Refluxing Atmosphere Patents (Class 117/907)
  • Patent number: 6273948
    Abstract: The method of fabrication of highly resistive GaN bulk crystals by crystallization from the solution of atomic nitrogen in the molten mixture of metals, containing gallium in the concentration not lower than 90 at. % and the Periodic Table group II metals: calcium, beryllium or in the concentration of 0.01-10 at. %, at the temperature 1300-1700° C., under the nitrogen pressure 0.5-2.0 GPa and in the presence of temperature gradient characterized by the temperature gradient not higher than 10° C./cm.
    Type: Grant
    Filed: December 6, 1999
    Date of Patent: August 14, 2001
    Assignee: Centrum Badan Wysokocisnieniowych Polskiej Akademii Nauk
    Inventors: Sylwester Porowski, Michal Bockowski, Izabella Grzegory, Stanislaw Krukowski, Michal Leszczynski, Boleslaw Lucznik, Tadeusz Suski, Miroslaw Wroblewski
  • Patent number: 6214109
    Abstract: A process and apparatus for regulating the concentration and distribution of oxygen in a single crystal silicon rod pulled from a silicon melt, optionally doped with antimony or arsenic, in accordance with the Czochralski method wherein an atmosphere is maintained over the melt. In batch embodiments of the process, the gas pressure of the atmosphere over the melt is progressively increased to a value in excess of 100 torr as the fraction of silicon melt solidified increases. In continuous embodiments of the process, the gas pressure of the atmosphere over the melt is maintained at or near a constant value in excess of 100 torr. The process and apparatus are further characterized in that a controlled flow of inert gas is used to remove vapors and particulate away from the surface of the rod and melt, resulting in the production of a single crystal silicon rod having zero dislocations.
    Type: Grant
    Filed: March 16, 1999
    Date of Patent: April 10, 2001
    Assignee: MEMC Electronic Materials, Inc.
    Inventor: John D. Holder
  • Patent number: 5846319
    Abstract: A system and method for isothermally growing HgCdTe having improved material uniformity and run-to-run repeatability employs a growth solution vessel in which a substrate may be inserted. The growth solution is heated and maintained at a constant temperature while causing Hg to vaporize and rise within the growth solution vessel. A water-cooling jacket causes the Hg to condense and form on the walls of the growth solution vessel. The Hg condensate is directed into a calibrated reservoir. HgCdTe growth continues as the Hg is depleted from the growth solution and fills the reservoir. The reservoir is calibrated to hold the specific amount of Hg condensate corresponding to the desired layer of HgCdTe. The reservoir overflows when full and directs the overflow into the growth solution, causing HgCdTe formation to cease. The volume of the reservoir may be altered to capture more or less Hg condensate, as desired, in order to change the amount of HgCdTe formed on the CdTe substrate.
    Type: Grant
    Filed: March 13, 1996
    Date of Patent: December 8, 1998
    Assignee: Amber Engineering, Inc.
    Inventor: Jeffrey Brian Barton
  • Patent number: 5375557
    Abstract: An apparatus (10) and method are provided for directly viewing, through a viewport assembly (26), the process for forming a layer of mercury cadmium telluride of a predetermined composition on a surface of a wafer (not shown). According to the invention, a molten melt (20) comprising mercury, cadmium and tellurium is provided in a vertically oriented crystal growth chamber (14), which, in turn, is housed in a reactor tube (12). A wafer (not shown) is contacted with the crystal growth melt while cooling the melt below its liquidus temperature at a predetermined rate sufficient to cause a crystal growth layer of mercury cadmium telluride to form on the wafer (not shown). Viewports (26, 48) located approximately radially adjacent to the melt (22) provide direct see through capability to visually monitor the crystal growth process.
    Type: Grant
    Filed: October 28, 1993
    Date of Patent: December 27, 1994
    Assignee: Texas Instruments Incorporated
    Inventor: Jeffrey M. Anderson