Forming A Single-crystal Region By Liquefying A Region Of A Single-crystal And Adjusting The Composition Of The Liquid (e.g., Alloying, Regrowth) Patents (Class 117/53)
  • Patent number: 11049744
    Abstract: One or more processors determine a predicted sorting bin of a semiconductor device, based on measurement and test data performed on the semiconductor device subsequent to a current metallization layer. A current predicted sorting bin and a target soring bin are determined by a machine learning model for the semiconductor device; the target bin include higher performance semiconductor devices than the predicted sorting bin. The model determines a performance level improvement attainable by adjustments made to process parameters of subsequent metallization layers of the semiconductor device. Adjustments to process parameters are generated, based on measurement and test data of the current metallization layer of semiconductor device, and the adjustment outputs for the process parameters of the subsequent metallization layers of the semiconductor device are made available to the one or more subsequent metallization layer processes by a feed-forward mechanism.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: June 29, 2021
    Assignee: International Business Machines Corporation
    Inventors: Benjamin D. Briggs, Lawrence A. Clevenger, Nicholas A. Lanzillo, Michael Rizzolo, Theodorus E. Standaert, James Stathis
  • Patent number: 10228495
    Abstract: A method of coating an optical substrate with a transparent, electrically conductive coating includes depositing a semiconductor coating over a surface of an optical substrate. The semiconductor coating has broadband optical transmittance. Channels are formed in the semiconductor coating. The method includes coating over the semiconductor coating and filling the channels with a doped semiconductor. The doped semiconductor is removed from the semiconductor coating, leaving the doped semiconductor in the channels.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: March 12, 2019
    Assignee: Goodrich Corporation
    Inventor: Bradley D. Schwartz
  • Patent number: 8945302
    Abstract: Method for crystal growth from a surfactant of a metal-nonmetal (MN) compound, including the procedures of providing a seed crystal, introducing atoms of a first metal to the seed crystal thus forming a thin liquid metal wetting layer on a surface of the seed crystal, setting a temperature of the seed crystal below a minimal temperature required for dissolving MN molecules in the wetting layer and above a melting point of the first metal, each one of the MN molecules being formed from an atom of a second metal and an atom of a first nonmetal, introducing the MN molecules which form an MN surfactant monolayer, thereby facilitating a formation of the wetting layer between the MN surfactant monolayer and the surface of the seed crystal, and regulating a thickness of the wetting layer, thereby growing an epitaxial layer of the MN compound on the seed crystal.
    Type: Grant
    Filed: March 4, 2012
    Date of Patent: February 3, 2015
    Assignee: Mosaic Crystals Ltd.
    Inventor: Moshe Einav
  • Patent number: 8940095
    Abstract: An apparatus for growth of uniform multi-component single crystals is provided. The single crystal material has at least three elements and has a diameter of at least 50 mm, a dislocation density of less than 100 cm?2 and a radial compositional variation of less than 1%.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: January 27, 2015
    Assignee: Rensselaer Polytechnic Institute
    Inventor: Partha Dutta
  • Patent number: 8741059
    Abstract: According to the present invention, there is provided a single-crystal manufacturing apparatus based on Czochralski method, comprising at least: a main chamber configured to accommodate hot zone components including a crucible; and a pull chamber configured to accommodate and take out a single crystal pulled from a raw material melt contained in the crucible, wherein the apparatus further comprises: a cooling pipe which is arranged above the crucible and in which a cooling medium is circulated; and a moving mechanism that moves up and down the cooling pipe, and the hot zone components are cooled down by utilizing the moving mechanism to move down the cooling pipe toward the crucible after growth of the single crystal, and a method for manufacturing a single crystal is also provided.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: June 3, 2014
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventor: Takao Abe
  • Patent number: 8501139
    Abstract: One embodiment of the present invention is a method for producing a silicon (Si) and/or germanium (Ge) foil, the method including: dissolving a Si and/or Ge source material in a molten metallic bath at an elevated temperature T2, wherein the density of Si and/or Ge is smaller than the density of the molten metallic bath; cooling the molten metallic bath to a lower temperature T1, thereby causing Si and/or Ge to separate out of the molten metallic bath and to float and grow as a Si and/or Ge foil on a top surface of the molten metallic bath; and separating the floating Si and/or Ge foil from the top surface of the molten metallic bath.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: August 6, 2013
    Inventor: Uri Cohen
  • Patent number: 8210906
    Abstract: A wafer slicing method includes winding a wire around rollers and pressing the wire against an ingot while supplying slurry to the rollers. A previously conducted experiment provides a supply temperature profile of the slurry during the slicing process and the relationship to the axial displacement of the rollers. This relationship is used to implement slurry delivery during the slicing process. The resultant wafers are bowed in a uniform direction. This slicing method provides excellent reproducibility in addition to producing wafers that are bowed in a uniform direction.
