Crystallization On A Continuous Moving Substrate Or Cooling Surface (e.g., Wheel, Cylinder, Belt) Patents (Class 117/914)
  • Patent number: 8262795
    Abstract: An apparatus and method for producing a crystalline ribbon continuously from a melt pool of liquid feed material, e.g. silicon. The silicon is melted and flowed into a growth tray to provide a melt pool of liquid silicon. Heat is passively extracted by allowing heat to flow from the melt pool up through a chimney. Heat is simultaneously applied to the growth tray to keep the silicon in its liquid phase while heat loss is occurring through the chimney. A template is placed in contact with the melt pool as heat is lost through the chimney so that the silicon starts to “freeze” (i.e. solidify) and adheres to the template. The template is then pulled from the melt pool thereby producing a continuous ribbon of crystalline silicon.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: September 11, 2012
    Assignee: AMG Idealcast Solar Corporation
    Inventor: Roger F. Clark
  • Patent number: 6908510
    Abstract: For producing ultra pure materials a first station has a porous gas distributor. A material supply supplies material to the porous gas distributor. A gas source supplies gas to the distributor and through the distributor to the material in contact with the distributor. A heater adjacent the porous gas distributor heats and melts the material as gas is passed through the material. Dopant and a treatment liquid is or solid supplied to the material. Treated material is discharged from the first station into a second station. A second porous gas distributor in the second station distributes gas through the material in the second station. A crucible receives molten material from the second station for casting, crystal growing in the crucible or for refilling other casting or crystal growth crucibles. The material and the porous gas distributor move with respect to each other. One porous gas distributor is cylindrical and is tipped.
    Type: Grant
    Filed: December 11, 2001
    Date of Patent: June 21, 2005
    Assignee: Phoenix Scientific Corporation
    Inventor: Kiril A. Pandelisev
  • Patent number: 6800137
    Abstract: Reactive gas is released through a crystal source material or melt to react with impurities and carry the impurities away as gaseous products or as precipitates or in light or heavy form. The gaseous products are removed by vacuum and the heavy products fall to the bottom of the melt. Light products rise to the top of the melt. After purifying, dopants are added to the melt. The melt moves away from the heater and the crystal is formed. Subsequent heating zones re-melt and refine the crystal, and a dopant is added in a final heating zone. The crystal is divided, and divided portions of the crystal are re-heated for heat treating and annealing.
    Type: Grant
    Filed: March 4, 2002
    Date of Patent: October 5, 2004
    Assignee: Phoenix Scientific Corporation
    Inventor: Kiril A. Pandelisev
  • Patent number: 6413313
    Abstract: An apparatus for producing a polycrystalline silicon sheet includes a crucible, a heating unit for heating a starting material of silicon fed in the crucible, and a cooling unit for contacting a melt of the starting material melted by heating to a cooling face of a cooling member, thereby obtaining a polycrystalline silicon sheet in which crystals of silicon are grown, wherein the cooling face of the cooling member has a sheet adhering portion for providing a silicon starting point of crystallization and allowing adhesion of the polycrystalline silicon sheet of grown crystals and a sheet stripping portion for allowing easy stripping of the polycrystalline silicon sheet.
    Type: Grant
    Filed: September 12, 2000
    Date of Patent: July 2, 2002
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Koji Yoshida, Kozaburo Yano, Kazuto Igarashi, Yoshihiro Tsukuda, Hidemi Mitsuyasu
  • Patent number: 6334899
    Abstract: Reactive gas is released through a crystal source material or melt to react with impurities and carry the impurities away as gaseous products or as precipitates or in light or heavy form. The gaseous products are removed by vacuum and the heavy products fall to the bottom of the melt. Light products rise to the top of the melt. After purifying, dopants are added to the melt. The melt moves away from the heater and the crystal is formed. Subsequent heating zones re-melt and refine the crystal, and a dopant is added in a final heating zone. The crystal is divided, and divided portions of the crystal are re-heated for heat treating and annealing.
    Type: Grant
    Filed: August 18, 2000
    Date of Patent: January 1, 2002
    Assignee: Optoscint, Inc.
    Inventor: Kiril A. Pandelisev
  • Patent number: 6235109
    Abstract: A method of preparing a crystalline or amorphous material, wherein a droplet of a melt of a metal-containing material is cooled in the atmosphere of an inert gas or in vacuum and in a microgravity environment to solidify the droplet. The cooling is performed by impingement of the droplet prior to solidification against a cooling surface.
    Type: Grant
    Filed: September 26, 2000
    Date of Patent: May 22, 2001
    Assignees: Secretary of Agency of Industrial Science and Technology
    Inventors: Takeshi Okutani, Hideaki Nagai, Hideki Minagawa, Yoshinori Nakata, Takashi Tsurue, Masaki Orihashi
  • Patent number: 6071339
    Abstract: A crystal plate 1 is grown in a continuous process by first purifying a crystal source material, a crystal melt or powder, in a purification station 3. Valves 7 control the flow of purified crystal melt or source powder 9 to a first hot zone 11, whose temperature is above the melt temperature of the crystal. A dopant source 17 with controller 19 provides dopant to the liquefied crystal 15. The first heater zone 21 surrounding the first hot zone 11 heats the crystal above its melting temperature. The second heater zone 27 produces a temperature in the second zone which is below the melt temperature of the crystal. The liquefied crystal, the liquid solid interface and the first portion of the crystal are supported in a boat-shaped crucible container with a bottom 31 and side walls. As the crystal leaves the support plate 31 it passes on to a conveyor 33. The crystal moves within an enclosure 43, which has a noble gas or noble gas and reactant gas atmosphere 45.
