Kunio Watanabe
  • Patent number: 11884554
    Abstract: Process for precipitating a carbonate or (oxy)hydroxide comprising nickel from an aqueous solution of a nickel salt wherein such process is carried out in a vessel comprising (A) a vessel body, (B) one or more elements that control the hydraulic flow of the slurry formed during the precipitation and that induce a loop-type circulation flow, and (C) a stirrer whose stirrer element is in the vessel but located separately from the element(s) (B).
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: January 30, 2024
    Assignee: BASF SE
    Inventors: Christian Riemann, Thorsten Beierling, Matthias Rauls
  • Patent number: 11884555
    Abstract: A fluid vapor distillation apparatus. The apparatus includes a source fluid input, and an evaporator condenser apparatus. The evaporator condenser apparatus includes a substantially cylindrical housing and a plurality of tubes in the housing. The source fluid input is fluidly connected to the evaporator condenser and the evaporator condenser transforms source fluid into steam and transforms compressed steam into product fluid. Also included in the fluid vapor distillation apparatus is a heat exchanger fluidly connected to the source fluid input and a product fluid output. The heat exchanger includes an outer tube and at least one inner tube. Also included in the fluid vapor distillation apparatus is a regenerative blower fluidly connected to the evaporator condenser. The regenerative blower compresses steam, and the compressed steam flows to the evaporative condenser where compressed steam is transformed into product fluid. The fluid vapor distillation apparatus also includes a control system.
    Type: Grant
    Filed: February 12, 2021
    Date of Patent: January 30, 2024
    Assignee: DEKA Products Limited Partnership
    Inventors: Dean Kamen, Ryan K. LaRocque, Christopher C. Langenfeld, Stephen M. Ent, Andrew A. Schnellinger, Prashant Bhat, Stanley B. Smith, III, Otis L. Clapp
  • Patent number: 11884556
    Abstract: Liquid, air, or surface treatment/sterilization/disinfection using pulsed light to eliminate, reduce, degrade, render inert, or nullify physical, chemical, biological, microbiological, or non-microbiological contaminants is disclosed herein. The system also includes at least one power supply powering the light source of the reactor, an ionized wire wrapped outside the light source of the reactor, at least one digital multiplexer connected to the at least one power supply, and a controller to control the at least one digital multiplexer to power the light source to strobe the pulsed light at a predetermined fluence, a predetermined pulsed width, and a predetermined frequency or spectrum to eliminate, reduce, degrade, render inert, or nullify the physical, chemical, biological, microbiological, or non-microbiological contaminants in a liquid flow, air, or surface at a molecular level.
    Type: Grant
    Filed: June 11, 2020
    Date of Patent: January 30, 2024
    Assignee: ARUNA INOVATION LLC
    Inventor: Ameet Chaudhury
  • Patent number: 11884557
    Abstract: A water container for purifying water. The water container includes an opening configured to receive water, a container body arranged to enclose the water and a water purifying unit configured to purify the water. The water purifying unit includes an at least partially transparent plate, which includes a coating of metal-oxide nanoparticles on a first side facing the container body, wherein the first side is configured to be in contact with the water, and an ultraviolet light module configured to radiate towards a second side of the at least partially transparent plate such that light from the ultraviolet light module at least partially passes through the at least partially transparent plate. Also, a method for purifying water within a water container.
    Type: Grant
    Filed: December 8, 2021
    Date of Patent: January 30, 2024
    Assignee: BLUEWATER SWEDEN AB
    Inventor: Bengt Rittri
  • Patent number: 11884558
    Abstract: A fluid device includes: a flow main body including a side wall along a first axis and configured to flow a fluid from an inflow portion provided at one side of the first axis toward an outflow portion provided at the other side of the first axis; a plate provided at the other side of the first axis of the flow main body and having a first surface intersecting the first axis; a standing wall extending along the first axis from the first surface toward the one side of the first axis and having a length along the first axis shorter than the side wall; and an ultrasonic element disposed at an outer side of a collection region of the plate and configured to transmit an ultrasonic wave along the first axis when the standing wall and a region surrounded by the standing wall on the first surface are defined as the collection region.
    Type: Grant
    Filed: October 13, 2021
    Date of Patent: January 30, 2024
    Assignee: SEIKO EPSON CORPORATION
    Inventors: Chikara Kojima, Tomohide Onogi, Kanechika Kiyose, Mitsuru Miyasaka
  • Patent number: 11884559
    Abstract: An electrochemical cell for wastewater treatment comprises a catalyst coated membrane, an open pore mesh placed on each side of the catalyst coated membrane, and a compression frame placed next to each of the open pore meshes. Each compression frame has compression arms spread within the area delimited by the perimeter of the frame to apply a uniform compression force through fasteners which protrude through the compression arms, the open pore meshes and the catalyst coated membrane. Each open pore mesh comprises a flat surface and an embossed surface. The embossed surface can comprise embossed areas around the holes in the open pore mesh, transverse embossed areas which, in the assembled cell, are placed next to the compression arms of the compression frames and peripheral embossed areas along the perimeter of the open pore meshes. The embossed surface provides an improved protection against electro-circuiting.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: January 30, 2024
    Assignee: Axine Water Technologies Inc.
