Voltage Responsive Variable Resistance Shunt (e.g., Semiconductor Shunts) Patents (Class 102/202.4)
  • Patent number: 11320493
    Abstract: An electric short-circuit device has a first electric contact piece, a second electric contact piece, and a component made of an electrical semiconductor crystalline material which blocks the flow of an electric current between the first contact piece and the second contact piece in at least one direction. An actuator is configured to apply a mechanical force to the component in response to an electric trigger signal and thereby at least partly destroy the crystalline structure of the component.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: May 3, 2022
    Assignee: Siemens Energy Global GmbH & Co. KG
    Inventor: Nils Stahlhut
  • Patent number: 11215433
    Abstract: An electronic ignition circuit for use with a fuse head may include a microcontroller; a firing capacitor operably coupled to the fuse head; a voltage measuring circuit operably coupled to the microcontroller and configured to measure a voltage across the firing capacitor; and a switch operably coupled to the microcontroller, the switch being provided in series with the fuse head and a ground. The microcontroller may be configured control the voltage measuring circuit to measure a first voltage across the firing capacitor; actuate the switch to discharge the firing capacitor across the fuse head in response to a firing signal; control the voltage measuring circuit to measure a second voltage across the firing capacitor; and output a shot detection signal based on the first voltage and the second voltage.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: January 4, 2022
    Assignee: DynaEnergetics Europe GmbH
    Inventors: Andreas Robert Zemla, Sascha Thieltges, Frank Graziola
  • Patent number: 9052450
    Abstract: The present invention provides a plasmonic optical transformer to produce a highly focuses optical beam spot, where the transformer includes a first metal layer, a dielectric layer formed on the first metal layer, and a second metal layer formed on the dielectric layer, where the first metal layer, the dielectric layer, and the second layer are patterned to a shape including a first section having a first cross section, a second section following the first section having a cross-section tapering from the first section to a smaller cross-section, and a third section following the second section having a cross-section matching the tapered smaller cross-section of the second section.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: June 9, 2015
    Assignee: The Regents of the University of California
    Inventors: Hyuck Choo, Stefano Cabrini, P. James Schuck, Xiaogan Liang, Eli Yablonovitch
  • Patent number: 8676448
    Abstract: An occupant protection device includes (i) an electronic control unit having a control board, (ii) a parallel connection bus having two lines, (iii) multiple satellite sensors connected to the parallel connection bus, (iv) a squib connected to the parallel connection bus, and (v) an accident prevention diode located close to the squib. The control board includes an interface and a processor. Each of the satellite sensors includes a distributed system interface which is located between the two lines. The parallel connection bus is supplied with a sensor drive voltage. The electronic control unit starts to operate at least one of the occupant protection portions based on a result of the collision determination by the control board.
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: March 18, 2014
    Assignee: Denso Corporation
    Inventor: Shinji Ooyabu
  • Patent number: 8487419
    Abstract: A method of manufacturing a semiconductor apparatus according to aspects of the invention can include the steps of coating solder on an predetermined area in the upper surface of a lead frame, mounting a chip on solder and melting solder with a hot plate for bonding the chip to the lead frame. The method can also include wiring with bonding wires, turning lead frame upside down, placing lead frame turned upside down on heating cradle, coating solder, the melting point of which is lower than the solder melting point and mounting electronic part on solder; and melting solder with heating cradle for bonding electronic part to lead frame. The bonding with solder can be conducted at a high ambient temperature. Aspects of the semiconductor apparatus can facilitate mounting semiconductor devices and electronic parts on both surfaces of a lead frame divided to form wiring circuits without through complicated manufacturing steps.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: July 16, 2013
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Takashi Katsuki
  • Patent number: 7992494
    Abstract: An ignition circuit for a detonator is disclosed. The circuit includes; an igniter having a first terminal and an opposing second terminal, a first diode electrically connected in series with the igniter at the first terminal, and a second diode electrically connected in series with the igniter at the second terminal. The first and second diodes each have an anode terminal and a cathode terminal, wherein like terminals of the first and second diodes are electrically connected to the igniter, thereby defining proximal terminals proximate the igniter and distal terminals on an opposing side of each respective diode. An energy source and a switch are electrically connected in series with each other, and are electrically connected across the distal terminals. Current flow through the igniter sufficient to ignite the igniter is prevented until an ignition voltage is applied to the distal terminals that is equal to or greater than the reverse breakdown voltage of the first diode or the second diode.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: August 9, 2011
    Assignee: Dyno Nobel Inc.