    Type: Grant
    Filed: January 21, 1999
    Date of Patent: June 6, 2000
    Assignee: Optoscint, Inc.
    Inventor: Kiril A. Pandelisev
  • Patent number: 5993540
    Abstract: Reactive gas is released through a crystal source material or melt to react with impurities and carry the impurities away as gaseous products or as precipitates or in light or heavy form. The gaseous products are removed by vacuum and the heavy products fall to the bottom of the melt. Light products rise to the top of the melt. After purifying, dopants are added to the melt. The melt moves away from the heater and the crystal is formed. Subsequent heating zones re-melt and refine the crystal, and a dopant is added in a final heating zone. The crystal is divided, and divided portions of the crystal are re-heated for heat treating and annealing.
    Type: Grant
    Filed: June 16, 1995
    Date of Patent: November 30, 1999
    Assignee: Optoscint, Inc.
    Inventor: Kiril A. Pandelisev
  • Patent number: 5849078
    Abstract: A method for growing a high-quality single-crystalline semiconductor film on a substrate based on vapor phase growth while rotating the substrate and preventing micro-particles generated by a rotary drive unit from adhering onto the major plane of the substrate. The substrate 2 set inside the reaction chamber 21 is rotated using the rotary drive unit 7, a reaction gas 10 is fed to the major plane side of the substrate 2, a purge gas 3a is fed to the back space of the substrate in the reaction chamber 21 to replace a space 11a with a carrier gas atmosphere, where the rotary drive unit 7 is located in the purge gas discharge section 13, a purge gas discharge duct 12 is connected to the purge gas discharge section, and further to the purge gas discharge duct 12 is connected a gas flow controller 8, and serially in the downstream side thereof is connected an evacuation pump 9.
    Type: Grant
    Filed: February 25, 1997
    Date of Patent: December 15, 1998
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Munenori Tomita, Masanori Mayuzumi, Hitoshi Habuka
  • Patent number: 5830418
    Abstract: A flowable material, such as a supercooled melt or supersaturated solution, is dispensed onto a take-up member such as a belt or drum. Either prior to, or after being dispensed onto the take-up member, the material is exposed to ultrasound to promote the crystallization of solid substances in the material. All of the material or only a portion of the material can be exposed to ultrasound. If only a portion is exposed, it is later combined with the rest of the material prior to being dispensed onto the take-up member.
    Type: Grant
    Filed: July 15, 1996
    Date of Patent: November 3, 1998
    Assignee: Santrade Ltd.
    Inventors: Axel Konig, Joachim Ulrich
  • Patent number: 5769943
    Abstract: Transition metals of Group VIII (Co, Rh and Ir) have been prepared as semiconductor compounds with the general formula TSb.sub.3. The skutterudite-type crystal lattice structure of these semiconductor compounds and their enhanced thermoelectric properties results in semiconductor materials which may be used in the fabrication of thermoelectric elements to substantially improve the efficiency of the resulting thermoelectric device. Semiconductor materials having the desired skutterudite-type crystal lattice structure may be prepared in accordance with the present invention by using vertical gradient freezing techniques and/or liquid phase sintering techniques. Measurements of electrical and thermal transport properties of selected semiconductor materials prepared in accordance with the present invention, demonstrated high Hall mobilities (up to 1200 cm.sup.2.V.sup.-1.s.sup.-1) and good Seebeck coefficients (up to 150 .mu.VK.sup.-1 between 300.degree. C. and 700.degree. C.).
    Type: Grant
    Filed: August 3, 1993
    Date of Patent: June 23, 1998
    Assignee: California Institute of Technology
    Inventors: Jean-Pierre Fleurial, Thierry F. Caillat, Alexander Borshchevsky
  • Patent number: 5685906
    Abstract: A set (10) of susceptors (12) having essentially equal outer diameters (14) and different depression diameters (20) is used in a horizontal flow semiconductor epitaxial reactor. The susceptors receiving smaller diameter wafers (24) have an increased surface area (84) that preheats the process gases and leads to reduced resistivity variation in the epitaxial layers. The susceptors fit interchangeably onto a susceptor support (32) and into a susceptor ring (38), thereby allowing wafers of different diameters to be processed by changing only the susceptor and not the susceptor support, the susceptor ring, and other associated hardware. Set-up time is greatly reduced, thereby allowing more flexibility in scheduling wafers to be processed and improving reactor utilization. Inventory of reactor components can be reduced because it is no longer necessary to stock susceptor rings and other hardware for wafers of different diameters.
    Type: Grant
    Filed: March 23, 1995
    Date of Patent: November 11, 1997
    Assignee: SEH America, Inc.
    Inventors: Gerald R. Dietze, Erik D. Holman