Abstract: Techniques of forming a foamed insulation material from gypsum waste are disclosed herein. One example technique includes mechanically comminuting the gypsum waste from an original size into particles of gypsum at a target size smaller than the original size and mixing the particles of the gypsum with a binder to form a mixture of particles and binder. The binder is configured to bind the particles of gypsum upon hydration. The example technique can further include performing air entrainment on the mixture until a foam is formed from the mixture having the particles of gypsum and binder. The foam has water that causes the binder to bind the particles of gypsum. The example technique can then include removing moisture from the mixture with the formed foam to form a foamed insulation material from the particles of gypsum.
Abstract: Some embodiments of the present invention comprise a method of cementing comprising: placing a settable composition into a well bore, the settable composition comprising RFA, hydraulic cement, and water; and allowing the settable composition to set. Other embodiments comprise a method of cementing comprising: placing a settable composition into a well bore, the settable composition comprising RFA, calcium hydroxide (lime), and water; and allowing the settable composition to set. Other embodiments comprise a settable composition comprising: RFA, hydraulic cement, calcium hydroxide, natural pozzolan and water; and allowing the composition to set. Other embodiments comprise a settable composition comprising RFA and any combination of hydraulic cement, calcium hydroxide, slag, fly ash, and natural or other pozzolan.
Type:
Grant
Filed:
February 12, 2018
Date of Patent:
October 29, 2019
Assignee:
CR Minerals Company, LLC
Inventors:
Joseph Earl Thomas, Jeffrey Alexander Whidden
Abstract: An improved osteogenic composition is provided. The composition comprises a foam that contains polymer beads having one or more growth factors such as bone morphogenic protein. Through use of this composition, bone, collagen and/or other tissue growth may be facilitated.
Abstract: A process for treating polluted soils, in particular soils with a leachable fraction greater than 0.4%, wherein the leachable fraction contains predominantly anions, in particular sulfate ions, and/or heavy metals, includes mixing the soil with a sulfoaluminate-clinker-based hydraulic binder, in soil/binder weight proportions of between 1 and 40 parts of binder per 100 parts of soil, the sulfoaluminate clinker containing more than 50% by weight of ye'elimite C4A3S phase, less than 15% by weight of belite C2S phase, and from 1% to 5% by weight of free lime CaO. The process is used for stabilizing soils in situ or before dumping, soils polluted in particular with sulfate anions and/or heavy metal cations.
Type:
Grant
Filed:
May 13, 2013
Date of Patent:
June 13, 2017
Assignee:
CIMENTS FRANCAIS
Inventors:
Emmanuel Moudilou, Cyril Guerandel, Bruno Le Rolland, Stephanie Delair
Abstract: A building product comprises calcium sulphate dihydrate particles bound by an organic binder. The calcium sulphate dihydrate particles each have a longest dimension and a lateral dimension, wherein the lateral dimension corresponds to the maximum breadth of the particle about the axis defined by the longest dimension. The calcium sulphate dihydrate particles have a low aspect ratio such that for at least 75% of the calcium sulphate dihydrate particles, the value of the lateral dimension is at least 20% of the value of the longest dimension.
Abstract: Despite the excellent properties associated with Magnesium OxyChloride (Sorel) based cements and Magnesium OxySulfate based cements, water and corrosion resistance has been limiting factors for achieving greater commercial applications. Such issues can be addressed by incorporating various alkali metal phosphates, such as Magnesium mono- or dihydrogen phosphate (MgHPO4 or MgH2PO4) with alkali metal fatty acids; such as Magnesium Stearate; and metal or alkali metal sulfates such as Aluminum Sulfate or Magnesium Sulfate. Water resistance is further enhanced by either pre-carbonating the mix water or the liquid magnesium chloride phase of the cements, or by adding a carbonate into the powder phase. Accelerated cure of this system has also been obtained by using various inorganic metal oxides. Additionally, improved corrosion resistance is achieved through the use of certain phosphates, zeolites, nitrites and other novel additives.
Type:
Application
Filed:
April 5, 2012
Publication date:
October 10, 2013
Inventors:
Jerry Elliot Rademan, Ronald Wardle, Mark Shand
Abstract: Disclosed is a Thermoanaerobacter sp. bacterial strain (BKHI) isolated from a hot spring, a purified protein (bioremediase) isolated from bacterial strain BKH1, as well as concrete compositions comprising BKH1 and/or the protein, and methods o fusing the protein and/or composition. Also disclosed are nucleic acids encoding the protein isolated from BKHI, as well as expression vectors, host cells, cell lines, and methods for generating and purifying the bioremediase protein.
Abstract: The present invention provides a reinforced calcium phosphate cement, comprising a calcium phosphate cement and a reinforcing polymeric material.
Abstract: Concrete mixtures containing a biological catalyst with silica leaching activity are generally described. In an example, in the presence of the biological catalyst a high strength, environmentally friendly, sustainable concrete mixture is produced. Further, described herein are methods for producing the concrete mixtures.