    Inventor: Eldon K. Hurley
  • Patent number: 7617777
    Abstract: A system and method are disclosed for controlling the launch and burst of pyrotechnic projectiles in a pyrotechnic, or “fireworks”, display.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: November 17, 2009
    Assignee: MagicFire, Inc.
    Inventors: George Bossarte, Glenn W. Dillon, Paul R. McKinley, Wayne C. Haase, Larry G. Nelson
  • Publication number: 20080223241
    Abstract: An ignition circuit for a detonator is disclosed. The circuit includes; an igniter having a first terminal and an opposing second terminal, a first diode electrically connected in series with the igniter at the first terminal, and a second diode electrically connected in series with the igniter at the second terminal. The first and second diodes each have an anode terminal and a cathode terminal, wherein like terminals of the first and second diodes are electrically connected to the igniter, thereby defining proximal terminals proximate the igniter and distal terminals on an opposing side of each respective diode. An energy source and a switch are electrically connected in series with each other, and are electrically connected across the distal terminals. Current flow through the igniter sufficient to ignite the igniter is prevented until an ignition voltage is applied to the distal terminals that is equal to or greater than the reverse breakdown voltage of the first diode or the second diode.
    Type: Application
    Filed: March 11, 2008
    Publication date: September 18, 2008
    Applicant: DYNO NOBEL, INC.
    Inventor: Eldon K. Hurley
  • Patent number: 7227238
    Abstract: An integrated fuse has regions of different doping located within a fuse neck. The integrated fuse includes a polysilicon layer and a silicide layer. The polysilicon layer includes first and second regions having different types of dopants. In one example, the first region has an N-type dopant and the second region has a P-type dopant. The polysilicon layer can also include a third region in between the first and second regions, which also has a different dopant. During a fusing event, a distribution of temperature peaks around the regions of different dopants. By locating regions of different dopants within the fuse neck, agglomeration of the silicide layer starts reliably within the fuse neck (for example, at or near the center of the fuse neck) and proceeds toward the contact regions. An improved post fuse resistance distribution and an increased minimum resistance value in the post fuse resistance distribution is realized compared to conventional polysilicon fuses.
    Type: Grant
    Filed: June 21, 2004
    Date of Patent: June 5, 2007
    Assignee: Broadcom Corporation
    Inventors: Akira Ito, Henry K. Chen
  • Patent number: 7194959
    Abstract: A system and method are disclosed for controlling the launch and burst of pyrotechnic projectiles in a pyrotechnic, or “fireworks”, display.
    Type: Grant
    Filed: October 5, 2004
    Date of Patent: March 27, 2007
    Assignee: MagicFire, Inc.
    Inventors: George Bossarte, Glenn W. Dillon, Paul R. McKinley, Wayne C. Haase, Larry G. Nelson
  • Patent number: 6857369
    Abstract: A system and method are disclosed for controlling the launch and burst of pyrotechnic projectiles in a pyrotechnic, or “fireworks”, display.
    Type: Grant
    Filed: December 6, 2002
    Date of Patent: February 22, 2005
    Assignee: Magic Fire, Inc.
    Inventors: George Bossarto, Glenn W. Dillon, Paul R. McKinley, Wayne C. Haase, Larry G. Nelson
  • Patent number: 6770948
    Abstract: An integrated fuse has regions of different doping located within a fuse neck. The integrated fuse includes a polysilicon layer and a silicide layer. The polysilicon layer includes first and second regions having different types of dopants. In one example, the first region has an N-type dopant and the second region has a P-type dopant. The polysilicon layer can also include a third region in between the first and second regions, which also has a different dopant. During a fusing event, a distribution of temperature peaks around the regions of different dopants. By locating regions of different dopants within the fuse neck, agglomeration of the silicide layer starts reliably within the fuse neck (for example, at or near the center of the fuse neck) and proceeds toward the contact regions. An improved post fuse resistance distribution and an increased minimum resistance value in the post fuse resistance distribution is realized compared to conventional polysilicon fuses.
