Magnetic Patents (Class 117/917)
  • Patent number: 5997641
    Abstract: The hold member has a small-diameter portion and a large-diameter portion. An inner cylinder and an outer cylinder are disposed around the hold member in a concentric manner. The upper end of the hold member is affixed to a wire and suspended therefrom. A clearance is formed between the small-diameter portion and the inner cylinder. Clearances are created between the outer peripheral surface of the inner cylinder and the inner peripheral surface of the outer cylinder.
    Type: Grant
    Filed: December 8, 1997
    Date of Patent: December 7, 1999
    Assignee: Komatsu Electronic Metals Co., Ltd.
    Inventors: Mitsunori Kawabata, Yoshinobu Hiraishi, Mitsuo Usukubo, Ayumi Suda
  • Patent number: 5980630
    Abstract: In a single crystal manufacturing method by a horizontal magnetic field applied CZ method wherein coils are disposed interposing a crucible coaxially with each other, the coils constituting superconductive electromagnets of a magnetic field application apparatus and the silicon crystal is pulled from melt in the crucible while applying a horizontal magnetic field to the melt; an elavation apparatus capable of finely adjusting relative positions of the superconductive electromagnets and the crcucible in a vertical direction is disposed. The descent of a central portion Cm in a depth direction of the melt is canceled by elevating the crucible with the elevating apparatus, the descent being accompanied with proceeding of process of pulling the single crystal, thereby a coil central axis Cc of the superconductive electromagnets always passes through the central portion Cm or below this portion.
    Type: Grant
    Filed: May 20, 1998
    Date of Patent: November 9, 1999
    Assignee: Shin-Etsu Handotai, Co., Ltd.
    Inventors: Eiichi Iino, Kiyotaka Takano, Masanori Kimura, Hirotoshi Yamagishi
  • Patent number: 5976246
    Abstract: A MCZ method in which the single crystal is pulled while being rotated under the conditions where the crystal growth rate V.sub.1 (mm/min) and the crystal circumference velocity V.sub.2 (mm/min) satisfy the following relationships:0.4.ltoreq.V.sub.10.628.times.10.sup.4 .ltoreq.V.sub.2 .ltoreq.1.0.times.10.sup.4andV.sub.2 .ltoreq.-3.72.times.10.sup.4 V.sub.1 +4.35.times.10.sup.4It is possible to manufacture a silicon single crystal with a large diameter with the MCZ method without causing distortion.
    Type: Grant
    Filed: November 19, 1997
    Date of Patent: November 2, 1999
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Eiichi Iino, Masanori Kimura, Shozo Muraoka
  • Patent number: 5968264
    Abstract: In method for manufacturing a silicon single crystal in accordance with a Czochralski method, during the growth of the silicon single crystal, pulling is performed such that a solid-liquid interface in the crystal, excluding a peripheral 5 mm-width portion, exists within a range of an average vertical position of the solid-liquid interface .+-.5 mm. There is also disclosed a method for manufacturing a silicon single crystal in accordance with the Czochralski method, wherein during the growth of a silicon single crystal, a furnace temperature is controlled such that a temperature gradient difference .DELTA.G (=Ge-Gc) is not greater than 5.degree. C./cm, where Ge is a temperature gradient (.degree.C./cm) at a peripheral portion of the crystal, and Gc is a temperature gradient (.degree.C./cm) at a central portion of the crystal, both in an in-crystal descending temperature zone between 1420.degree. C. and 1350.degree. C. or between a melting point of silicon and 1400.degree. C.
    Type: Grant
    Filed: July 2, 1998
    Date of Patent: October 19, 1999
    Assignee: Shin-etsu Handotai Co., Ltd.
    Inventors: Makoto Iida, Eiichi Iino, Masanori Kimura, Shozo Muraoka, Hideki Yamanaka
  • Patent number: 5968266
    Abstract: An apparatus for manufacturing a single crystal of silicon includes a crucible, a heater, electrodes, and a magnet. In addition to a plurality of heat generating portions and two main electrode portions, the heater has two or more auxiliary electrode portions. Two or more heater support members having an insulating property are further provided so as to support the heater through the auxiliary electrode portions. The number of heat generating portions which may be present between a heater support member and an electrode and between heater support members if adjacent to each other is equal to or less than 4. Each generating portion of the heater has a thickness of 25 mm or more. This structure makes it possible to produce a single crystal of silicon without causing breakage of a heater, even if a large electric current flows through the heater, even if a magnetic field of a high intensity is applied to a silicon melt in the crucible, and even if the heater has a large diameter.
