Combustible Mixture Stratification Means Patents (Class 123/295)
  • Patent number: 11187179
    Abstract: A control apparatus for a compression-ignition type engine is applied to an engine capable of carrying out partial compression ignition combustion. When the partial compression ignition combustion is carried out, an ignition control section of the control apparatus causes an ignition plug to carry out: main ignition in which a spark is generated to initiate the SI combustion; and preceding ignition in which the spark is generated at an earlier time point than the main ignition. An injection control section causes the ignition plug to inject fuel in an intake stroke. The ignition control section sets energy of the preceding ignition to be lower than energy of the main ignition and causes the ignition plug to carry out the preceding ignition after the fuel injection in the intake stroke or an early period or a middle period of a compression stroke.
    Type: Grant
    Filed: April 19, 2019
    Date of Patent: November 30, 2021
    Assignee: Mazda Motor Corporation
    Inventors: Kota Matsumoto, Tomonori Urushihara, Keiji Maruyama, Masanari Sueoka, Ryohei Ono, Yuji Harada, Toru Miyamoto, Atsushi Inoue, Tatsuhiro Tokunaga, Takuya Ohura, Yusuke Kawai, Tomohiro Nishida, Keita Arai, Yodai Yamaguchi
  • Patent number: 11168625
    Abstract: Fuel management system for enhanced operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder. It is preferred that the direct injection occur after the inlet valve is closed. It is also preferred that stoichiometric operation with a three way catalyst be used to minimize emissions. In addition, it is also preferred that the anti-knock agents have a heat of vaporization per unit of combustion energy that is at least three times that of gasoline.
    Type: Grant
    Filed: April 30, 2021
    Date of Patent: November 9, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: Leslie Bromberg, Daniel R. Cohn, John B. Heywood
  • Patent number: 11162452
    Abstract: An internal combustion engine control apparatus including an electronic control unit having a microprocessor and a memory. The microprocessor is configured to perform switching an injection mode between a first injection mode in which the fuel is injected in a range including an intake stroke and a compression stroke of an internal combustion engine and a second injection mode in which the fuel is injected in the range so that an injection frequency in the compression stroke in the second injection mode is greater than an injection frequency in the compression stroke in the first injection mode; and determining whether the injection mode needs to be switched based on an ignition timing of the ignitor.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: November 2, 2021
    Assignee: Honda Motor Co., Ltd.
    Inventors: Hidekazu Hironobu, Daiki Yamazaki, Masatoshi Nakajima, Nobuaki Ito, Ryuichi Hata, Hiroaki Tone
  • Patent number: 11125172
    Abstract: According to one or more embodiments, an internal combustion engine may be operated by a method which includes one or more of passing a first fuel and a second fuel into an engine cylinder to form a fuel mixture, and combusting the fuel mixture with a spark plug to translate a piston housed in the engine cylinder and rotate a crank shaft coupled to the piston. The first fuel may comprise a greater octane rating than the second fuel. A target CA50 may correspond to a minimum in specific fuel consumption of the fuel mixture. The spark plug may initiate combustion at a time such that the internal combustion engine operates with an operational CA50 that is within 20 degrees of the target CA50.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: September 21, 2021
    Assignee: Saudi Arabian Oil Company
    Inventors: Kai James Morganti, Yoann Viollet, Robert Andrew Head
  • Patent number: 11125203
    Abstract: An ignition control system and method for an engine having a two-step variable valve lift (VVL) system utilizes an ignition control system comprising a plurality of spark plugs each configured to generate one or more ignition strikes during a combustion event in a respective cylinder of the engine and a controller configured to detect a low-to-high or high-to-low lift mode transition of the VVL system and, in response to detecting the low-to-high or high-to-low lift mode transition of the VVL system, command the ignition control system to perform multi-strike ignition for at least one combustion event, wherein commanding the multi-strike ignition mitigates or eliminates at least one of engine torque variations and increased engine emissions resulting from poor combustion quality caused by residual exhaust components within the cylinder from a previous combustion event prior to the low-to-high or high-to-low lift mode transition of the VVL system.
    Type: Grant
    Filed: October 13, 2020
    Date of Patent: September 21, 2021
    Assignee: FCA US LLC
    Inventors: William P Attard, Nikhil Patil, Tyler Tutton
  • Patent number: 11118527
    Abstract: A control unit controls a combustion state of an internal combustion engine in accordance with a drive torque requested by a driver. The control unit performs a switching control to switch at least a combustion state between lean-burn combustion and stoichiometric combustion. A monitor unit performs torque monitoring to determine abnormality of a request torque, which is requested to the internal combustion engine, and a generated torque of the internal combustion engine based on the request torque and an estimation torque, which is an estimation value of an actual torque of the internal combustion engine. A combustion state determining unit determines whether the combustion state in the control unit is the lean-burn combustion or the stoichiometric combustion. A computing unit computes the estimation torque in accordance with the combustion state determined by the combustion state determining unit.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: September 14, 2021
    Assignee: DENSO CORPORATION
    Inventor: Masato Nodera
  • Patent number: 11041457
    Abstract: A structure of a combustion chamber for an engine includes: a crown surface of a piston; a combustion chamber ceiling surface formed on a cylinder head; and an ignition plug mounted on the combustion chamber ceiling surface, and including an ignition portion disposed in such a way as to face the combustion chamber. The crown surface of the piston includes a cavity which is recessed in a cylinder axis direction in a region including a position below the ignition portion of the ignition plug in a plan view from the cylinder axis direction. A rim portion of the cavity includes a guide portion, raised in the cylinder axis direction with respect to an inner region of the rim portion, interposing the ignition portion when the piston is at a compression top dead center, and configured to guide an air-fuel mixture within the combustion chamber to the ignition portion.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: June 22, 2021
    Assignee: MAZDA MOTOR CORPORATION
    Inventors: Satoshi Imamura, Masaki Fukuma, Yasushi Nakahara, Atsushi Inoue, Kota Matsumoto, Yoshiharu Ueki, Michiharu Kawano, Yuya Honda, Kento Onishi
  • Patent number: 11035323
    Abstract: An active purge system may include: a canister to collect therein an evaporation gas evaporated from a fuel tank; a purge line to connect the canister to an intake pipe; a purge pump to pressurize the evaporation gas to allow the evaporation gas to move from the canister to the intake pipe; a purge valve installed on the purge line to be located between the purge pump and the intake pipe; and an engine connected to the intake pipe. In particular, the engine includes an injector installed on a cylinder head, an intake valve, and an exhaust valve.
