Growth Confined By A Solid Member Other Than Seed Or Product (e.g., Bridgman-stockbarger Method) Patents (Class 117/81)
-
Patent number: 8815392Abstract: A process is disclosed for producing a doped gallium arsenide single crystal by melting a gallium arsenide starting material and subsequently solidifying the gallium arsenide melt, wherein the gallium arsenide melt contains an excess of gallium relative to the stoichiometric composition, and wherein it is provided for a boron concentration of at least 5×1017 cm?3 in the melt or in the obtained crystal. The thus obtained crystal is characterized by a unique combination of low dislocation density, high conductivity and yet excellent, very low optic absorption, particularly in the range of the near infrared.Type: GrantFiled: November 8, 2012Date of Patent: August 26, 2014Assignee: Freiberger Compound Materials GmbHInventors: Ulrich Kretzer, Frank Börner, Stefan Eichler, Frieder Kropfgans
-
Publication number: 20140202377Abstract: A crucible for use in producing a compound crystal in which a pre-treated product is made by melting a powdery or granular compound raw material and then cooling and solidifying it in a pre-treatment furnace, and the compound crystal is grown by melting the pre-treated product and then cooling and solidifying it in a crystal growing furnace, the crucible comprising: a first member having a bottom portion and a cylindrical portion; and a hollow cylindrical second member that is capable to be connected to the cylindrical portion and to be separated therefrom, wherein: in a state in which the first member and the second member are connected together, a large capacity crucible for manufacture of the pre-treated product is formed; and in a state in which the first member and the second member are separated from one another, a small capacity crucible for crystal growth is formed.Type: ApplicationFiled: January 24, 2014Publication date: July 24, 2014Applicant: NIKON CORPORATIONInventor: Hidenori SUGISAKI
-
Patent number: 8784561Abstract: Methods are disclosed for inhibiting heat transfer through lateral sidewalls of a support member positioned beneath a crucible in a directional solidification furnace. The methods include the use of insulation positioned adjacent the lateral sidewalls of the support member. The insulation inhibits heat transfer through the lateral sidewalls of the support member to ensure the one-dimensional transfer of heat from the melt through the support member.Type: GrantFiled: June 25, 2012Date of Patent: July 22, 2014Assignee: MEMC Singapore Pte. Ltd. (UEN200614794D)Inventors: Rituraj Nandan, Benjamin Michael Meyer, Lee William Ferry
-
Patent number: 8784560Abstract: A method for producing a crystallized compound semiconductor material comprises synthesizing said material by fusion and inter-reaction of its constituents placed in elementary form constituting a charge into a sealed ampoule, and then crystallizing the resulting material in liquid form by cooling.Type: GrantFiled: February 16, 2011Date of Patent: July 22, 2014Assignee: Societe Francaise de Detecteurs Infrarouges-SofradirInventors: Sylvain Paltrier, Thierry Miguet
-
Patent number: 8771560Abstract: In a process for manufacturing doped semiconductor single crystal comprises solidifying in a crucible, the amount of dopant is added into the semiconductor melt after the beginning of the crystal growth onto the seed crystal, or after at least partial solidification of the semiconductor single crystal in a conical or tapered portion of the crucible. Dopant may be partially added in advance into the crucible, with the remainder added into the semiconductor melt as described. Type III-V semiconductor single crystals or wafers having a diameter of at least about 100 mm, can be prepared having an electrical conductivity of at least about 250 Siemens/cm, and/or an electric resistivity of at most about 4×10?3 ?cm, and/or a significantly improved ratio of hall mobility to charge carrier concentration.Type: GrantFiled: February 20, 2008Date of Patent: July 8, 2014Assignee: Freiberger Compound Materials GmbHInventors: Ulrich Kretzer, Stefan Eichler, Thomas Bünger
-
Publication number: 20140174341Abstract: A crucible for growing crystals, in particular a sapphire single crystal, includes a base crucible made of W, Mo, Re or an alloy of these materials and an inner lining made of W, Mo, Re or an alloy of these materials. The base crucible has a substantially pot-like form. The inner lining has at least a pot-like first portion, which covers a bottom region of the base crucible, and a jacket-like second portion, which at least partially covers a wall region of the base crucible. The first portion and the second portion are formed by separate components. A process for growing sapphire single crystals using a crucible is also provided.Type: ApplicationFiled: August 3, 2012Publication date: June 26, 2014Applicant: PLANSEE SEInventors: Bernd Kleinpass, Hermann Walser
-
