Free-standing, Flat Single-crystal (e.g., Platelet, Plate, Strip, Disk, Tape, Sheet, Ribbon) {c30b 29/64} Patents (Class 117/922)
  • Patent number: 11719619
    Abstract: One embodiment is directed to a method of testing a polycrystalline laminate formed on a substrate surface of a substrate which is mounted to a sample holder. The substrate surface includes a substrate length edge having a substrate length and a substrate width edge having a substrate width. The polycrystalline laminate has a notch extending beyond the substrate width edge of the substrate surface. The method comprises at least one of: for tensile cleavage testing, applying a tensile load on the notch of the polycrystalline laminate in a direction generally perpendicular to the substrate surface and away from the substrate surface; and for shear sliding testing, applying a shear load on the end of the polycrystalline laminate in a length direction generally parallel to the substrate length edge of the substrate surface. A notch edge formation piece and a notch end formation piece may be used to form the laminate.
    Type: Grant
    Filed: February 5, 2021
    Date of Patent: August 8, 2023
    Assignee: UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF THE ARMY
    Inventors: Emily Asenath-Smith, Garrett R. Hoch, Christopher J Donnelly, Jordan M. Hodge
  • Patent number: 10916681
    Abstract: A semiconductor stacking structure according to the present invention comprises: a monocrystalline substrate which is disparate from a nitride semiconductor; an inorganic thin film which is formed on a substrate to define a cavity between the inorganic thin film and the substrate, wherein at least a portion of the inorganic thin film is crystallized with a crystal structure that is the same as the substrate; and a nitride semiconductor layer which is grown from a crystallized inorganic thin film above the cavity. The method and apparatus for separating a nitride semiconductor layer according the present invention mechanically separate between the substrate and the nitride semiconductor layer. The mechanical separation can be performed by a method of separation of applying a vertical force to the substrate and the nitride semiconductor layer, a method of separation of applying a horizontal force, a method of separation of applying a force of a relative circular motion, and a combination thereof.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: February 9, 2021
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Eui-Joon Yoon, Dae-Young Moon, Jeong-Hwan Jang, Yongjo Park, Duk-Kyu Bae
  • Patent number: 8723288
    Abstract: A single crystal having a technologically generated cleavage surface that extends along a natural crystallographic cleavage plane with an accuracy of less than |0.001°| when measured over a length relevant for the technology of the single crystal or over each of a plurality of surface areas extending in the direction of separation and having a length ?2 mm within the technologically relevant surface area.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: May 13, 2014
    Assignee: Freiberger Compound Materials GmbH
    Inventors: Ralf Hammer, Manfred Jurisch
  • Patent number: 8309209
    Abstract: A ribbon crystal has a body with a width dimension, and string embedded within the body. The string has a generally elongated cross-sectional shape. This cross-section (of the string) has a generally longitudinal axis that diverges with the width dimension of the ribbon crystal body.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: November 13, 2012
    Assignee: Max Era, Inc.
    Inventor: Scott Reitsma
  • Patent number: 8304057
    Abstract: A ribbon crystal has a body and end string within the body. At least one end string has a generally concave cross-sectional shape and is formed from at least two individual strings.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: November 6, 2012
    Assignee: Max Era, Inc.
    Inventor: Scott Reitsma
  • Patent number: 7976629
    Abstract: Processes and machines for producing large area sheets or films of crystalline, polycrystalline, or amorphous material are set forth; the production of such sheets being valuable for the manufacturing of solar photovoltaic cells, flat panel displays and the like. The surface of rotating cylindrical workpiece (10) is implanted with ion beam (30), whereby a layer of weakened material is formed below the surface. Sheet (20) is detached and peeled off, producing arbitrarily large, monolithic sheets. The sheet may be supported on a temporary or permanent handle (50) such as a glass sheet or a polymer film. Pinch roller (60) may assist in the lamination of handle (50) to sheet (20) before or after the point of separation of sheet (20) from workpiece (10). The implantation, annealing and separation processes are adapted to encourage the material to separate along the implanted layer rather than a particular crystal plane.
    Type: Grant
    Filed: February 18, 2008
    Date of Patent: July 12, 2011
    Inventor: Adam Alexander Brailove
  • Patent number: 7799131
    Abstract: The present invention provides a method for the continuous production of semiconductor ribbons by growth from a linear molten zone. The creation of the molten zone is achieved by application of an electric current, direct or alternating, parallel to the surface of the ribbon and perpendicular to the direction of growth, and intense enough to melt the said material, preferably using electrodes of the said material. The molten zone is fed by transference of the material, in the liquid state, from one or more reservoirs, where melting of the feedstock occurs. Preferably, the said electrodes and the said reservoir(s) are only constituted by the said material, thus avoiding contamination by foreign materials. The present invention is applicable, for example, in the industry of silicon ribbons production for photovoltaic application.