    Inventors: Brendan Wood, Julia Lynne Krasovic
  • Patent number: 11884560
    Abstract: A water softening device includes a container configured to contain water, first and second electrodes arranged in fluid communication with the water, and a power source. The first electrode includes a conversion material that has a first composition and a second composition coexisting with the first composition. The first composition includes calcium ions bonded thereto and the second composition includes sodium ions bonded thereto. The power source supplies current in a first operating state such that the second composition exchanges sodium ions for calcium ions in the water to generate a soft water solution. The first and second electrodes are connected in a second operating state such that the first composition exchanges calcium ions for sodium ions in the water to generate a wastewater solution. The conversion material undergoes a reversible conversion reaction to convert between the first and second compositions within the water stability window.
    Type: Grant
    Filed: October 2, 2019
    Date of Patent: January 30, 2024
    Assignee: Robert Bosch GmbH
    Inventors: Mordechai C. Kornbluth, Jonathan Mailoa, Soo Kim, Georgy Samsonidze, Boris Kozinsky, Saravanan Kuppan, Sondra Hellstrom, Nathan Craig
  • Patent number: 11884561
    Abstract: A device for removing chloride-containing salts from water includes a container configured to contain saline water, a first electrode arranged in fluid communication with the saline water, and a power source. The first electrode includes a conversion material that is substantially insoluble in the saline water and has a composition that includes at least two or more of aluminum, chlorine, copper, iron, oxygen, and potassium. The composition varies over a range with respect to a quantity of chloride ions per formula unit. The power source supplies current to the first electrode in a first operating state so as to induce a reversible conversion reaction in which the conversion material bonds to the chloride ions in the saline water to generate a treated water solution. The conversion material dissociates the chloride ions therefrom into the saline water solution in a second operating state to generate a wastewater solution.
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: January 30, 2024
    Assignee: Robert Bosch GmbH
    Inventors: Mordechai C. Kornbluth, Jonathan Mailoa, Soo Kim, Georgy Samsonidze, Boris Kozinsky, Saravanan Kuppan, Sondra Hellstrom, Nathan Craig
  • Patent number: 11884562
    Abstract: Apparatus and method for electrolysis of urea is capable of removing urea from waste-water generated by human urine or agricultural run-off while simultaneously producing cleaner water and hydrogen gas. The apparatus and method employ at least one water reduction electrode located close to at least one urea oxidation electrode. The water reduction electrode operates to generate a locally high pH such that the urea oxidation electrode operates in a locally high pH envelope where it can perform its reaction efficiently to break down the urea with little or no impact on the pH of the bulk solution.
    Type: Grant
    Filed: May 13, 2021
    Date of Patent: January 30, 2024
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: David R. Baker
  • Patent number: 11884563
    Abstract: A composition and method are disclosed for forming lignin-containing floccules from dissolved lignin, lignin nanoparticles, lignin colloids, or lignin-containing cellulose nanofibers. The floccules may be used to clean oil-contaminated materials such as oil-contaminated plastics or oil-contaminated water. The polymers and oil may then be recovered for further use, without requiring organic solvents.
    Type: Grant
    Filed: March 9, 2022
    Date of Patent: January 30, 2024
    Assignee: Board of Supervisors of Louisiana State University and Agricultural and Mechanical College
    Inventors: Qinglin Wu, Pawan Kumar Mishra
  • Patent number: 11884564
    Abstract: Claimed herein is a method of applying amorphous Co—SiOx to activate PMS and produce SO4·? due to the formation of Co(II)-Ov, pairs via the substitution of Si by Co. The inherent Co significantly change the electronic structure of O and Si atoms in the Co—SiOx via final state effects and increase the conductivity in terms of more effective electron transfers. The claimed method using Co—SiOx functions as a more effective oxidative catalyst for the faster degradation of pollutants. The simplicity of the synthetic procedures indicates that the conductive Co—SiOx could be used for the activation of PMS and other electrochemical applications on a wider scale.