    Type: Grant
    Filed: April 9, 2003
    Date of Patent: August 3, 2004
    Assignee: Broadcom Corporation
    Inventors: Akira Ito, Henry Kuoshun Chen
  • Patent number: 6734525
    Abstract: A fuse structure and method for fabricating same are disclosed. The fuse structure is designed for opening by conventional laser energy application. The fuse structure is characterized by an absence of high stress areas in the surrounding substrate thereby resulting in higher fabrication yields due to lower occurrence of substrate fracturing or other damage occasioned by the opening of the fuse.
    Type: Grant
    Filed: May 13, 2002
    Date of Patent: May 11, 2004
    Assignee: Taiwan Semiconductor Manufacturing Co. Ltd.
    Inventors: Chieh-Chih Chou, Jiun-Pyng You, Yu-Ching Chang
  • Patent number: 6563188
    Abstract: A semiconductor device of the present invention is provided with a first metal wire formed above a semiconductor substrate with an interlayer insulating film intervened, a fuse formed on interlayer insulating film so as to be spaced at a distance away from first metal wire, an insulating film which covers first metal wire and which has an opening above fuse, a second metal wire formed on insulating film, a first passivation film which covers second metal wire and fuse, and a second passivation film formed on first passivation film, made of a material different from that of first passivation film and having an opening above fuse.
    Type: Grant
    Filed: May 9, 2002
    Date of Patent: May 13, 2003
    Assignees: Mitsubishi Denki Kabushiki Kaisha, Ryoden Semiconductor System Engineering Corporation
    Inventor: Hiroyuki Nagatani
  • Patent number: 6531757
    Abstract: A semiconductor device with a fuse box includes at least two gate electrodes 8, 9 and a fuse member 6. The two gate electrodes 8, 9 are formed on at least one insulating film 13 on a semiconductor substrate 100. The fuse member 6 is formed on the insulating film 13 on the semiconductor substrate 100. The two gate electrodes 8, 9 are electrically connected each other by the fuse member 6. In addition, the insulating film 13 and a field region 2 constituted by a semiconductor region are arranged adjacent to each other in a frame-like guard ring 1. The guard ring 1 is constituted by a semiconductor region formed on the semiconductor substrate 100.
    Type: Grant
    Filed: November 27, 2001
    Date of Patent: March 11, 2003
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Shigeru Shiratake
  • Patent number: 6490977
    Abstract: A system and method are disclosed for controlling the launch and burst of pyrotechnic projectiles in a pyrotechnic, or “fireworks”, display.
    Type: Grant
    Filed: March 30, 1999
    Date of Patent: December 10, 2002
    Assignee: MagicFire, Inc.
    Inventors: George Bossarte, Glenn W. Dillon, Paul R. McKinley, Wayne C. Haase, Larry G. Nelson
  • Patent number: 6467414
    Abstract: An ignitor has an outer metal can containing a quantity of reactive material for initiating a pyrotechnic material. A circuit board has a first side that is in contact with the reactive material and a second side that is isolated from the reactive material. A metal structure adjacent the circuit board is well grounded. At least two electrical pins are electrically connected to first electrical traces formed on the second side of the circuit board. Electrical discharge gaps are formed by second electrical traces extending from the first electrical traces to form sharp points which extend to within less than about 0.127 mm of a conductive path to ground.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: October 22, 2002
    Assignee: Breed Automotive Technology, Inc.
    Inventor: John C. Fisher
  • Patent number: 6343000
    Abstract: This invention provides highly reliable ignition device with superior ease of mass production, and a method for the manufacture thereof. An ignition device is constructed by taking a heating element 40 comprising a bridge element 25 composed of a heating bridge wire 25c which is heated by the passage of an electric current and heating electrodes 25a and 25b located at both ends thereof, and a flexible insulating sheet 26 which carries this bridge element; then welding this heating element to stem electrodes, formed in the stem, via connection guides which are openings provided in the insulating sheet at the location of the heating electrodes.