    Type: Grant
    Filed: March 20, 1997
    Date of Patent: October 19, 1999
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Eiichi Iino, Masanori Kimura, Shozo Muraoka
  • Patent number: 5938836
    Abstract: This invention provides an apparatus and a method for manufacturing semiconductor single crystals, which enable a steady process of pulling up high-quality single silicon crystals to be easily performed during the growing of silicon single crystals by the CZ method aided by applying a Cusp magnetic field. Three facing homopolar magnets (hereinafter referred to as magnet) 1, 2, and 3 arc disposed outside the single-crystal pulling up chamber. The magnet 3 is located at the same height as the free surface of the melt 6 stored in a quartz crucible as the free surface of the melt 6 stored in a quartz crucible 5. Furthermore, the strength of the magnets 3 is set to be weaker than that of the magnets 1 and 2. The flux lines of the magnets 3 substantially pass through the quartz crucible 5 in the horizontal direction. However, the flux lines of the magnet 3 do not reach the silicon single crystal 7 being pulled up.
    Type: Grant
    Filed: October 23, 1997
    Date of Patent: August 17, 1999
    Assignee: Komatsu Electronic Metals Co., Ltd.
    Inventors: Junsuke Tomioka, Hiroshi Inagaki, Katsura Yamamoto
  • Patent number: 5938841
    Abstract: A novel device for producing a single crystal by the CZ or MCZ method is provided, which comprising a crucible for containing silicon melt therein, a wire reel and a wire for pulling a single crystal, a motor and a rotation shaft for rotating the crucible, a speed change device being inserted between the motor and the rotation shaft, and, if necessary, a magnetic field generator, by which the magnetic field is applied to the melt. According to the device for producing a single crystal, the rotation accuracy of a crucible can be improved, so that the concentrations of impurities in the pulled single crystal can be highly precisely controlled.
    Type: Grant
    Filed: November 21, 1996
    Date of Patent: August 17, 1999
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Kouji Kitagawa, Kouji Mizuishi, Masahiko Urano, Kenji Araki, Eiichi Iino, Izumi Fusegawa
  • Patent number: 5935327
    Abstract: An apparatus for producing silicon crystals (24) having highly uniform characteristics from a silicon melt (22) comprising a furnace (12), a crucible (14) disposed within the furnace (12) for containing the silicon melt (22), a heater (20) disposed around the crucible (14) for heating the silicon melt (22) and a pair of cusp magnets (28, 30) disposed around the furnace (12) and spaced a distance apart from one another such that the distance between the cusp magnets (28, 30) is variable.
    Type: Grant
    Filed: May 9, 1997
    Date of Patent: August 10, 1999
    Assignee: Texas Instruments Incorporated
    Inventors: Farouk A. Hariri, Michael D. Dangel, H. Michael Grimes
  • Patent number: 5925185
    Abstract: A method for fabricating a semiconductor single crystal by the MCZ method by which it is possible to pull large diameter and heavy semiconductor single crystals without breaking the contraction portion, is provided.In the contracting step, change the shape of the crystal growth interface by making the range of the temperature fluctuation caused by convection in the vicinity of the melt surface more than 5.degree. C. so as to eliminate the dislocation in the contracted portion. When a transverse magnetic field is applied by magnets 6,6, the magnetic field intensity is set below 2000 Gauss to properly change the shape of the crystal growth interface to form the contracted portion 10. Thus,even though the diameter of the contracted portion 10 is larger than normal, free dislocation is achieved. After the dislocation is eliminated, the magnetic field intensity is recovered and shoulder 11 is formed.
    Type: Grant
    Filed: June 19, 1997
    Date of Patent: July 20, 1999
    Assignee: Komatsu Electronic Metals Co., Ltd.
    Inventors: Shigeki Kawashima, Hiroshi Inagaki, Hirotaka Nakajima
  • Patent number: 5911823
    Abstract: A method for pulling a <110> single-crystal silicon aims at preventing the crystal from being cut in diameter-reducing and suppress the increase in cost due to the cut prevention to the minimum. In the step for forming a diameter-reduced portion performed prior to the step for growing a <110> single-crystal silicon by the Czochralski method, a magnetic field having a strength of 500 gauss or more is applied and while suppressing a melt surface vibration and temperature variation, the crystal diameter is reduced to 2.00 mm or smaller.