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: January 30, 2024
    Assignee: University of Louisiana at Lafayette
    Inventors: Daniel Dianchen Gang, Qiyu Lian, Mark E. Zappi, William E. Holmes
  • Patent number: 11884565
    Abstract: There is a process for the production of a liquid fuel and of a gaseous fuel from biomass. The biomass is sent to a pre-treatment section to form a homogeneous phase that can be moved and/or pumped, wherein inert parts are separated from the biomass and the biomass shredded and/or ground to reduce its size. The homogeneous phase obtained is then subjected to subcritical hydrothermal liquefaction at a temperature between 240° C. and 310° C. to form a liquefied phase. The liquefied phase is separated. After separation, the process continues in two alternative and mutually exclusive modes. In the first mode, the first aqueous phase is subjected to an anaerobic reaction with multiple stages producing biogas; the oily phase is separated into a bio-oil and a solid residue. In the second mode, the separate mixed phase is separated by density or dynamics forming a first aqueous phase, bio-oil and a gaseous phase.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: January 30, 2024
    Assignee: ENI S.P.A.
    Inventors: Roberta Miglio, Roberto Paglino, Cristian Torri, Alisar Kiwan, Daniele Fabbri
  • Patent number: 11884566
    Abstract: Metal bioremediation and metal mining strategies can include compositions and methods.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: January 30, 2024
    Assignee: Massachusetts Institute of Technology
    Inventors: George Le-Le Sun, Angela M. Belcher
  • Patent number: 11884567
    Abstract: A system and method for producing very high concentration brine streams from which commercially efficiently obtained minerals may be obtained is produced by a dual membrane brine concentrator system (DTRI Concentrator). The system includes a nano-filtration system which removes divalent ions from the seawater, a brine concentrator such as a hollow fine fiber forward osmosis system which receives and further concentrates the brine rejected from the nano-filtration system, a SWRO system which receives the NF system permeate and removes monovalent ions, and another brine concentrator which further concentrates the brine rejected from SWRO system. Various permeate and reject brine flow may be forwarded through the Dual Membrane Brine Concentrator system, and multiple stages of the system components may be used, to enhance brine concentration and improve system efficiency.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: January 30, 2024
    Assignee: SALINE WATER CONVERSION CORPORATION
    Inventors: Ahmed Alamoudi, Mohammed Ayumantakath, Nikolay Voutchkov, Seungwon Ihm, Eslam Alwaznani
  • Patent number: 11884568
    Abstract: This specification discloses a system and method for treating process water from a starch process, and more specifically, recycling a concentrated sodium sulfate solution, obtained from the process water to the starch process.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: January 30, 2024
    Assignee: Corn Products Development, Inc.
    Inventor: Carlos Eduardo Hurtado Gonzalez
  • Patent number: 11884569
    Abstract: A system for biological nitrogen removal and negative carbon discharge from wastewater with low carbon-to-nitrogen ratio may include a water intake pump, a carbon capture apparatus, a carbon recovery sedimentation tank, an integrated ammonium apparatus, an autotrophic denitrification apparatus and a denitrification sedimentation tank that are connected in sequence by pipes. The carbon capture apparatus may include an anode chamber communicated with the water intake pump via a water inlet pipe and a cathode chamber communicated with the carbon recovery sedimentation tank via a first water outlet pipe. The anode and cathode chambers may be spaced apart by an ion exchange resin membrane. The anode and cathode chambers may be provided with an anode plate and a cathode plate electrically connected to positive and negative electrodes of a power source, respectively. A bottom of the cathode chamber may be provided with aerators connected to a first air compressor by a pipe.
    Type: Grant
    Filed: October 19, 2021
    Date of Patent: January 30, 2024
    Inventors: Hong Yao, Sheng Tian, Lu Lu, Lushen Zuo
  • Patent number: 11884570
    Abstract: The disclosure concerns to a process for manufacturing an optical element from glass, wherein a blank of glass is tempered, for example in such a way that the blank is cooler in its interior than on its exterior, wherein the tempered blank between a first mold and a second mold, which are moved towards one another to form a closed cavity, is press-molded, for example on both sides, to form the optical element, wherein the first mold and/or the second mold comprises an escape cavity slide which is compressed by the formation of a closed cavity by means of the first mold and the second mold as a function of the volume of the blank, so that, during press-molding, an additional edge which is dependent on the volume of the blank is formed with the optical element.
    Type: Grant
    Filed: January 28, 2022
    Date of Patent: January 30, 2024
    Assignee: DOCTER OPTICS SE
    Inventors: Alexander Kuppe, Annegret Diatta
  • Patent number: 11884571
    Abstract: A process for producing a fluorinated quartz glass is described, including providing an SiO2 soot body; reacting the SiO2 soot body with a fluorinating agent having a boiling point of greater than or equal to ?10° C. to obtain a fluorinated SiO2 soot body; and vitrifying the fluorinated SiO2 soot body.