Patent number: 8747552Abstract: Fabrication of doped AlN crystals and/or AlGaN epitaxial layers with high conductivity and mobility is accomplished by, for example, forming mixed crystals including a plurality of impurity species and electrically activating at least a portion of the crystal.Type: GrantFiled: December 18, 2009Date of Patent: June 10, 2014Assignee: Crystal IS, Inc.Inventors: Glen A. Slack, Leo J. Schowalter
-
Publication number: 20140138571Abstract: The present invention provides a magnetoelectric material in which an electric property is capable of being controlled by a magnetic field or a magnetic property is capable of being controlled by an electric field, and a method of manufacturing the same. Particularly, the present invention provides a magnetoelectric material in which a distance between magnetic ions interacting with each other is controlled by using non-magnetic ions or alkaline earth metal ions, and a method of manufacturing the same.Type: ApplicationFiled: November 18, 2013Publication date: May 22, 2014Applicant: SNU R&DB FOUNDATIONInventors: Kee Hoon KIM, Sae Hwan CHUN, Yi Sheng CHAI, Kwang Woo SHIN
-
Publication number: 20140133014Abstract: The present invention relates to a borate birefringent crystal applicable to ultraviolet (UV) or deep ultraviolet (DUV) range, with chemical formula of Ba2Mg(B3O6)2. The borate birefringent crystal belongs to a trigonal system, with space group of R-3 wherein a=0.70528(3) nm, c=1.65520(9) nm and Z=12. The barium magnesium borate birefringent crystal is negative uniaxial (ne<no) with a birefringence of 0.077-0.229 and a transmission range of 177-3000 nm. The crystal is easy to cut, grind, polish, and preserve, and is stable in air and is not easy to deliquesce. The barium magnesium borate birefringent crystal can be grown by the Czochralski method, flux method or the method of spontaneous crystallization from a melt, and has larger birefringence (no?ne=0.077-0.229). The crystal has important applications in the fields of optics and communications, e.g. for fabricating the polarizing beam splitter prism.Type: ApplicationFiled: February 17, 2012Publication date: May 15, 2014Inventors: Rukang Li, Yingying Ma
-
Publication number: 20140127466Abstract: A SiC single crystal having high crystallinity and a large diameter is provided. A SiC single crystal comprising a seed crystal with a c-plane and a non-c-plane, and a c-plane growth portion and an enlarged diameter portion that have grown from the c-plane and the non-c-plane of the seed crystal as origins in the direction of the c-plane and the direction of the non-c-plane, wherein a continuous region free of threading dislocations is present in a peripheral portion of a plane that is parallel to the c-plane of the seed crystal, and contains the seed crystal and the enlarged diameter portion, wherein the area of the continuous region occupies 50% or more of the total area of the plane.Type: ApplicationFiled: August 2, 2011Publication date: May 8, 2014Inventor: Katsunori Danno
-
Publication number: 20140123891Abstract: A method for producing a crystalline material in a crucible in a crystal growth apparatus is disclosed. The method comprises, in part, the step of determining the amount of solidified material present in a partially solidified melt produced during the growth phase using at least one laser positioned at a height above the crucible. A crystal growth apparatus comprising the laser is also disclosed.Type: ApplicationFiled: November 2, 2012Publication date: May 8, 2014Applicant: GT CRYSTAL SYSTEMS, LLCInventor: Edward P. Morris
-
Publication number: 20140116324Abstract: An apparatus for producing an SiC single crystal includes a crucible for accommodating an Si—C solution and a seed shaft having a lower end surface where an SiC seed crystal (36) would be attached. The seed shaft includes an inner pipe that extends in a height direction of the crucible and has a first passage. An outer pipe accommodates the inner pipe and constitutes a second passage between itself and the inner pipe and has a bottom portion whose lower end surface covers a lower end opening of the outer pipe. One passage of the first and second passages serves as an introduction passage where coolant gas flows downward, and the other passage serves as a discharge passage where coolant gas flows upward. A region inside the pipe that constitutes the introduction passage is to be overlapped by a region of not less than 60% of the SiC seed crystal.Type: ApplicationFiled: June 15, 2012Publication date: May 1, 2014Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, NIPPON STEEL & SUMITOMO METAL CORPORATIONInventors: Kazuhiko Kusunoki, Kazuhito Kamei, Nobuyoshi Yashiro, Nobuhiro Okada, Hironori Daikoku, Motohisa Kado, Hidemitsu Sakamoto
-
Patent number: 8709154Abstract: Methods are provided for casting one or more of a semiconductor, an oxide, and an intermetallic material. With such methods, a cast body of a monocrystalline form of the one or more of a semiconductor, an oxide, and an intermetallic material may be formed that is free of, or substantially free of, radially-distributed impurities and defects and having at least two dimensions that are each at least about 35 cm.Type: GrantFiled: July 23, 2008Date of Patent: April 29, 2014Assignee: AMG IdealCast Solar CorporationInventor: Nathan G. Stoddard