Abstract: Absorbent hydrogels are formed by reacting a protein meal base, a radical initiator and a polymerizable monomer. Optionally, a cross-linking agent and/or a radical accelerant, such as tetramethylethylenediamine (TMEDA) or sodium bisulfite (NaHSO3), is also added to the mixture. Preferably, the radical initiator is ammonium persulfate (APS) or potassium persulfate (KPS), and the cross-linking agent is preferably trifunctional trimethylolpropane trimethacrylate (TMPTMA) or methylene bis acrylamide (MBA). The polymerizable monomer is preferably acrylic acid, or a combination of acrylic acid and acrylamide. The as-formed hydrogel is washed in order to extract non-reactant components from the gel and then dried. The resultant absorbent and superabsorbent hydrogels have high water uptake ratios, and can be utilized for a variety of applications.
Type:
Grant
Filed:
February 23, 2009
Date of Patent:
April 3, 2012
Assignee:
Battelle Memorial Institute
Inventors:
Herman P. Benecke, Bhima R. Vijayendran, Kevin B. Spahr
Abstract: A calcium phosphate cement composition kit comprising (A) a powdery agent comprising 100 parts by mass of calcium phosphate powder, and 5-50 parts by mass of a powdery apatite/collagen composite, and (B) an aqueous blending liquid; a paste-like mixture being obtained by blending the powdery agent with the aqueous blending liquid, in such a proportion that the aqueous blending liquid is 15-50 parts by mass per the total amount (100 parts by mass) of the calcium phosphate powder and the powdery apatite/collagen composite, and filled in a predetermined prosthetic site in a human body to form a hardened calcium phosphate/collagen composite.
Abstract: A cement mixture is disclosed that includes an aqueous mending agent that is disbursed within but isolated from the cement mixture, wherein the aqueous mending agent will form molecular bonds with hardened cement that is formed by the cement mixture when the mending agent is permitted to flow within the hardened cement.
Type:
Application
Filed:
June 24, 2011
Publication date:
December 29, 2011
Applicant:
Board of Governors for Higher Education, State of Rhode Island and Providence Plantations
Abstract: A fireproof insulating foamed cementitious composition with thermal energy storage capacity is provided for use in producing wall insulation boards, fireproof claddings for steel structures, inner cores of fire resistant wall or door panels, and the like. The composition demonstrates improved energy efficiency in which phase change materials, such as microencapsulates, are used in conjunction with a cementitious mixture of calcined gypsum and hydraulic cement, lightweight aggregates, a polymer latex, and a foaming solution to create stable air bubbles inside the cementitious matrix. The calcined gypsum and the hydraulic cement are present in a weight ratio range from about 1:3 to about 3:1. The composition may further include reinforced fibers, surfactants, inorganic flame retardants, and other additives.
Abstract: Featured are a biocompatible, injectable, self-setting, cohesive, bone-bonding and remodeling calcium phosphate composite material and its use in methods of repairing defective bone, e.g., in vertebroplasty augmentation and kyphoplasty.
Type:
Application
Filed:
April 15, 2009
Publication date:
September 15, 2011
Inventors:
Aliassghar N. Tofighi, Aron D. Rosenberg, Tak Lung Chang, Michael Strunk
Abstract: The invention relates generally to a cement or gypsum composition having improved properties, which is prepared by incorporating an enzyme into a cement material such as a cement, mortar, or concrete, or into a gypsum product. The invention also relates to methods of manufacturing improved cement compositions and gypsum products, methods of improving the compressive strength of cement compositions and gypsum products, and methods of reducing the cost of such compositions by enabling the use of less expensive aggregates in the manufacturing process. More specifically, the invention relates to a cement composition or a gypsum composition, optionally including at least one aggregate and optionally including at least one pozzolan, comprising a cement material or gypsum optionally including aggregate(s) and pozzolan(s) having blended therein an enzyme.
Abstract: Disclosed is a Thermoanaerobacter sp. bacterial strain (BKH1) isolated from a hot spring, a purified protein (bioremediase) isolated from bacterial strain BKH1, as well as concrete compositions comprising BKH1 and/or the protein, and methods of using the protein and/or composition. Also disclosed are nucleic acids encoding the protein isolated from BKH1, as well as expression vectors, host cells, cell lines, and methods for generating and purifying the bioremediase protein.
Abstract: The present invention concerns a method for preparing materials containing binder systems derived from amorphous silica and bases as well as the materials prepared by the method. Relative to known methods, the present invention allows for a continuous production of material as the two components of the binder are brought onto into contact where the binder system is to be applied. The product achieved by the invention has a broad range of applications, such as for construction materials, insulating materials, fire proof materials, reinforcement materials etc. The present invention also relates to a method for preparing materials containing binder systems derived from amorphous inorganic material and bases as well as the materials prepared by the method.
Abstract: A method for producing a cement-containing material having a low content of soluble Cr (VI), the method including providing a cement-containing material with metallic sulphate particles coated with at least one product of the hydrolysis of a collagen material.
Abstract: A method and composition is provided using whey protein as a retarder in a cementing composition for use in cementing operations in a subterranean zone penetrated by a well bore.
Type:
Grant
Filed:
March 19, 2003
Date of Patent:
October 5, 2004
Assignee:
Halliburton Energy Services, Inc.