    Type: Grant
    Filed: August 6, 2021
    Date of Patent: January 30, 2024
    Assignee: Heraeus Quarzglas GmbH & Co. KG
    Inventors: Stefan Ochs, Martin Trommer, Thomas Kayser
  • Patent number: 11884572
    Abstract: A method for bending glass sheets in an apparatus and an apparatus for bending glass sheets, the apparatus comprising at least one compartment heating the glass sheet to be bent, a press bending station which comprises a male mould to bend a glass sheet, brought through at least one compartment heating the glass sheet to the press bending station by pressing it, and at least one conveyor to transport a mould trolley that may be provided with a female mould and a glass sheet placed on the female mould through the at least one compartment heating the glass sheet to the press bending station.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: January 30, 2024
    Assignee: HEVA Schweiz AG
    Inventor: Esa Ensio Lammi
  • Patent number: 11884573
    Abstract: A method is provided that includes producing filamentary damages in a volume of a glass or glass ceramic element adjacently aligned along a separation line and extend obliquely relative to a surface of the glass or glass ceramic element; and separating a portion from the glass or glass ceramic element along the separation line. The step of producing the filamentary damages includes directing laser pulses of an ultrashort pulse laser obliquely on the surface so that the laser pulses have a light propagation direction that extends obliquely relative to the surface and so that the filamentary damages resulting from the laser pulses have the longitudinal extension that extends obliquely relative to the surface; generating a plasma within the volume with the laser pulses; and displacing the laser pulses at points of incidence over the surface along the separation line.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: January 30, 2024
    Assignee: SCHOTT AG
    Inventors: Andreas Ortner, Albrecht Seidl, Frank-Thomas Lentes, Fabian Wagner
  • Patent number: 11884574
    Abstract: Disclosed herein are methods for forming low melting point glass fibers comprising providing a glass feedstock comprising a low melting point glass and melt-spinning the glass feedstock to produce glass fibers, wherein the glass transition temperature of the glass fibers is less than or equal to about 120% of the glass transition temperature of the glass feedstock. The disclosure also relates to method for forming low melting point glass frit further comprising jet-milling the glass fibers. Low melting point glass frit and fibers produced by the methods described above are also disclosed herein.
    Type: Grant
    Filed: December 20, 2022
    Date of Patent: January 30, 2024
    Assignee: Corning Incorporated
    Inventors: Leonard Charles Dabich, II, Shari Elizabeth Koval, Mark Alejandro Quesada, Paul Arthur Tick
  • Patent number: 11884575
    Abstract: A composition for producing a glass fiber, including the following components with corresponding percentage amounts by weight: SiO2: 57.4-60.9%; Al2O3: greater than 17% and less than or equal to 19.8%; MgO: greater than 9% and less than or equal to 12.8%; CaO: 6.4-11.8%; SrO: 0.1-1.5%; Na2O+K2O: 0.1-1.1%; Fe2O3: 0.05-1%; TiO2: lower than 0.8%; and SiO2+Al2O3: lower than or equal to 79.4%. The total weight percentage of the above components in the composition is greater than 99%. The weight percentage ratio of Al2O3+MgO to SiO2 is between 0.43 and 0.56, and the weight percentage ratio of CaO+MgO to SiO2+Al2O3 is greater than 0.205. The composition can significantly increase the glass modulus, effectively reduce the glass crystallization rate, secure a desirable temperature range (?T) for fiber formation and enhance the refinement of molten glass, thus making it particularly suitable for high performance glass fiber production with refractory-lined furnaces.
    Type: Grant
    Filed: April 15, 2022
    Date of Patent: January 30, 2024
    Assignee: JUSHI GROUP CO., LTD.
    Inventors: Guorong Cao, Lin Zhang, Wenzhong Xing, Xiucheng Hong, Zhonghua Yao
  • Patent number: 11884576
    Abstract: Provided is a display cover member that enables realization of a display having less reflection of the background and excellent anti-sparkle properties. The display cover member has a feature that: one of principal surfaces is formed of an uneven surface; a mean width of roughness profile elements (RSm) of the uneven surface defined by JIS B 0601-2013 is not less than 1 ?m and not more than 30 ?m; and a ratio ?/Rku between an average inclined angle (?) of the roughness profile of the uneven surface and a kurtosis of the roughness profile (Rku) of the uneven surface defined by JIS B 0601-2013 is not less than 0.40° and not more than 1.08°.
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: January 30, 2024
    Assignee: NIPPON ELECTRIC GLASS CO., LTD.
    Inventors: Koji Ikegami, Tomohiro Nagakane
  • Patent number: 11884577
    Abstract: Provided is a display cover member that enables realization of a display having less reflection of the background and excellent anti-sparkle properties. The display cover member has a feature that: one of principal surfaces is formed of an uneven surface; a mean width of roughness profile elements (RSm) of the uneven surface defined by JIS B 0601-2013 is not less than 1 ?m and not more than 30 ?m; and a ratio ?/Rku between an average inclined angle (?) of the roughness profile of the uneven surface and a kurtosis of the roughness profile (Rku) of the uneven surface defined by JIS B 0601-2013 is not less than 0.40° and not more than 1.08°.