    Type: Grant
    Filed: April 15, 2004
    Date of Patent: September 21, 2010
    Assignee: Faculdade de Ciencias Da Universidade de Lisboa
    Inventors: António Vallêra, João Serra, Jorge Maia Alves, Miguel Brito, Roberto Gamboa, João Henriques
  • Patent number: 7718003
    Abstract: A method and apparatus for growing a crystalline or poly-crystalline body from a melt is described, wherein the melt is retained by capillary attachment to edge features of a mesa crucible. The boundary profile of the resulting melt surface results in an effect which induces a ribbon grown from the surface of the melt to grow as a flat body. Further, the size of the melt pool is substantially reduced by bringing these edges close to the ribbon, thereby reducing the materials cost and electric power cost associated with the process.
    Type: Grant
    Filed: November 26, 2007
    Date of Patent: May 18, 2010
    Assignee: Evergreen Solar, Inc.
    Inventor: Emanuel Michael Sachs
  • Patent number: 7708829
    Abstract: A method and apparatus for growing a crystalline or poly-crystalline body from a melt is described, wherein the melt is retained by capillary attachment to edge features of a mesa crucible. The boundary profile of the resulting melt surface results in an effect which induces a ribbon grown from the surface of the melt to grow as a flat body. Further, the size of the melt pool is substantially reduced by bringing these edges close to the ribbon, thereby reducing the materials cost and electric power cost associated with the process.
    Type: Grant
    Filed: July 10, 2006
    Date of Patent: May 4, 2010
    Assignee: Evergreen Solar, Inc.
    Inventor: Emanuel Michael Sachs
  • Patent number: 7608146
    Abstract: An apparatus and method for producing a crystalline ribbon continuously from a melt pool of liquid feed material, e.g. silicon. The silicon is melted and flowed into a growth tray to provide a melt pool of liquid silicon. Heat is passively extracted by allowing heat to flow from the melt pool up through a chimney. Heat is simultaneously applied to the growth tray to keep the silicon in its liquid phase while heat loss is occurring through the chimney. A template is placed in contact with the melt pool as heat is lost through the chimney so that the silicon starts to “freeze” (i.e. solidify) and adheres to the template. The template is then pulled from the melt pool thereby producing a continuous ribbon of crystalline silicon.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: October 27, 2009
    Assignee: BP Corporation North America Inc.
    Inventor: Roger F. Clark
  • Patent number: 7407550
    Abstract: A method and apparatus for growing a crystalline or poly-crystalline body from a melt is described, wherein the melt is retained by capillary attachment to edge features of a mesa crucible. The boundary profile of the resulting melt surface results in an effect which induces a ribbon grown from the surface of the melt to grow as a flat body. Further, the size of the melt pool is substantially reduced by bringing these edges close to the ribbon, thereby reducing the materials cost and electric power cost associated with the process.
    Type: Grant
    Filed: October 17, 2003
    Date of Patent: August 5, 2008
    Assignee: Evergreen Solar, Inc.
    Inventor: Emanuel Michael Sachs
  • Patent number: 7348076
    Abstract: Various single crystals are disclosed including sapphire. The single crystals have desirable geometric properties, including a width not less than about 15 cm and the thickness is not less than about 0.5 cm. The single crystal may also have other features, such as a maximum thickness variation, and as-formed crystals may have a generally symmetrical neck portion, particularly related to the transition from the neck to the main body of the crystal. Methods and for forming such crystals and an apparatus for carrying out the methods are disclosed as well.
    Type: Grant
    Filed: April 8, 2004
    Date of Patent: March 25, 2008
    Assignee: Saint-Gobain Ceramics & Plastics, Inc.
    Inventors: John Walter Locher, Steven Anthony Zanella, Ralph Lampson MacLean, Jr., Herbert Ellsworth Bates
  • Patent number: 7282381
    Abstract: The invention relates to a method for the production of self-supporting substrates comprising element III nitrides. More specifically, the invention relates to a method of producing a self-supporting substrate comprising a III-nitride, in particular, gallium nitride (GaN), which is obtained by means of epitaxy using a starting substrate. The invention is characterised in that it consists in depositing a single-crystal silicon-based intermediary layer by way of a sacrificial layer which is intended to be spontaneously vaporised during the III-nitride epitaxy step. The inventive method can be used, for example, to produce a flat, self-supporting III-nitride layer having a diameter greater than 2?.