Inventors:
Bach Dao, Marcel Rietjens, Jan Pieter Vijn
Abstract: The present invention provides improved foamed well cement slurries, additives and methods. The foamed well cement slurries are basically comprised of a hydraulic cement, sufficient water to form a pumpable slurry, sufficient gas to form a foam and an effective amount of an additive for foaming the slurry comprised of hydrolyzed keratin.
Type:
Application
Filed:
August 13, 2002
Publication date:
January 2, 2003
Inventors:
Jiten Chatterji, Roger S. Cromwell, Chad R. Brenneis, Bobby J. King, Dennis W. Gray, Frank Zamora
Abstract: A method of reducing the curing time of drywall joint compound, and thereby reducing the time required to finish drywall joints or to repair plaster walls, includes adding a predetermined amount of a drying agent to a conventional ready-mixed drywall joint compound. The drying agent preferably comprises at least one compound selected from the group of compounds consisting of plaster of Paris, calcium carbonate, gypsum, crystallized silicon dioxide (quartz), Portland cement, perlite, lime, hydroxy ethyl ether of cellulose, polyvinyl alcohol, starch, wood fiber, potassium naphthalene sulfon, aluminum sulfate, sodium citrate, ammonium tartrate, hydrolyzed protein, monosodium phosphate, sodium naphthalene sulfonate, potassium sulfate and various trace materials, or mixtures thereof A sufficient amount of water is added to the drying agent to facilitate mixing the drying agent with the drywall joint compound to form a joint compound mixture.
Abstract: The present invention is a biodegradable, reversibly-swellable, polyvalent cation-binding, protein-based hydrogel which comprises an acyl-modified protein matrix in which the acyl-modified protein matrix is crosslinked with a bifunctional crosslinking reagent, and a method of making the same.
Abstract: Calcium phosphate cements are provided. The subject cements comprise amorphous calcium phosphate, at least one additional calcium source, usually an additional calcium phosphate, and a liquid component, such as a physiologically acceptable lubricant. Upon combination of the cement components, a flowable composition capable of setting in vivo into a solid calcium phosphate mineral product, such as hydroxyapatite, is produced. The subject cement compositions find use in a variety of applications, including the treatment of injured or compromised hard tissue.
Abstract: Mineralized collagen is prepared by forming calcium phosphate mineral under mild agitation in situ in the presence of dispersed collagen fibrils. A stable composition is obtained with desirable physical characteristics mimicking the characteristics of bone.
Type:
Grant
Filed:
November 23, 1992
Date of Patent:
October 3, 1995
Assignee:
Norian Corporation
Inventors:
Brent R. Constantz, Subramanian Gunasekaran
Abstract: A composition is disclosed comprising a pharmaceutically acceptable admixture of an osteogenic protein; a porous particulate polymer matrix; an osteogenic protein-sequestering amount of blood clot; and a calcium sulfate hemihydrate-containing substance. Also disclosed are formulations of bone morphogenetic proteins with improved solubility and/or stability characteristics.
Type:
Grant
Filed:
September 10, 1993
Date of Patent:
January 31, 1995
Assignee:
Genetics Institute, Inc.
Inventors:
Kalvin W. K. Yim, Michael C. Huberty, Richard P. Northey, Jr., Jay A. Schrier
Abstract: The addition of ethylene oxide/propylene oxide block copolymers containing 5 to 35 weight % of ethylene oxy groups and molar masses of the propylene glycol block between 1500 and 3000 to dry, hydraulic binder materials results in reduced dust formation, improved wettability, and enhanced flow properties of these materials when they are mixed with water.
Type:
Grant
Filed:
December 20, 1991
Date of Patent:
November 1, 1994
Assignee:
Henkel Kommanditgesellschaft auf Aktien
Inventors:
Bernhard Knop, Horst Tamm, Gerhard Walter
Abstract: Mineralized collagen is prepared by forming calcium phosphate mineral under mild agitation in situ in the presence of dispersed collagen fibrils. A stable composition is obtained with desirable physical characteristics mimicking the characteristics of bone.
Type:
Grant
Filed:
February 26, 1992
Date of Patent:
July 27, 1993
Assignee:
Norian Corporation
Inventors:
Brent R. Constantz, Subramanian Gunasekaran
Abstract: The present invention relates to an air-entraining adjuvant.This adjuvant comprises animal whole blood and/or cruor serving as the actual air-entraining agent, and also comprises blood plasma as a stabilizer for the entrained air, preferably in pulverulent or atomized form. The proportion of blood plasma in the adjuvant is advantageously from 15 to 25% by weight. The said adjuvant also contains dispersants of the bentonite type and/or aluminomagnesium clay type.This gives an adjuvant having an exceptional air-entraining capacity with a high stability; it is easy to work with as any type of mixer can be used.
Abstract: A synthetic Class C fly ash results from a substantially homogeneous blend of about 40-60% by weight of a Class F fly ash and about 60-40% by weight of cement kiln dust (CKD). This new fly ash can replace about 25-50% by weight of portland cement in conventional formulations with coarse and fine aggregate for making general purpose concrete and particularly ready-mix concrete with comparable compressive strength and like properties.