    Type: Grant
    Filed: August 22, 2007
    Date of Patent: July 3, 2012
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Hiroshi Oishi, Daisuke Nakamata
  • Patent number: 8197595
    Abstract: A method for producing thin silicon rods using a floating zone crystallization process includes supplying high frequency (HF) current to a flat induction coil having a central opening, a plurality of draw openings and a plate with a slot as a current supply of the HF current so as to provide a circumfluent current to the central opening. An upper end of a raw silicon rod is heated by induction using the flat induction coil so as to form a melt pool. A thin silicon rod is drawn upwards through each of the plurality of draw openings in the flat induction coil from the melt pool without drawing a thin silicon rod through the central opening having the circumfluent current.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: June 12, 2012
    Assignee: PV Silicon Forschungs und Produktions GmbH
    Inventors: Helge Riemann, Friedrich-Wilhelm Schulze, Joerg Fischer, Matthias Renner
  • Patent number: 7749872
    Abstract: Single-crystalline growth is realized using a liquid-phase crystallization approach involving the inhibition of defects typically associated with liquid-phase crystalline growth of lattice mismatched materials. According to one example embodiment, a semiconductor device structure includes a substantially single-crystal region. A liquid-phase material, such as Ge or a semiconductor compound, is crystallized to form the single-crystal region using an approach involving defect inhibition for the promotion of single-crystalline growth. In some instances, this defect inhibition involves the reduction and/or elimination of defects using a relatively small physical opening via which a crystalline growth front propagates. In other instances, this defect inhibition involves causing a change in crystallization front direction relative to a crystallization seed location.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: July 6, 2010
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: James D. Plummer, Peter B. Griffin, Jia Feng, Shu-Lu Chen
  • Patent number: 7611577
    Abstract: A manufacturing method of a semiconductor thin film decreases the number of and controls the direction of crystal grain boundaries. A first beam irradiated onto amorphous silicon produces a radial temperature gradient centered on a tip of a concave. This forms a crystal grain in the concave tip, which grows in both the beam width and length direction. After the second beam and on, growth is repeated using the crystal grain formed in the tip of the concave as the seed. This forms a band-form crystal grain with a wider than that of the conventional narrow-line beam, with the tip of the concave being the start point. Further, by setting the periphery of the concave pattern to be equal or less than the crystal grain diameter in the direction vertical to the beam scanning direction, it is possible to form the band-form crystal grain being lined continuously.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: November 3, 2009
    Assignee: NEC Corporation
    Inventor: Mitsuru Nakata
  • Patent number: 7498243
    Abstract: Single-crystalline growth is realized using a liquid-phase crystallization approach involving the inhibition of defects typically associated with liquid-phase crystalline growth of lattice mismatched materials. According to one example embodiment, a semiconductor device structure includes a substantially single-crystal region. A liquid-phase material is crystallized to form the single-crystal region using an approach involving defect inhibition for the promotion of single-crystalline growth. In some instances, this defect inhibition involves the reduction and/or elimination of defects using a relatively small physical opening via which a crystalline growth front propagates. In other instances, this defect inhibition involves causing a change in crystallization front direction relative to a crystallization seed location.
    Type: Grant
    Filed: March 17, 2004
    Date of Patent: March 3, 2009
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Yaocheng Liu, Michael D. Deal, James D. Plummer
  • Patent number: 7396407
    Abstract: The present invention discloses the use of edge-angle-optimized solid phase epitaxy for forming hybrid orientation substrates comprising changed-orientation Si device regions free of the trench-edge defects typically seen when trench-isolated regions of Si are recrystallized to the orientation of an underlying single-crystal Si template after an amorphization step. For the case of amorphized Si regions recrystallizing to (100) surface orientation, the trench-edge-defect-free recrystallization of edge-angle-optimized solid phase epitaxy may be achieved in rectilinear Si device regions whose edges align with the (100) crystal's in-plane <100> directions.