    Type: Grant
    Filed: September 24, 2004
    Date of Patent: October 16, 2007
    Assignee: Centre National de la Recherche Scientifique (CNRS)
    Inventors: Eric Pascal Feltin, Zahia Bougrioua, Gilles Nataf
  • Patent number: 6946029
    Abstract: An inexpensive sheet with excellent evenness and a desired uniform thickness can be obtained by cooling a base having protrusions, dipping the surfaces of the protrusions of the cooled base into a melt material containing at least one of a metal material and a semiconductor material for crystal growth of the material on the surfaces of the protrusions. In addition, by rotating a roller having on its peripheral surface protrusions and a cooling portion for cooling said protrusions, the surfaces of the cooled protrusions can be dipped into a melt material containing at least one of a metal material and a semiconductor material for crystal growth of the material on the surfaces of the protrusions. Thus, a sheet with a desired uniform thickness can be obtained without slicing process.
    Type: Grant
    Filed: February 25, 2004
    Date of Patent: September 20, 2005
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Yoshihiro Tsukuda, Hiroshi Taniguchi, Kozaburou Yano, Kazuto Igarashi, Hidemi Mitsuyasu, Tohru Nunoi
  • Patent number: 6908510
    Abstract: For producing ultra pure materials a first station has a porous gas distributor. A material supply supplies material to the porous gas distributor. A gas source supplies gas to the distributor and through the distributor to the material in contact with the distributor. A heater adjacent the porous gas distributor heats and melts the material as gas is passed through the material. Dopant and a treatment liquid is or solid supplied to the material. Treated material is discharged from the first station into a second station. A second porous gas distributor in the second station distributes gas through the material in the second station. A crucible receives molten material from the second station for casting, crystal growing in the crucible or for refilling other casting or crystal growth crucibles. The material and the porous gas distributor move with respect to each other. One porous gas distributor is cylindrical and is tipped.
    Type: Grant
    Filed: December 11, 2001
    Date of Patent: June 21, 2005
    Assignee: Phoenix Scientific Corporation
    Inventor: Kiril A. Pandelisev
  • Publication number: 20040083946
    Abstract: Methods and apparatus for concurrent growth of multiple crystalline ribbons from a single crucible employ meniscus shapers to facilitate continuous growth of discrete and substantially flat crystalline ribbons having controlled width.
    Type: Application
    Filed: October 30, 2002
    Publication date: May 6, 2004
    Applicant: Evergreen Solar Inc.
    Inventor: Richard Lee Wallace
  • Patent number: 6626993
    Abstract: A process for dendritic web growth is described. The process includes providing a melt, growing a dendritic web crystal from the melt, replenishing the melt during the step of growing the dendritic web crystal, and applying a magnetic field to the melt during the step of growing the dendritic web crystal. An apparatus for stabilizing dendritic web growth is also described. The apparatus includes a crucible including a feed compartment for receiving pellets to facilitate melt replenishment and a growth compartment designed to hold a melt for dendritic web growth. The apparatus further includes a magnetic field generator configured to provide a magnetic field during dendritic web growth.
    Type: Grant
    Filed: February 22, 2001
    Date of Patent: September 30, 2003
    Assignee: Ebara Solar, Inc.
    Inventors: Daniel L. Meier, Gregory T. Neugebauer, Edward V. Macuga, Robert P. Stoehr, Philip J. Simpson, Jalal Salami
  • Patent number: 6596075
    Abstract: A high-quality crystal sheet is provided. An apparatus for use in producing a crystal sheet includes a substrate having a main surface on which a crystal sheet is formed, a crucible holding a melt therein, a movable member holding the substrate to move it to bring its main surface into contact with the melt and then move the substrate away from the melt, and cooling means for cooling the movable member.
    Type: Grant
    Filed: December 26, 2000
    Date of Patent: July 22, 2003
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Kazuto Igarashi, Yoshihiro Tsukuda, Hidemi Mitsuyasu, Hokuto Yamatsugu, Tohru Nunoi, Hiroshi Taniguchi, Koji Yoshida
  • Patent number: 6482261
    Abstract: An apparatus and method is provided for manufacturing a semiconductor substrate such as web crystals. The apparatus includes a chamber and a growth hardware assembly housed within the chamber. A magnetic field system produces a vertical magnetic field within the chamber.
    Type: Grant
    Filed: December 29, 2000
    Date of Patent: November 19, 2002
    Assignee: Ebara Solar, Inc.
    Inventors: Hilton F. Glavish, Hideyuki Isozaki, Keiji Maishigi, Kentaro Fujita
  • Publication number: 20020029735
    Abstract: A seed crystal is lowered toward a melt, and a contact between the seed crystal and the melt is detected using an image captured by an imaging device. The temperature of the melt is adjusted to keep a meniscus of the melt in contact with the seed crystal. The temperature of the melt is then lowered to create a wingout extending from the seed crystal. The length and symmetry of the wingout is detected with an image captured by the imaging device, and a ribbon of crystal following the wingout starts to be lifted from the melt.