-
Patent number: 8709155Abstract: Scintillation materials of this invention have an alkali halide host material, a (first) scintillation dopant of various types, and a variety of second dopants (co-dopants). In another embodiment, the scintillation materials of this invention have an alkali halide host material, a (first) scintillation dopant of various types, a variety of second dopants (co-dopants), and a variety of third dopants (co-dopants). Co-dopants of this invention are capable of providing a second auxiliary luminescent cation dopant, capable of introducing an anion size and electronegativity mismatch, capable of introducing a mismatch of anion charge, or introducing a mismatch of cation charge in the host material.Type: GrantFiled: August 9, 2013Date of Patent: April 29, 2014Inventors: Charles Brecher, Vivek Nagarkar
-
Publication number: 20140102359Abstract: Methods and apparatuses are provided for casting silicon for photovoltaic cells and other applications. With such methods and apparatuses, a cast body of monocrystalline silicon may be formed that is free of, or substantially free of, radially-distributed impurities and defects and having at least two dimensions that are each at least about 35 cm is provided.Type: ApplicationFiled: December 5, 2013Publication date: April 17, 2014Applicant: AMG IDEALCAST SOLAR CORPORATIONInventor: Nathan G. Stoddard
-
Publication number: 20140097349Abstract: According to one embodiment, a crystal includes thallium bromide (TlBr), one or more positively charged dopants, and one or more negatively charged dopants. According to another embodiment, a system includes a monolithic crystal including thallium bromide (TlBr), one or more positively charged dopants, and one or more negatively charged dopants; and a detector configured to detect a signal response of the crystal.Type: ApplicationFiled: October 2, 2013Publication date: April 10, 2014Applicant: Lawrence Livermore National Security, LLCInventors: Cedric Rocha Leao, Vincenzo Lordi
-
Publication number: 20140069324Abstract: A crucible for producing a silicon block comprises a crucible wall surrounding an interior and an opening for filling silicon melt into the interior, wherein the crucible wall comprises at least one doping means for providing dopant for the silicon melt.Type: ApplicationFiled: September 7, 2012Publication date: March 13, 2014Inventor: Bjoern SEIPEL
-
Patent number: 8663388Abstract: Disclosed are a single crystal wire and other single crystal articles, and a manufacturing method thereof. The method comprises the steps of: placing into a growth crucible at least one metal selected from the group consisting of gold, copper, silver, aluminum and nickel; heating and melting the metal placed in the growth crucible; growing a single crystal using metal crystal as a seed by Czochralski or Bridgman method; cutting the grown single crystal by electric discharge machining; and machining the cut single crystal and producing a wire or other articles such as a ring. In the method, the grown metal single crystal is cut into a disc-shaped piece by electric discharge machining. The piece is transformed into a single crystal wire or other articles by wire-cut electric discharge machining, and the single crystal wire can be used as a ring, a pendant, or a wire for high-quality cables for audio and video systems.Type: GrantFiled: May 6, 2009Date of Patent: March 4, 2014Assignee: Korea Electrotechnology Research InstituteInventors: Se Young Jeong, Chae Ryong Cho, Sang Eon Park, Sung Kyu Kim
-
Patent number: 8657955Abstract: It is provided a melt composition for growing a gallium nitride single crystal by flux method. The melt composition contains gallium, sodium and barium, and a content of barium is 0.05 to 0.3 mol % with respect to 100 mol % of sodium.Type: GrantFiled: August 3, 2009Date of Patent: February 25, 2014Assignees: NGK Insulators, Ltd, Osaka University, Toyoda Gosei Co., Ltd.Inventors: Makoto Iwai, Takanao Shimodaira, Yoshihiko Yamamura, Takatomo Sasaki, Yusuke Mori, Fumio Kawamura, Shiro Yamasaki
-
Publication number: 20140050649Abstract: Methods are provided for casting one or more of a semi-conductor, an oxide, and an intermetallic material. With such methods, a cast body of a geometrically ordered multi-crystalline form of the one or more of a semiconductor, an oxide, and an intermetallic material may be formed that is free or substantially free of radially-distributed impurities and defects and having at least two dimensions that are each at least about 10 cm.Type: ApplicationFiled: October 16, 2013Publication date: February 20, 2014Applicant: Advanced Metallurgical Group Idealcast Solar Corp.Inventor: Nathan G. Stoddard
-