    Type: Grant
    Filed: December 10, 1996
    Date of Patent: June 15, 1999
    Assignee: Komatsu Electronics Metals Co., Ltd.
    Inventors: Kouji Sonoda, Toshio Mimura
  • Patent number: 5882398
    Abstract: A single crystal of silicon is manufactured in accordance with the Czochralski method. A magnetic field is applied to a quartz crucible filled with silicon melt. Subsequently, a single crystal of silicon is pulled in a state in which no magnetic field is applied to the crucible, so as to obtain a single crystal of silicon. Therefore, the inner surface of a quartz crucible becomes very unlikely to deteriorate, and when the inner surface deteriorates, the deteriorated inner surface is restored. Accordingly, it is possible to manufacture a single crystal of silicon having a large diameter without generating a dislocation in the crystal. Moreover, even when a single crystal of silicon having a large diameter is manufactured, a larger number of single crystals of silicon can be manufactured from a single quartz crucible, and the pulling apparatus can be operated over a longer period of time using a single quartz crucible, thereby making it possible to manufacture a longer single crystal.
    Type: Grant
    Filed: January 23, 1997
    Date of Patent: March 16, 1999
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Susumu Sonokawa, Toshiro Hayashi, Atsushi Iwasaki, Tomohiko Ohta
  • Patent number: 5871578
    Abstract: Oscillation of a growing crystal is suppressed in a Czochralski method when part of the growing crystal is mechanically held. Methods for holding and pulling a single crystal in a Czochralski method, wherein a seed crystal is pulled while rotating after the seed crystal is contacted with a raw material melt, part of the growing single crystal is mechanically held during pulling and the single crystal of heavy weight can be pulled regardless of mechanical strengths of the seed crystal or a neck portion thereof, wherein the raw material melt is under application of a magnetic field thereto when the growing crystal is mechanically held.
    Type: Grant
    Filed: August 20, 1997
    Date of Patent: February 16, 1999
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Eiichi Iino, Makoto Iida, Masanori Kimura, Shozo Muraoka
  • Patent number: 5868832
    Abstract: Magnetic field generating apparatus comprises a pair of axially spaced coils which are so arranged that when energized, they produce a magnetic field which has a zero axial field or substantially zero axial field at an axial position midway between the coils. The annular space between the coils is filled with a material such as steel or steel with a layer of material magnetized in the radial direction, which enhances the radial field strength generated by the coils. The apparatus as application in the growth of single crystals of semiconductor material.
    Type: Grant
    Filed: March 31, 1997
    Date of Patent: February 9, 1999
    Assignee: Tesla Engineering Limited
    Inventor: Michael Colin Begg
  • Patent number: 5858084
    Abstract: A method of growing crystals from solution is described which includes growing crystals from a solution comprising ions under the combined effect of gravity and an applied magnetic field, in which the magnetic field in the range of about 1 to 10 times the strength of the Earth's magnetic field.
    Type: Grant
    Filed: February 28, 1997
    Date of Patent: January 12, 1999
    Assignee: Massachusetts Institute of Technology
    Inventors: Min-Chang Lee, Caroline H. Lee
  • Patent number: 5851283
    Abstract: A single crystal production apparatus based on an HMCZ method for production a large-diametered single crystal having a uniform microscopic oxygen concentration distribution in its crystal growth direction to thereby provide a wafer having a high in-plane uniformity of oxygen concentration distribution. In the single crystal production apparatus based on the HMCZ method, when B denotes a vertical position of the bottom surface of a melt within a crucible and L denotes the depth of the melt at the time of starting crystal pulling operation, a vertical position of the coil central axis Cc of superconducting electromagnets 12 and 15 is controlled to be a proper value included in a range from a position below the position B by {(1/3).times.L} to a position above the position B by {(1/3).times.L} to pull the single crystal.
    Type: Grant
    Filed: December 20, 1996
    Date of Patent: December 22, 1998
    Assignee: Shin-Etsu Handotai Co. Ltd.
    Inventors: Ryouji Hoshi, Masashi Sonokawa, Izumi Fusegawa, Tomohiko Ohta
  • Patent number: 5827366
    Abstract: In a Czochralski monocrystalline silicon growing apparatus for growing a silicon monocrystalline by pulling up a crystal seed by a wire in a growing furnace, a magnetic ring is mounted on the silicon monocrystal, and an electromagnet is fixed to the growing furnace for pulling up the magnetic ring.