    Type: Application
    Filed: September 6, 2001
    Publication date: March 14, 2002
    Inventors: Kenji Terao, Hideyuki Isozaki, Taro Takahashi, Motohiro Niijima
  • Patent number: 6217649
    Abstract: The invention features a method of continuous crystalline growth. A granular source material is introduced into a hopper. A volume of the granular source material exiting the hopper is disposed on a translationally moving belt. The volume of the granular source material forms an angle of repose with the moving belt. The granular source material disposed on the moving belt is continuously fed into a crucible comprising a melt of the granular source material at a rate based on the angle of repose, the speed of the belt, and the size of the opening of the hopper. A crystalline ribbon is continuously grown by solidifying the melt.
    Type: Grant
    Filed: January 13, 2000
    Date of Patent: April 17, 2001
    Assignee: Evergreen Solar, Inc.
    Inventors: Richard L. Wallace, Jr., Emanuel M. Sachs, Jennifer Martz
  • Patent number: 6153011
    Abstract: Reactive gas is released through a crystal source material or melt to react with impurities and carry the impurities away as gaseous products or as precipitates or in light or heavy form. The gaseous products are removed by vacuum and the heavy products fall to the bottom of the melt. Light products rise to the top of the melt. After purifying, dopants are added to the melt. The melt moves away from the heater and the crystal is formed. Subsequent heating zones re-melt and refine the crystal, and a dopant is added in a final heating zone. The crystal is divided, and divided portions of the crystal are re-heated for heat treating and annealing.
    Type: Grant
    Filed: February 16, 2000
    Date of Patent: November 28, 2000
    Assignee: Optoscint, Inc.
    Inventor: Kiril A. Pandelisev
  • Patent number: 6090199
    Abstract: The invention features a method of continuous crystalline growth. A granular source material is introduced into a hopper. A volume of the granular source material exiting the hopper is disposed on a translationally moving belt. The volume of the granular source material forms an angle of repose with the moving belt. The granular source material disposed on the moving belt is continuously fed into a crucible comprising a melt of the granular source material at a rate based on the angle of repose, the speed of the belt, and the size of the opening of the hopper. A crystalline ribbon is continuously grown by solidifying the melt.
    Type: Grant
    Filed: May 3, 1999
    Date of Patent: July 18, 2000
    Assignee: Evergreen Solar, Inc.
    Inventors: Richard L. Wallace, Jr., Emanuel M. Sachs, Jennifer Martz
  • Patent number: 5639300
    Abstract: A template having a surface relief structure contacts a thin crystalline film on a substrate to align the film in accordance with the surface relief structure.
    Type: Grant
    Filed: December 23, 1991
    Date of Patent: June 17, 1997
    Assignee: Massachusetts Institute of Technology
    Inventors: Henry I. Smith, Carl V. Thompson
  • Patent number: 5499600
    Abstract: A crystal solution growth method for growing a crystal by providing a temperature difference between the higher and lower regions of a solvent, and disposing a source crystal at a high temperature region of the solution and a seed crystal at a low temperature region of the solution. The crystal solution growth method includes the steps of: placing the seed crystal on a recess of a heat sink, the heat sink being disposed under the solvent and the recess being defined on the top surface of the heat sink; placing a seed stopper on the seed crystal to fix the seed crystal, the seed stopper having a tubular part with an inner diameter generally same as the seed crystal and a seed crystal fixing part for fixing the seed crystal formed at one end of, the tubular part on the seed crystal side; and forming a temperature difference between the higher and lower regions of the solvent and growing a crystal oil the surface of the seed crystal.
    Type: Grant
    Filed: December 19, 1994
    Date of Patent: March 19, 1996
    Assignees: Stanley Electric Co., Ltd., Kanagawa Academy of Science and Technology
    Inventors: Yasuo Okuno, Shotaro Tomita, Hiroyuki Kato
  • Patent number: RE43469
    Abstract: Various single crystals are disclosed including sapphire. The single crystals have desirable geometric properties, including a width not less than about 15 cm and the thickness is not less than about 0.5 cm. The single crystal may also have other features, such as a maximum thickness variation, and as-formed crystals may have a generally symmetrical neck portion, particularly related to the transition from the neck to the main body of the crystal. Methods and for forming such crystals and an apparatus for carrying out the methods are disclosed as well.
    Type: Grant
    Filed: October 21, 2009
    Date of Patent: June 12, 2012
    Assignee: Saint-Gobain Ceramics & Plastics, Inc.
    Inventors: John Walter Locher, Steven Anthony Zanella, Ralph Lampson MacLean, Herbert Ellsworth Bates