Patent number: 8647433Abstract: Systems and methods are disclosed for crystal growth including features of reducing micropit cavity density in grown germanium crystals. In one exemplary implementation, there is provided a method of inserting an ampoule with raw material into a furnace having a heating source, growing a crystal using a vertical growth process wherein movement of a crystallizing temperature gradient relative to the raw material/crucible is achieved to melt the raw material, and growing, at a predetermined crystal growth length, the material to achieve a monocrystalline crystal, wherein monocrystalline ingots having reduced micro-pit densities are reproducibly provided.Type: GrantFiled: December 13, 2009Date of Patent: February 11, 2014Assignee: AXT, Inc.Inventors: Weiguo Liu, Xiao Li
-
Patent number: 8628614Abstract: Methods and apparatuses are provided for casting silicon for photovoltaic cells and other applications. With such methods and apparatuses, a cast body of monocrystalline silicon may be formed that is free of, or substantially free of, radially-distributed impurities and defects and having at least two dimensions that are each at least about 35 cm is provided.Type: GrantFiled: October 19, 2011Date of Patent: January 14, 2014Assignee: AMG IdealCast Solar CorporationInventor: Nathan G. Stoddard
-
Publication number: 20130333611Abstract: A lattice matching layer for use in a multilayer substrate structure comprises a lattice matching layer. The lattice matching layer includes a first chemical element and a second chemical element. Each of the first and second chemical elements has a hexagonal close-packed structure at room temperature that transforms to a body-centered cubic structure at an ?-? phase transition temperature higher than the room temperature. The hexagonal close-packed structure of the first chemical element has a first lattice parameter. The hexagonal close-packed structure of the second chemical element has a second lattice parameter. The second chemical element is miscible with the first chemical element to form an alloy with a hexagonal close-packed structure at the room temperature. A lattice constant of the alloy is approximately equal to a lattice constant of a member of group III-V compound semiconductors.Type: ApplicationFiled: March 11, 2013Publication date: December 19, 2013Applicant: Tivra CorporationInventors: Indranil De, Francisco Machuca
-
Publication number: 20130312657Abstract: This invention includes a system and a method for growing crystals including a batch auto-feeding mechanism. The proposed system and method provide a minimization of compositional segregation effect during crystal growth by controlling growth rate involving a high-temperature flow control system operable in an open and a closed loop crystal growth process. The ability to control the growth rate without corresponding loss of volatilize-able elements enables significantly improvement in compositional homogeneity and a consequent increase in crystal yield. This growth system and method can be operated in production scale, simultaneously for a plurality of growth crucibles to further the reduction of manufacturing costs, particularly for the crystal materials of binary or ternary systems with volatile components, such as Lead (Pb) and Indium (In).Type: ApplicationFiled: August 1, 2013Publication date: November 28, 2013Applicant: H.C.MATERIALS CORPORATIONInventors: PENGDI HAN, Jian Tian
-
Patent number: 8591648Abstract: A crystal growing system having multiple rotatable crucibles and using a temperature gradient method comprises a crystal furnace, a plurality of crucibles, a supporting device, and a temperature control device. The crystal furnace includes a furnace body, a heater, and a hearth, wherein the furnace body from outer to inner includes an outer shell, a fiber insulation layer, an insulation brick layer, and a refractory layer. The crucible supporting device includes an elevator, a plurality of crucible guiding tubes, and a plurality of tube holders each capable of supporting a crucible guiding tube, a moving device that is connected to the elevator, a motor with electrical power that is connected to the moving device, wherein there is an affixing device between each pair of guiding tube and guiding tube holder. Each crucible is located in a corresponding crucible guiding tube. The crucible supporting device is a rotatable device.Type: GrantFiled: December 27, 2007Date of Patent: November 26, 2013Inventor: Youbao Wan
-
Publication number: 20130298822Abstract: Provided are a silicon melt contact member which is markedly improved in liquid repellency to a silicon melt, which can retain the liquid repellency permanently, and which is suitable for production of crystalline silicon; and a process for efficient production of crystalline silicon, particularly, spherical crystalline silicon having high crystallinity, by use of the silicon melt contact member. A silicon melt contact member having a porous sintered body layer present on its surface, preferably the sintered body layer being present on a substrate of a ceramic material such as aluminum nitride, wherein the porous sintered body layer consists essentially of silicon nitride, has a thickness of 10 to 500 ?m, and has, dispersed therein, many pores preferably having an average equivalent circle diameter of 1 to 25 ?m at a pore-occupying area ratio of 30 to 80%, the pores connecting to each other to form communicating holes having a depth of 5 ?m or more.Type: ApplicationFiled: January 26, 2012Publication date: November 14, 2013Applicants: TOKUYAMA CORPORATION, YAMAGUCHI UNIVERSITYInventors: Ryuichi Komatsu, Hironori Itoh, Masanobu Azuma