    Type: Grant
    Filed: June 5, 2019
    Date of Patent: January 30, 2024
    Assignee: NIPPON ELECTRIC GLASS CO., LTD.
    Inventors: Koji Ikegami, Tomohiro Nagakane
  • Patent number: 11884578
    Abstract: A method for preparation of a self-cleaning coating solution is provided. The method comprises mixing an aluminium compound with a solution of an ethanol compound to form a solution. Further, the formed solution is subjected to a first magnetic stirring. After the first magnetic stirring a first transparent solution is formed. Further, a stabilizing agent is added to the first transparent solution of the aluminium compound and the ethanol compound. Subsequent to adding the stabilizing agent a translucent solution is formed. Finally, the formed translucent solution is subjected to a second magnetic stirring for forming a homogeneous second transparent solution. The formed second transparent solution is a coating solution.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: January 30, 2024
    Inventors: Biji Pullithadathil, Ravi Kottan Renganayagalu, Shalini Halan Joghee, Kamini Velusamy, Selvamani Selvaraj, Kamachi Mudali, Nimmi Singh, Bharat Bhargava, Deepak Kumar
  • Patent number: 11884579
    Abstract: A process for the modification of a surface of a solid material, having the step of contacting the surface with a surface-modifying composition under irradiation with light of a wavelength in the range of 200 to 800 nm optionally in the presence of a photoinitiator, wherein the solid material has surface groups selected from C—OH, Si—OH, C?O and C—O—C groups and wherein the surface-modifying composition has at least a hydrosilane and at least one reactive compound (A) other than the hydrosilane, wherein the reactive compound (A) has at least two functional groups selected from (meth)acrylate, (meth)acrylamide, hydroxyl, carboxylic acid, alkene, alkyne and epoxy, and wherein the amount of hydrosilane in the composition ranges between 0.5 and 99 vol %, and wherein the vol % is determined at 20° C. relative to the total of the surface modifying composition. A solid material having a partial surface modification layer.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: January 30, 2024
    Assignee: SURFIX B.V.
    Inventors: Rui Pedro Rijo Da Costa Carvalho, Anke Kristin Schutztrilling, Adriaan Martin Hubert Henri Van Der Meer, Johannes Teunis Zuilhof, Wout Knoben, Luc Maria Wilhelmus Scheres
  • Patent number: 11884580
    Abstract: A glass article having anti-sun properties includes a glass substrate having a stack of layers, which includes, successively from the surface of the substrate: a first module M1 having a layer based on a dielectric material with a thickness e1 or of a set of layers, a layer TN1 including titanium nitride with a thickness of between 2 nanometers and 80 nanometers, a second module M2 including a layer based on a dielectric material with a thickness e2 or of a set of layers based on dielectric materials with a cumulative thickness e2, an intermediate layer including at least one element selected from silicon, aluminum, titanium or a mixture of at least two of these elements is deposited between the layer TN1 and the first module M1 and/or between the layer TN1 and the second module M2, the intermediate layer having a thickness of between 0.2 nm and 6 nm.
    Type: Grant
    Filed: February 25, 2021
    Date of Patent: January 30, 2024
    Assignee: SAINT-GOBAIN GLASS FRANCE
    Inventors: Corentin Monmeyran, Lorenzo Mancini, Alexandre Dehaupas, Laura Jane Singh
  • Patent number: 11884581
    Abstract: Methods of manufacturing a glass-based article includes exposing a glass-based substrate having a lithium aluminosilicate composition to an ion exchange treatment to form the glass-based article. The ion exchange treatment including a molten salt bath having a concentration of a sodium salt in a range from 8 mol % to 100 mol %. The glass-based article includes sodium having a non-zero varying concentration extending from a surface of the glass-based article to a depth of the glass-based article The glass-based article has compressive stress layer extending from the surface to a spike depth of layer from 4 micrometers to 8 micrometers. The glass-based article includes a molar ratio of potassium oxide (K2O) to sodium oxide (Na2O) averaged over a distance from the surface to a depth of 0.4 micrometers that is greater than or equal to 0 and less than or equal to 1.8.