    Type: Grant
    Filed: April 18, 2006
    Date of Patent: July 8, 2008
    Assignee: International Business Machines Corporation
    Inventors: Katherine L. Saenger, Chun-yung Sung, Haizhou Yin
  • Publication number: 20070187668
    Abstract: A single crystal substrate and method of fabricating the same are provided. The single crystal substrate includes an insulator having a window exposing a portion of a substrate, a selective epitaxial growth layer formed on the portion of the substrate exposed through the window and a single crystalline layer formed on the insulator and the selective epitaxial growth layer using the selective epitaxial growth layer as an epitaxial seed layer.
    Type: Application
    Filed: November 13, 2006
    Publication date: August 16, 2007
    Inventors: Takashi Noguchi, Hans S. Cho, Wenxu Xianyu, Huaxiang Yin
  • Publication number: 20070169684
    Abstract: Methods and apparatuses are provided for casting silicon for photovoltaic cells and other applications. With such methods and apparatuses, a cast body of monocrystalline silicon may be formed that is free of, or substantially free of, radially-distributed impurities and defects and having at least two dimensions that are each at least about 35 cm is provided.
    Type: Application
    Filed: January 18, 2007
    Publication date: July 26, 2007
    Applicant: BP Corporation North America Inc.
    Inventor: Nathan G. Stoddard
  • Publication number: 20020098418
    Abstract: Disclosed is a storage medium which comprises strontium barium niobate single crystal containing europium and cerium as impurities. The material may be used in which the strontium barium niobate has a chemical formula: SrxBa1-xNb2O6 where x satisfies 0.25≦x≦0.75. Further, small amounts of cerium and europium are added to a main component comprised by strontium, barium, niobate and oxygen. The optical material can be used in various optical devices such as a holographic storage medium, a phase conjugate mirror and an optical amplifier.
    Type: Application
    Filed: June 20, 1997
    Publication date: July 25, 2002
    Inventors: SHOGO YAGI, MICHIO ONO, TADAYUKI IMAI, HIROKI YAMAZAKI
  • Patent number: 5612251
    Abstract: In a manufacturing method and device for a polycrystalline silicon, the manufacturing method forms amorphous silicon on the substrate, and an adiabatic layer between substrate and amorphous silicon if needed. The amorphous silicon is preliminarily heated and melted, and is evenly supplied with heat when the amorphous silicon is re-crystallized, to thereby slow down the re-crystallization. Also, a manufacturing device has first and second light sources for supplying an optical energy to a-Si formed on substrate. A uniformed and large sized grain can be formed, and specifically, cost reduction is possible since the general glass substrate can be used.
    Type: Grant
    Filed: September 15, 1995
    Date of Patent: March 18, 1997
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Jae-won Lee
  • Patent number: 5549748
    Abstract: A method of preparing single crystals. The method of preparation involves preparing precursor materials of a particular composition, heating the precursor material to achieve a peritectic mixture of peritectic liquid and crystals, cooling the peritectic mixture to quench directly the mixture on a porous, wettable inert substrate to wick off the peritectic liquid, leaving single crystals on the porous substrate. Alternatively, the peritectic mixture can be cooled to a solid mass and reheated on a porous, inert substrate to melt the matrix of peritectic fluid while leaving the crystals unmelted, allowing the wicking away of the peritectic liquid.
    Type: Grant
    Filed: January 12, 1995
    Date of Patent: August 27, 1996
    Assignee: University of Chicago
    Inventors: Volker R. Todt, Suvankar Sengupta, Donglu Shi
  • Patent number: RE41512
    Abstract: A crucible is formed of a cylindrical body member and a disk-shaped nozzle member fitted to the bottom portion of the body member, and the nozzle member is provided with a nozzle hole for discharging out a semiconductor molten solution dropwise therethrough. The semiconductor molten solution drops discharged out of the crucible through the nozzle hole are cooled and solidified during falling to become semiconductor grains. Silicon grains having high crystal quality can be manufactured at low cost.
    Type: Grant
    Filed: February 13, 2008
    Date of Patent: August 17, 2010
    Assignee: Kyocera Corporation
    Inventors: Nobuyuki Kitahara, Toshio Suzuki, Noboru Suda, Shin Sugawara, Hisao Arimune