-
Patent number: 8580036Abstract: The method and apparatus includes a vessel having a bottom and sidewalls arranged to house the material in a molten state. A temperature controlled horizontally oriented, cooling plate is movable into and out of the top of the molten material. When the cooling plate is lowered into the top of the melt, an ingot of solid silicon is solidified downwards.Type: GrantFiled: May 10, 2006Date of Patent: November 12, 2013Assignee: Elkem Solar ASInventor: Kenneth Friestad
-
Patent number: 8562740Abstract: The present invention relates to an apparatus and method for purifying silicon using directional solidification. The apparatus can be used more than once for the directional solidification of silicon without failure. The apparatus and method of the present invention can be used to make silicon crystals for use in solar cells.Type: GrantFiled: November 17, 2010Date of Patent: October 22, 2013Assignee: Silicor Materials Inc.Inventors: Scott Nichol, Dan Smith
-
Publication number: 20130248764Abstract: The invention relates to a method of making Ce3+ containing laser materials with a fast cooling rate.Type: ApplicationFiled: December 2, 2011Publication date: September 26, 2013Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.Inventors: Ulrich Weichmann, Matthias Alexander Wilhelm Fechner, Fabian Reichert, Herbert Walter Klaus Petermann, Gunter Huber
-
Patent number: 8535440Abstract: The method of the invention promotes single crystal growth during fabrication of melt growth semiconductors. A growth ampoule and its tip have a semiconductor source material placed therein. The growth ampoule is placed in a first thermal environment that raises the temperature of the semiconductor source material to its liquidus temperature. The growth ampoule is then transitioned to a second thermal environment that causes the semiconductor source material in the growth ampoule's tip to attain a temperature that is below the semiconductor source material's solidus temperature. The growth ampoule so-transitioned is then mechanically perturbed to induce single crystal growth at the growth ampoule's tip.Type: GrantFiled: April 12, 2010Date of Patent: September 17, 2013Assignee: The United States of America as Represented by the Administrator of the National Aeronautics and Space AdministrationInventor: Ching-Hua Su
-
Publication number: 20130233239Abstract: Method for producing a silicon ingot comprising the following steps: providing a container for receiving a silicon melt with a base wall extending perpendicular to an axial direction and side walls, providing at least one flat monocrystalline seed crystal with an axial orientation selected from the group of <110>, <100> and <111> orientation, arranging the at least one seed crystal on the base wall of the container and directional solidification of a silicon melt in the container (2) to form a silicon ingot proceeding from the at least one seed crystal, wherein the axial orientation of the at least one seed crystal predetermines an axial orientation for the silicon ingot and wherein the at least one seed crystal is configured on the base wall of the container in such a way that a twin formation is avoided in an edge region adjoining the side walls.Type: ApplicationFiled: March 5, 2013Publication date: September 12, 2013Applicants: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V., SolarWorld Innovations GmbHInventors: Daniel ORIWOL, Matthias TREMPA, Christian REIMANN
-
Patent number: 8529696Abstract: A method for producing hexagonal boron nitride single crystals including mixing boron nitride crystals with a solvent thereby obtaining a mixture, heating and melting the mixture under high-temperature and high-pressure thereby obtaining a melted mixture, and recrystallizing the melted mixture thereby producing hexagonal boron nitride single crystals, wherein the solvent is boronitride of alkaline earth metal, or boronitride of alkali metal and the boronitride of alkaline earth metal.Type: GrantFiled: July 30, 2012Date of Patent: September 10, 2013Assignee: National Institute for Materials ScienceInventors: Kenji Watanabe, Takashi Taniguchi, Satoshi Koizumi, Hisao Kanda, Masayuki Katagiri, Takatoshi Yamada, Nesladek Milos
-
Publication number: 20130220213Abstract: This invention relates to a system and a method for liquid silicon containment, such as during the casting of high purity silicon used in solar cells or solar modules. The containment apparatus includes a shielding ember adapted to prevent breaching molten silicon from contacting structural elements or cooling elements of a casting device, and a volume adapted to hold a quantity of breaching molten silicon with the volume formed by a bottom and one or more sides.Type: ApplicationFiled: April 1, 2013Publication date: August 29, 2013Inventor: AMG Advanced Metallurgical Group N.V.