    Type: Grant
    Filed: August 24, 2022
    Date of Patent: January 30, 2024
    Assignee: CORNING INCORPORATED
    Inventors: Jaymin Amin, Xiaoju Guo, Pascale Oram, Rostislav Vatchev Roussev, Ljerka Ukrainczyk, Taylor Marie Wilkinson
  • Patent number: 11884582
    Abstract: A method for manufacturing an annular glass plate that has an outer circumferential edge surface, an inner circumferential edge surface, and a thickness not larger than 0.6 mm includes processing for manufacturing an annular glass plate by irradiating each of the outer circumferential edge surface and the inner circumferential edge surface of an annular glass blank with a laser beam to melt the outer circumferential edge surface and the inner circumferential edge surface and form molten surfaces such that the molten surfaces in the outer circumferential edge surface and the inner circumferential edge surface each have an arithmetic average surface roughness Ra not larger than 0.1 ?m, and the surface roughness of the molten surface in the inner circumferential edge surface becomes larger than the surface roughness of the molten surface in the outer circumferential edge surface.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: January 30, 2024
    Assignee: HOYA CORPORATION
    Inventor: Shuhei Azuma
  • Patent number: 11884583
    Abstract: The present invention relates to a method of producing a colored glass for a pharmaceutical container by which the transmittance of a glass to be obtained is easily controlled so as to satisfy the standards of the Japanese Pharmacopoeia.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: January 30, 2024
    Assignee: NIPPON ELECTRIC GLASS CO., LTD.
    Inventor: Yuki Yokota
  • Patent number: 11884584
    Abstract: A glass, which is a glass for a magnetic recording medium substrate or for a glass spacer for a magnetic recording and reproducing apparatus, is an amorphous oxide glass. An SiO2 content ranges from 56 mol % to 80 mol %, an Li2O content ranges from 1 mol % to 10 mol %, a B2O3 content ranges from 0 mol % to 4 mol %, a Na2O content is 0 mol %, a total content of MgO and CaO (MgO+CaO) ranges from 9 mol % to 40 mol %, and the oxide glass has a specific gravity of 2.75 g/cm3 or less, a glass transition temperature of 650° C. or higher, and a Young's modulus of 90 GPa or more.
    Type: Grant
    Filed: August 24, 2022
    Date of Patent: January 30, 2024
    Assignee: HOYA CORPORATION
    Inventors: Koichi Sato, Kazuaki Hashimoto
  • Patent number: 11884585
    Abstract: A glass composition includes greater than or equal to 60 mol % to less than or equal to 66 mol % SiO2, greater than or equal to 14 mol % to less than or equal to 16 mol % Al2O3, greater than or equal to 7 mol % to less than or equal to 9 mol % Li2O, greater than or equal to 4 mol % to less than or equal to 6 mol % Na2O, greater than or equal to 0.5 mol % to less than or equal to 3 mol % P2O5, greater than or equal to 0.5 mol % to less than or equal to 6 mol % B2O3; and greater than 0 mol % to less than or equal to 1 mol % TiO2. The glass composition may have a fracture toughness of greater than or equal 0.75 MPa?m. A glass composition includes SiO2, Al2O3, Li2O, Na2O, P2O5, and B2O3, wherein a molar ratio of Li2O/Na2O is greater than or equal to 1.2 to less than or equal to 2.0, the glass has a liquidus viscosity in the range from greater than or equal to 50 kP to less than or equal to 75 kP, and the glass has a KIC fracture toughness greater than or equal to 0.75 MPa·m0.5.
    Type: Grant
    Filed: October 3, 2022
    Date of Patent: January 30, 2024
    Assignee: CORNING INCORPORATED
    Inventors: Xiaoju Guo, Peter Joseph Lezzi, Jian Luo
  • Patent number: 11884586
    Abstract: Provided is a glass composition for glass fiber that suppresses variations in fiber diameter of glass fiber including 45.60 to 59.00% by mass of SiO2, 10.00 to 16.00% by mass of Al2O3, 17.00 to 25.00% by mass of CaO, 0.01 to 9.50% by mass of TiO2, 0.03 to 7.00% by mass of P2O5, 0.00 to 9.50% by mass of ZnO, 0.00 to 2.00% by mass of SO3, 0.01 to 11.50% by mass in total of ZnO and SO3, and 0.00 to 2.00% by mass in total of Na2O, K2O, and Li2O, with respect to the total amount. The content SI of SiO2, the content A of Al2O3, the content C of CaO, the content T of TiO2, the content P of P2O5, the content Z of ZnO, and the content SO of SO3 satisfy the following formula (1): 15.0?(SI/C)2×(A/T)×{P/(SO+Z)}1/4?690.1??(1).
    Type: Grant
    Filed: June 10, 2022
    Date of Patent: January 30, 2024
    Assignee: Nitto Bosekl Co., Ltd.
