Abstract: Provided is a thermal insulation having both excellent thermal insulating performance and excellent strength, and a method of producing the same. A method of producing a thermal insulation according to the present invention includes curing (S2) a dry-pressed compact, including silica fine particles each having an average particle diameter of 50 nm or less and a reinforcement fiber, at a relative humidity of 70% or more.
Abstract: A method to significantly reduce the need for treating bottom ash with a bonding agent, such as lime or concrete, as is typically done by Waste-to-Energy facilities within the United States of America. Furthermore it is a method that will greatly reduce the costs associated with freight, and disposal typically associated with WTE bottom ash by extracting excess water, metallic, and eliminating the need for supplemental additives such as lime or concrete.
Type:
Grant
Filed:
December 18, 2013
Date of Patent:
December 9, 2014
Inventors:
Michael Brandon Rush, Gregory Scott Rush
Abstract: A system and method of using a double-effect-reactor to dispose incinerated flue gas and improve cement yields. The double-effect-reactor features an incinerated reaction chamber and a gas-solid suspension mixing chamber. The system includes the double-effect-reactor, a high temperature dust-arrester, a system for recovery of thermal energy and dust removal, a triple valve, and an independent chimney. Also disclosed is a method in which combines the double-effect-reactor with a cement production system.
Abstract: Waste storage vessels formed from a composition including calcium silicate, magnesium or calcium oxides and an acid phosphate are provided. The composition may also include fly ash or kaolin with or without the calcium silicate.
Abstract: A CO2 control device and method for capturing CO2 from fluid flow, including: a flow-through apparatus and an CO2 absorbing filter treated with an alkaline material which is housed within the flow-through apparatus. The flow-through apparatus receives fluid flow and the CO2 from the fluid flow is absorbed by the CO2 absorbing filter. The absorbed CO2 is converted into CaCO3 which is combined with volcanic ash to form a useful cement material.
Abstract: A CO2 control device and method for capturing CO2 from fluid flow, including: a flow-through apparatus and an CO2 absorbing filter treated with an alkaline material which is housed within the flow-through apparatus. The flow-through apparatus receives fluid flow and the CO2 from the fluid flow is absorbed by the CO2 absorbing filter. The absorbed CO2 is converted into CaCO3 which is combined with volcanic ash to form a useful cement material.
Abstract: Disclosed herein is a method for producing a recycled hardened material using waste gypsum. The method comprises treating acidic wastewater generated in the production of copper, zinc or titanium or the production of sodium hydroxide (caustic soda) and chlorine using saline water, with calcium hydroxide (slaked lime), so as to precipitate sludge, and mixing the precipitated sludge with pulp sludge ashes having pozzolanic properties.
Abstract: A patching composition in the form of a putty composition for application to concrete surfaces. The composition comprises a substantial portion of a conventional cement, such as a Portland cement, and a silica sand selected to have the right consistency and density along with calcium oxide. The composition is then mixed in water and applied to voids or holes in a concrete wall. The composition, when applied as a single coating and fully cured, results in an appearance similar to that of the concrete and provides strength characteristics substantially equivalent to that of the original concrete.