Abstract: A method of modeling a solid shape in a volume of space may include segmenting the volume into a plurality of equal portions of a given first size, determining, with respect to each portion, a first fill status based on whether each respective portion includes material of the shape, segmenting selected portions of the volume, based on the first fill status, into equal portions of a given second size that is smaller than the first size, determining, with respect to each selected portion, a second fill status, segmenting second selected portions of the volume, based on the second fill status, into equal portions of a given third size that is smaller than the second size, determining, with respect to each second selected portion, a third fill status, and generating a hybrid dynamic tree data structure based on the based on the first, second and third fill statuses.
Type:
Grant
Filed:
April 13, 2015
Date of Patent:
May 15, 2018
Inventors:
Thomas Marshall Tucker, Thomas Kurfess, Dmytro Konobrytskyi
Abstract: A marking device (10) comprises a frame (1) (of frame plates (12, 14)) to which are fixed first and second motors (16, 18). A carriage frame (40) is pivoted in the frame about a screw axis (22). A marking head (30) is mounted on the carriage frame for movement in a direction parallel the screw axis. A drive screw (20) is rotationally mounted in the frame along the screw axis and is driven by the first motor (16). The carriage frame is journalled on said drive screw to permit said pivoting about the screw axis. The marking head is driven by rotation of the screw, the carriage frame being pivoted by the second motor.
Abstract: An impact printer having one or multiple lines of hammers on a hammerbank for impacting a print ribbon against a print media after release by one or more electrically energized coils in a magnetic circuit with one or more pole pieces retaining the hammers prior to impact. One or more of the coils has a spaced winding thereby allowing filling of the spaced winding during return winding. Another embodiment utilizes a longitudinal return from an initial winding which can be formed with multiple layers or multiple overlappings of the longitudinal return. The foregoing minimizes a first dimension while having controlled wire crossing resulting in expansion in a second dimension, thereby allowing compaction of magnetic circuits in the first dimension.