    Inventors: Yosuke Nukui, Tatsuya Komukai
  • Patent number: 11884587
    Abstract: The present disclosure discloses a silicon-lithium-lead system, a conductive paste and a preparation method thereof, and belongs to the field of solar cells. A silicon-lead-lithium oxide frit includes the following composition: Sia—Pbb—Lic—(Bx—Aly—Biz)-Me-Of, where, 0<a<0.6, 0<b<0.8, 0<c<0.6, x+y+z=d, the x and the y are not zero at the same time, and the z is greater than zero. In the present disclosure, by adding B2O3 and Bi2O3, Al2O3 and Bi2O3, or B2O3, Al2O3 and Bi2O3 at the same time, the prepared frit has greater water resistance, and therefore, a solar cell prepared by using the conductive paste containing glass has good water resistance. In addition, the photoelectric conversion efficiency of the solar cell prepared by using the conductive paste prepared in the present disclosure can also be maintained, or even be slightly improved.
    Type: Grant
    Filed: January 27, 2022
    Date of Patent: January 30, 2024
    Assignee: JIANGSU RIYU PHOTOVOLTAIC NEW MATERIAL TECHNOLOGY CO. LTD
    Inventors: Li Yan, Rui Tian, Song Xu
  • Patent number: 11884588
    Abstract: Described are cementitious reagent materials produced from globally abundant inorganic feedstocks. Also described are methods for the manufacture of such cementitious reagent materials and forming the reagent materials as microspheroidal glassy particles. Also described are apparatuses, systems and methods for the thermochemical production of glassy cementitious reagents with spheroidal morphology. The apparatuses, systems and methods make use of an in-flight melting/quenching technology such that solid particles are flown in suspension, melted in suspension, and then quenched in suspension. The cementitious reagents can be used in concrete to substantially reduce the CO2 emission associated with cement production.
    Type: Grant
    Filed: February 7, 2023
    Date of Patent: January 30, 2024
    Assignee: TERRA CO2 TECHNOLOGY HOLDINGS, INC.
    Inventor: Donald John Lake
  • Patent number: 11884589
    Abstract: Some embodiments of the present invention comprise a method of cementing comprising: placing a settable composition into a well bore, the settable composition comprising remediated coal ash, hydraulic cement, and water; and allowing the settable composition to set. Other embodiments comprise a method of cementing comprising: placing a settable composition into a well bore, the settable composition comprising remediated coal ash, calcium hydroxide (lime), and water; and allowing the settable composition to set. Other embodiments comprise a settable composition comprising: remediated coal ash, hydraulic cement, calcium hydroxide, natural pozzolan and water; and allowing the composition to set. Other embodiments comprise a settable composition comprising remediated coal ash and any combination of hydraulic cement, calcium hydroxide, slag, fly ash, and natural or other pozzolan.
    Type: Grant
    Filed: March 2, 2022
    Date of Patent: January 30, 2024
    Assignee: CR Minerals Company, LLC
    Inventors: Joseph Earl Thomas, Jeffrey Alexander Whidden
  • Patent number: 11884590
    Abstract: A fibre cement composition comprising at least one hydraulic binder, an organic processing aid fibre as the sole organic fibre within the fibre cement composition, and at least one inorganic fibre, which exhibits excellent fire resistance and mechanical properties.
    Type: Grant
    Filed: June 1, 2022
    Date of Patent: January 30, 2024
    Assignee: Swisspearl Group AG
    Inventors: Tassilo Folker Rinder, Oliver Peter Günter Millon, Carsten Zanders
  • Patent number: 11884591
    Abstract: A permeable pavement and cured fiber composition and a related method are provided. The permeable pavement composition includes a quantity of pavement material, and a quantity of cured carbon fiber composite material (CCFCM) configured to be added to the pavement material to produce a reinforced composition having improved characteristics. An example of pavement material includes a pervious concrete material. The method includes providing a quantity of pavement material, and adding a quantity of cured carbon fiber composite material to the pavement material to produce a reinforced composition having improved characteristics.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: January 30, 2024
    Assignees: The Boeing Company, Washington State University
    Inventors: Karl Richard Englund, Somayeh Nassiri, Liv Martha Haselbach, Hui Li, Haifang Wen, Kenneth W. Fischer
  • Patent number: 11884592
    Abstract: A hydraulic composition including water; a hydraulic binder; at least one setting retarder; and at least one polysaccharide; the weight ratio of the water/hydraulic binder being greater than 1.5, methods of using the composition as a mixture in a grout and a corresponding method for preparing a grout and the grout thereby obtained.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: January 30, 2024
    Assignee: CHRYSO
    Inventors: Vanessa Kocaba, Sandra Darguy
  • Patent number: 11884593
    Abstract: A mortar composition, in particular a leveling mortar composition, including: a) 3-45 wt. % of a hydraulic binder, b) 15-80 wt. % of lightweight aggregates, c) 5-50 wt. % of a polymer.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: January 30, 2024
    Assignee: SIKA TECHNOLOGY AG
    Inventors: Luigi Perrino, Tiziano Rattighieri, Alberto Borghi, Corrado Scollo, Daniela Hesselbarth, Luz Granizo
  • Patent number: 11884594
    Abstract: A method of producing high strength shaped alumina by feeding alumina power into an agglomerator having a shaft with mixers able to displace the alumina power along the shaft, spraying a liquid binder onto the alumina power as it is displaced along the shaft to form a shaped alumina, and calcining the shaped alumina. The shaped alumina produced having a loose bulk density of greater than or equal to 1.20 g/ml, a surface area less than 10 m2/g, impurities of less than 5 ppm of individual metals and less than 9 ppm of impurities in total, and/or crush strength of greater than 12,000 psi.