-
Patent number: 8518287Abstract: A dichalcogenide thermoelectric material having a very low thermal conductivity in comparison with a conventional metal or semiconductor is described. The dichalcogenide thermoelectric material has a structure of Formula 1 below: RX2-aYa??Formula 1 wherein R is a rare earth or transition metal magnetic element, X and Y are each independently an element selected from the group consisting of S, Se, Te, P, As, Sb, Bi, C, Si, Ge, Sn, B, Al, Ga, In, and a combination thereof, and 0?a<2.Type: GrantFiled: April 3, 2009Date of Patent: August 27, 2013Assignee: Samsung Electronics Co., Ltd.Inventors: Jong-soo Rhyee, Sang-mock Lee
-
Publication number: 20130213297Abstract: Methods and apparatuses are provided for casting silicon for photovoltaic cells and other applications. With these methods, an ingot can be grown that is low in carbon and whose crystal growth is controlled to increase the cross-sectional area of seeded material during casting.Type: ApplicationFiled: March 28, 2013Publication date: August 22, 2013Inventor: AMG Advanced Metallurgical Group N.V.
-
Patent number: 8512470Abstract: A method for growing high-resistivity single crystals includes placing a raw material in a vacuum-sealable ampoule, heating the raw material in the vacuum-sealable ampoule to vaporize the moisture in the raw material, exhausting the vaporized moisture from the vacuum-sealable ampoule, vacuum-sealing the vacuum-sealable ampoule, heating the raw material in the vacuum-sealable ampoule to vaporize the oxide compounds in the raw material, cooling a bulb in a cap on the vacuum-sealable ampoule to produce condensed oxide compounds on an inner surface of the bulb, removing the bulb and the condensed oxide compounds from the vacuum-sealable ampoule, wherein the raw material in the vacuum-sealable ampoule comprises carbon as an impurity, and placing the vacuum-sealable ampoule comprising the raw material in a crystal growth apparatus to grow a high-resistivity crystal from the raw material.Type: GrantFiled: April 8, 2011Date of Patent: August 20, 2013Assignee: China Crystal Technologies Co. LtdInventor: Meng Zhu
-
Publication number: 20130206056Abstract: A method of producing a crystalline semiconductor material includes feeding particles of the semiconductor material and/or a precursor compound of the semiconductor material into a gas flow, wherein the gas flow has a sufficiently high temperature to convert the particles of the semiconductor material from a solid into a liquid and/or gaseous state and/or to thermally decompose the precursor compound, condensing out and/or separating the liquid semiconductor material from the gas flow, and converting the liquid semiconductor material to a solid state with formation of mono- or polycrystalline crystal properties.Type: ApplicationFiled: April 11, 2011Publication date: August 15, 2013Applicant: SCHMID SILICON TECHNOLOGY GMBHInventors: Uwe Kerat, Christian Schmid, Jochem Hahn
-
Patent number: 8506707Abstract: A compositionally graded material having low defect densities and improved electronic properties is disclosed and described. A compositionally graded inorganic crystalline material can be formed by preparing a crystalline substrate by forming crystallographically oriented pits across an exposed surface of the substrate. A transition region can be deposited on the substrate under substantially epitaxial growth conditions. Single crystal substrates of a wide variety of materials such as diamond, aluminum nitride, silicon carbide, etc. can be formed having relatively low defect rates.Type: GrantFiled: April 16, 2012Date of Patent: August 13, 2013Inventor: Chien-Min Sung
-
Patent number: 8506705Abstract: A nitride single crystal is produced on a seed crystal substrate 5 in a melt containing a flux and a raw material of the single crystal in a growing vessel 1. The melt 2 in the growing vessel 1 has temperature gradient in a horizontal direction. In growing a nitride single crystal by flux method, adhesion of inferior crystals onto the single crystal is prevented and the film thickness of the single crystal is made constant.Type: GrantFiled: September 9, 2009Date of Patent: August 13, 2013Assignee: NGK Insulators, Ltd.Inventors: Mikiya Ichimura, Katsuhiro Imai, Makoto Iwai, Takatomo Sasaki, Yusuke Mori, Fumio Kawamura, Yasuo Kitaoka
-