    Type: Grant
    Filed: November 22, 1996
    Date of Patent: October 27, 1998
    Assignee: NEC Corporation
    Inventor: Masahito Watanabe
  • Patent number: 5792255
    Abstract: In a single crystal manufacturing method by a horizontal magnetic field applied CZ method wherein coils are disposed interposing a crucible coaxially with each other, the coils constituting superconductive electromagnets of a magnetic field application apparatus and the silicon crystal is pulled from melt in the crucible while applying a horizontal magnetic field to the melt; an elavation apparatus capable of finely adjusting relative positions of the superconductive electromagnets and the crcucible in a vertical direction is disposed. The descent of a central portion Cm in a depth direction of the melt is canceled by elevating the crucible with the elevating apparatus, the descent being accompanied with proceeding of process of pulling the single crystal, thereby a coil central axis Cc of the superconductive electromagnets always passes through the central portion Cm or below this portion.
    Type: Grant
    Filed: May 30, 1996
    Date of Patent: August 11, 1998
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Eiichi Iino, Kiyotaka Takano, Masanori Kimura, Hirotoshi Yamagishi
  • Patent number: 5785752
    Abstract: Proposed is an improvement in the method for the preparation of a chip of an oxide garnet film epitaxially having a specific chemical composition as grown on the surface of a GGG substrate wafer having a crystallographic plane orientation of (111), which is useful as a working element in a magnetostatic wave device such as high-frequency filters, signal noise enhancers, isolators and the like with decreased temperature dependence of the properties. The epitaxially grown single crystal film is adjusted to have such dimensions that the thickness h and the smallest dimension L within the plane of the film satisfy the relationship that the ratio h/L is in the range from 0.001 to 0.25.
    Type: Grant
    Filed: December 12, 1995
    Date of Patent: July 28, 1998
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Masayuki Tanno, Toshihiko Ryuo
  • Patent number: 5725661
    Abstract: An equipment for producing silicon single crystals based on an MCZ method, which enables an operator to be protected from dangerous exposure to magnetic field without involving increase in the size of the silicon single crystal production equipment. In the silicon single crystal production equipment based on the MCZ method, a growth furnace control apparatus for control of a pulling apparatus is located away from the pulling apparatus by a predetermined distance so that the intensity of magnetic field immediately close to the growth furnace control apparatus can become 300 gausses or less. A monitoring camera for observing the growing condition of the silicon single crystal is mounted to a window 5a of a growth furnace to be operatively connected to a monitor of the growth furnace control apparatus and to cause the growth furnace control apparatus to control the pulling apparatus on a remote control basis.
    Type: Grant
    Filed: July 1, 1996
    Date of Patent: March 10, 1998
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Izumi Fusegawa, Toshiro Hayashi, Tomohiko Ohta, Masayuki Arai
  • Patent number: 5359959
    Abstract: A semiconductor single crystal rod having a controlled oxygen concentration distribution in the direction of length is produced by method of pulling up a semiconductor melt held in a quartz glass crucible under application of a magnetic field, which method is characterized by fixing the speed of revolution of the quartz glass crucible and varying the intensity of the magnetic field applied to the melt according to the length of pull-up of the single crystal rod.
    Type: Grant
    Filed: September 30, 1992
    Date of Patent: November 1, 1994
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Izumi Fusegawa, Hirotoshi Yamagishi
  • Patent number: 5349921
    Abstract: Semiconductor crystalline materials, e.g. silicon, GaAs, are grown from a melt, e.g. using the Czochralski technique where a seed crystal is dipped into the melt then slowly withdrawn. Rotation of the growing crystal (6) is partly responsible for convective flows within the melt (5). Convective flows are reduced while radial uniformity is improved by subjecting the crystal/melt interface to a shaped magnetic field. This magnetic field is rotationally symmetrical about the axis of crystal rotation, with a component of field parallel to this axis that is less than 500 gauss, preferably less than 200 gauss, with a value above 500 gauss at other parts of the melt. The field may be produced by two superconducting magnet coils (21, 22) spaced apart and arranged co-axially with the axis of crystal rotation.
    Type: Grant
    Filed: October 12, 1990
    Date of Patent: September 27, 1994
    Assignee: Her Majesty the Queen in right of Canada, as represented by The Secretary of State for Defence in Her Britannic Majesty's Government of the United Kingdom of Great Britain and Northern Ireland
    Inventors: Keith G. Barraclough, Robert W. Series