    Type: Grant
    Filed: April 20, 1999
    Date of Patent: January 29, 2002
    Assignee: Toshiba Hokuto Electronics Corporation
    Inventors: Ryosuke Yokoyama, Toshimi Endou
  • Patent number: 6318267
    Abstract: An integrated circuit configuration, in particular for igniting a restraint device of a motor vehicle, has a capacitor and an ignition element. In this case, a porous region of a semiconductor layer forms a capacitor electrode, which is isolated from a further semiconductor layer by a dielectric layer. The further semiconductor layer being configured as a further capacitor electrode. The further semiconductor layer has a region that is tapered in its cross-section and serves as an ignition element electrically connected to the capacitor.
    Type: Grant
    Filed: June 19, 2000
    Date of Patent: November 20, 2001
    Assignee: Siemens Aktiengesellschaft
    Inventors: Marten Swart, Hubert Rothleitner
  • Patent number: 6220163
    Abstract: The electro-pyrotechnic initiation system preferably comprises an electro-pyrotechnic initiator (1) consisting especially of an insulating support (14) over which a flat resistive heating element (3) and two separate conductive metal areas (15, 16) are extended, the said resistive heating element and the said conductive metal areas being electrically connected to a current source (2) by means of two electrodes (9, 10). A conductive filter device (5), connected in parallel with the said resistive heating element (3), is divided into a varistor (6) and into a capacitor (7) which are connected to the electrodes (9, 10). This conductive filter device (5) has an equivalent resistance which varies depending on the measured electric potential difference between the two electrodes (9, 10) and ensures that the initiator (1) is not operated when the latter is subjected to a high-voltage electrostatic discharge.
    Type: Grant
    Filed: October 6, 1999
    Date of Patent: April 24, 2001
    Assignee: Livbag SNC
    Inventors: Jean-René Duguet, Jean-Pierre Vedel
  • Patent number: 6199484
    Abstract: A semiconductor bridge igniter device (10) having integral voltage anti-fuse protection provides an electric circuit including a first firing leg and, optionally, a monitor leg. The first firing leg includes a first semiconductor bridge having semiconductor pads (14a, 14b) separated and connected by a bridge (14c) and having metallized lands (16a, 16b) disposed over the pads (14a, 14b) so that an electrical potential applied across the metallized lands (16a, 16b) will cause sufficient current to flow through the firing leg of the electric circuit to release energy at the bridge (14c). A dielectric layer (15) is interposed within the first firing leg and has a breakdown voltage equal to a selected threshold voltage (Vth) and therefore provides protection against the device functioning at voltages below the threshold voltage (Vth). A continuity monitor leg of the electric circuit is comprised of either a fusible link (34) or a resistor (36) disposed in parallel to the first firing leg.
    Type: Grant
    Filed: June 15, 1999
    Date of Patent: March 13, 2001
    Assignee: The Ensign-Bickford Company
    Inventors: Bernardo Martinez-Tovar, Martin C. Foster, David B. Novotney
  • Patent number: 6173650
    Abstract: An EFI (exploding foil initiator) or slapper detonator, including a explodable foil (or bridge), a flyer plate and a barrel plate having a movable barrier to close a barrel in a safety mode and for opening the barrel in an arming mode, wherein the movable barrier slides from a closed (safety) position to an open (armed) position under the control of a MEMS (microelectromechanical system) energetic actuator. The slidable barrier is maintained in the closed position by one or more locking devices of the MEMS energetic actuator until predetermined stimuli are detected to cause the locking device(s) to release the slidable barrier, thereby arming the EFI or slapper detonator.
    Type: Grant
    Filed: June 30, 1999
    Date of Patent: January 16, 2001
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Donald R. Garvick, Lawrence C. Fan, Bruce R. Kuester, Gregory R. Birk