Patent number: 8506706Abstract: Systems, methods, and substrates directed to growth of monocrystalline germanium (Ge) crystals are disclosed. In one exemplary implementation, there is provided a method for growing a monocrystalline germanium (Ge) crystal. Moreover, the method may include loading first raw Ge material into a crucible, loading second raw Ge material into a container for supplementing the Ge melt material, sealing the crucible and the container in an ampoule, placing the ampoule with the crucible into a crystal growth furnace, as well as melting the first and second raw Ge material and controlling the crystallizing temperature gradient of the melt to reproducibly provide monocrystalline germanium ingots with improved/desired characteristics.Type: GrantFiled: September 5, 2009Date of Patent: August 13, 2013Assignee: AXT, IncInventor: Weiguo Liu
-
Patent number: 8500905Abstract: Disclosed is a sapphire single crystal growing apparatus using the Kyropoulos method, and more particularly, is a Kyropoulos sapphire single crystal growing apparatus using an elliptic crucible, which can increase the recovery rate by the elliptic crucible and anisotropic heating.Type: GrantFiled: January 5, 2012Date of Patent: August 6, 2013Assignee: DK Aztec Co., Ltd.Inventor: Jong Kwan Park
-
Patent number: 8486190Abstract: A raw material mixture containing an easily oxidizable material is weighed. The raw material mixture is melted and then solidified within a reaction vessel 1 set in a non-oxidizing atmosphere to thereby produce a solidified matter 19. The reaction vessel 1 and the solidified matter 19 are heated in a non-oxidizing atmosphere within a crystal growth apparatus to melt the solidified matter to thereby produce a solution. A single crystal is grown from the solution.Type: GrantFiled: September 22, 2008Date of Patent: July 16, 2013Assignees: NGK Insulators, Ltd., Osaka UniversityInventors: Katsuhiro Imai, Makoto Iwai, Takatomo Sasaki, Yusuke Mori, Fumio Kawamura
-
Patent number: 8480996Abstract: A high-purity tellurium dioxide (TeO2) single crystal and its manufacturing method are provided. The method comprises the following procedures: firstly performing a first single crystal growth, and then dissolving the resulting single crystal again, thereafter adding a precipitation agent to form powder, and finally performing a second single crystal growth of as-prepared powder to obtain the high purity single crystal. The TeO2 single crystal prepared according to present invention is of high purity, especially with a content of radioactive impurities such as U and Th decreased to a level of 10?13 g/g.Type: GrantFiled: April 2, 2010Date of Patent: July 9, 2013Assignees: Research and Development Center, Shanghai Institute of Ceramics, Shanghai Institute of Ceramics, Chinese Academy of SciencesInventors: Zengwei Ge, Yong Zhu, Guoging Wu, Xueji Yin, Linyao Tang, Hanbin Zhao, Lizhen Gu
-
Publication number: 20130171052Abstract: The invention describes a process for removing nonmetallic impurities from metallurgical silicon. A melt is produced from metallurgical silicon and halide-containing silicon. As a result, the impurities are sublimed out and removed from the melt in the form of nonmetal halides. Compared with the known process, in which gaseous halogen is blown through an Si melt, the novel process can be carried out in a particularly simple and efficient manner.Type: ApplicationFiled: July 29, 2009Publication date: July 4, 2013Inventors: Seyed-Javad Mohsseni-Ala, Christian Bauch, Rumen Deltschew, Thoralf Gebel, Gerd Lippold, Matthias Heuer, Fritz Kirscht, Kamel Ounadjela
-
Patent number: 8475593Abstract: In a crystal preparing device, a crucible holds a mixed molten metal containing alkali metal and group III metal. A container has a container space contacting the mixed molten metal and holds a molten alkali metal between the container space and an outside of the container, the molten alkali metal contacting the container space. A gas supply device supplies nitrogen gas to the container space. A heating device heats the crucible to a crystal growth temperature. The crystal preparing device is provided so that a vapor pressure of the alkali metal which evaporates from the molten alkali metal is substantially equal to a vapor pressure of the alkali metal which evaporates from the mixed molten metal.Type: GrantFiled: June 28, 2011Date of Patent: July 2, 2013Assignee: Ricoh Company, Ltd.Inventors: Hirokazu Iwata, Seiji Sarayama, Akihiro Fuse
-