    Type: Grant
    Filed: July 2, 2021
    Date of Patent: January 30, 2024
    Inventors: David A. Barclay, Mark M. Chavez
  • Patent number: 11884595
    Abstract: A composition comprises a zirconia powder, in which 55% or more thereof is monoclinic, and a stabilizer capable of suppressing phase transition of zirconia. An average particle diameter of zirconia particles and particles of the stabilizer is 0.06 ?m to 0.17 ?m. At least a portion of the stabilizer does not form a solid solution with zirconia.
    Type: Grant
    Filed: September 15, 2022
    Date of Patent: January 30, 2024
    Assignee: KURARAY NORITAKE DENTAL INC.
    Inventor: Yoshihisa Ito
  • Patent number: 11884596
    Abstract: The present invention aims to provide a method for producing granules for ceramic production, the method having high productivity and making it possible to obtain a ceramic which, when produced by press molding the granules and firing the resulting press molded product, has physical properties kept from lowering. The present invention is characterized by including: a slurry preparation step of preparing a slurry including a mixture containing a powder of an inorganic compound, a binder, and a solvent; a granulation step of introducing the slurry into a spray drying device to form a granulated substance containing the inorganic compound; an exhaust step of exhausting an atmospheric gas within the spray drying device via a cyclone having a surface made of ceramic; and a step of mixing a fine powder, which has been recovered by the cyclone during the exhaust step, with the granulated substance obtained in the granulation step.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: January 30, 2024
    Assignee: TOKUYAMA CORPORATION
    Inventors: Hironobu Fujimoto, Tsuyoshi Ikeda
  • Patent number: 11884597
    Abstract: Methods for forming a unitary ceramic component are provided. The method may include: positioning a braze reactant layer in a contact area between a first densified ceramic component and a second densified ceramic component; positioning a pack material around at least a portion of the first densified ceramic component or the second densified ceramic component; positioning at least one infiltrate source in fluid communication with the braze reactant layer; and thereafter, heating the at least one infiltrate source, the pack material, the first densified ceramic component, and the second densified ceramic component to a braze temperature that is at or above a melting point of at least one phase of the infiltrate composition such that at least one phase of infiltrate composition melts and flows into the braze reactant layer and reacts with a ceramic precursor compound therein to form a ceramic material.
    Type: Grant
    Filed: June 28, 2022
    Date of Patent: January 30, 2024
    Assignee: General Electric Company
    Inventors: Jerome Geoffrey Magnant, Jared Hogg Weaver, Daniel Gene Dunn
  • Patent number: 11884598
    Abstract: A ceramic honeycomb body comprising a peripheral skin layer and a fiber extending around the outer periphery of a honeycomb core, the fiber embedded in the peripheral skin layer is described. A method of making a honeycomb body having a fiber extending around the outer periphery of a honeycomb core and embedded in the peripheral skin layer is also described.
    Type: Grant
    Filed: February 25, 2020
    Date of Patent: January 30, 2024
    Assignee: Corning, Incorporated
    Inventors: Gregory Albert Merkel, Barbara Anna Oyer, Patrick David Tepesch, James William Zimmermann
  • Patent number: 11884599
    Abstract: A slurry for manufacturing gypsum board is disclosed. The slurry comprises calcined gypsum, water, a foaming agent, and a thickening agent. The thickening agent of the present disclosure acts to improve the cohesiveness of the slurry without adversely affecting the setting time of the slurry, the paper-to-core bond (wet and dry), or the head of the slurry by acting as a defoaming agent or coalescing agent. Examples of suitable thickening agents include cellulose ether and co-polymers containing varying degrees of polyacrylamide and acrylic acid. A gypsum board and method of forming the slurry and the gypsum board are also disclosed. The gypsum board comprises a gypsum layer formed from the slurry.
    Type: Grant
    Filed: March 11, 2022
    Date of Patent: January 30, 2024
    Assignee: Gold Bond Building Products, LLC
    Inventors: Eli Stav, Gopalakrisnan Sethuraman, Ma-Ikay Miatudila, Karen Fey, Joseph J. Bailey