Publication number: 20130152851Abstract: A solidification system is provided and includes a crucible, heater, insulation, movable insulation, and radiation regulator. The crucible is configured to retain a volume of silicon. The heater is to heat the crucible. The heater being configured to provide sufficient heat to melt the volume of silicon. The insulation is to reduce heat loss from a first portion of the crucible. The movable insulation to regulate heat loss from a second portion of the crucible. The radiation regulator is to regulate radiant heat loss over the second portion of the crucible. The radiation regulator is configured to modulate a size of an opening in the radiation regular through which radiant heat dissipates from.Type: ApplicationFiled: December 15, 2011Publication date: June 20, 2013Applicant: SPX CorporationInventors: Tao Li, Richard H. Berg, Richard Heckert
-
Publication number: 20130148189Abstract: CdSiP2 crystals with sizes and optical quality suitable for use as nonlinear optical devices are disclosed, as well as NLO devices based thereupon. A method of growing the crystals by directional solidification from a stoichiometric melt is also disclosed. The disclosed NLO crystals have a higher nonlinear coefficient than prior art crystals that can be pumped by solid state lasers, and are particularly useful for frequency shifting 1.06 ?m, 1.55 ?m, and 2 ?m lasers to wavelengths between 2 ?m and 10 ?m. Due to the high thermal conductivity and low losses of the claimed CdSiP2 crystals, average output power can exceed 10 W without severe thermal lensing. A 6.45 ?m laser source for use as a medical laser scalpel is also disclosed, in which a CdSiP2 crystal is configured for non-critical phase matching, pumped by a 1064 nm Nd:YAG laser, and temperature-tuned to produce output at 6.45 ?m.Type: ApplicationFiled: February 7, 2013Publication date: June 13, 2013Applicant: BAE Systems Information and Electronic Systems Integration Inc.Inventor: BAE Systems Information and Electronic Systems Integration Inc.
-
Patent number: 8449672Abstract: This disclosure pertains to a process for making single crystal Group III nitride, particularly gallium nitride, at low pressure and temperature, in the region of the phase diagram of Group III nitride where Group III nitride is thermodynamically stable comprises a charge in the reaction vessel of (a) Group III nitride material as a source, (b) a barrier of solvent interposed between said source of Group III nitride and the deposition site, the solvent being prepared from the lithium nitride (Li3N) combined with barium fluoride (BaF2), or lithium nitride combined with barium fluoride and lithium fluoride (LiF) composition, heating the solvent to render it molten, dissolution of the source of GaN material in the molten solvent and following precipitation of GaN single crystals either self seeded or on the seed, maintaining conditions and then precipitating out.Type: GrantFiled: April 25, 2008Date of Patent: May 28, 2013Assignee: The United States of America as represented by the Secretary of the NavyInventors: Boris N. Feigelson, Richard L. Henry
-
Patent number: 8404043Abstract: A high-quality polycrystalline bulk semiconductor having a large crystal grain size is produced by the casting method in which growth is regulated so as to proceed in the same plane direction, i.e., the {110}; plane or {112} plane is disclosed. The process, which is for producing a polycrystalline bulk semiconductor, comprises: a step in which a melt of a semiconductor selected among Si, Ge, and SiGe is held in a crucible; a step in which a bottom part of the crucible is cooled to give a temperature gradient and that part of the melt which is located directly on the crucible bottom is rapidly cooled in the beginning of growth to supercool the melt around the crucible bottom; a step in which the crucible is cooled to grow nuclei on the crucible bottom due to the supercooled state of the melt around the crucible bottom and thereby grow dendritic crystals along the crucible bottom; and a step in which a polycrystalline bulk of the semiconductor is then grown on the upper side of the dendritic crystals.Type: GrantFiled: May 30, 2008Date of Patent: March 26, 2013Assignee: Tohoku UniversityInventors: Kozo Fujiwara, Kazuo Nakajima
-
Publication number: 20130065032Abstract: Device for producing silicon blocks for photovoltaic applications, comprising a container for receiving a silicon melt with a base wall and at least one side wall, means for reducing the diffusion of impurities from at least one of the walls of the container into the silicon melt, wherein the means for reducing the diffusion of impurities comprise at least one covering element for the at least partial covering of at least one of the walls of the container.Type: ApplicationFiled: April 26, 2012Publication date: March 14, 2013Inventors: Bernhard FREUDENBERG, Sara GRUTZNER, Marc DIETRICH, Kaspars DADZIS, Andreas KRAUSE, Bianca GRÜNDIG-WENDROCK, Doreen NAUERT, Matthias TREMPA, Christian REINMANN, Jochen FRIEDRICH