    Type: Grant
    Filed: January 9, 2020
    Date of Patent: June 15, 2021
    Assignees: HYUNDAI MOTOR COMPANY, KIA MOTORS CORPORATION
    Inventors: Young-Kyu Oh, Keum-Jin Park, Se-Geun Kim
  • Patent number: 11008953
    Abstract: Systems, apparatus, and methods are disclosed that include a divided exhaust engine with at least one primary exhaust gas recirculation (EGR) cylinder and a plurality of non-primary EGR cylinders. The systems, apparatus and methods control the EGR fraction by deactivation of one or more of the cylinders.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: May 18, 2021
    Assignee: Cummins Inc.
    Inventors: Akash S. Desai, David J. Langenderfer
  • Patent number: 11008970
    Abstract: A control device for controlling an engine provided with a fuel pump including a pressurizing chamber, a plunger inserted into the pressurizing chamber and which changes a volume of the pressurizing chamber, and an on-off valve configured to open and close a suction port, is provided. When a pressurizing cycle consists of a period of pressurizing stroke in which the volume of the pressurizing chamber is reduced to allow fuel to be pressurized and a period of suction stroke in which the volume of the pressurizing chamber is increased to allow fuel to be drawn into the pressurizing chamber, a closing cycle of the on-off valve is controlled so that a ratio of the closing cycle to the pressurizing cycle becomes smaller in a second combustion mode where a partial compression-ignition combustion is performed than in a first combustion mode where SI combustion is performed.
    Type: Grant
    Filed: July 7, 2020
    Date of Patent: May 18, 2021
    Assignee: Mazda Motor Corporation
    Inventors: Masami Nishida, Toru Miyamae, Shigeki Yamashita, Kazuhiro Takemoto, Michio Ito, Kazuhiro Nishimura, Yusuke Kawai, Tetsuya Chikada, Tatsuhiro Tokunaga
  • Patent number: 10997804
    Abstract: A method and diagnostic tool diagnoses a charge cycle behavior of an internal combustion engine with a plurality of cylinders. The method determines a diagnosis time window within a torque dropout of one of the cycles of the internal combustion engine, and associates a deviation type with the diagnosis time window determined.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: May 4, 2021
    Assignee: Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Sebastian Grasreiner, Florian Hartl, Christian Kuklinski
  • Patent number: 10989147
    Abstract: An air-fuel ratio control method reflecting a brake booster inflow flow rate includes: determining a deviation between an actually measured pressure of an intake manifold and a model pressure of the intake manifold is equal to or greater than a predetermined value; determining that the deviation is caused by a brake operation; correcting an intake air amount by reflecting a flow rate flowing into the intake manifold from a brake booster; and performing an air-fuel ratio control based on the corrected intake air amount.
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: April 27, 2021
    Assignees: HYUNDAI MOTOR COMPANY, KIA MOTORS CORPORATION
    Inventor: Min-Kyu Won
  • Patent number: 10982628
    Abstract: A controller for an internal combustion engine including a plurality of cylinders, a fuel injection valve for supplying a fuel to each cylinder, an EGR passage connecting an exhaust passage and an intake passage, and an EGR valve adjusting a flow rate of exhaust flowing into the intake passage from the exhaust passage via the EGR passage, the controller includes an electronic control unit. The electronic control unit is configured to execute determination processing for determining that a degree of an imbalance abnormality is larger when a torque fluctuation amount is relatively large than when the torque fluctuation amount is relatively small.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: April 20, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Keisuke Nagakura, Kuniyuki Sasaki
  • Patent number: 10961943
    Abstract: A method and a system for controlling combustion of a natural gas engine. The method includes: determining, based on a current operation parameter of a natural gas engine, an operation state of the natural gas engine, and calculating a total injection quantity of natural gas and pilot diesel required by the natural gas engine in the operation state; adopting a direct injection diffusion-combustion mode in a case that the operation state is an idle state or a low load state; adopting a natural gas homogeneous hybrid active control compression-ignition mode in a case that the operation state is a medium load state; configuring the total injection quantity into three parts including a compression-ignition natural gas injection quantity, a pilot diesel injection quantity, and a diffusion-combustion natural gas injection quantity in a case that the operation state is a high load state, and sequentially injecting them into a combustion chamber.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: March 30, 2021
    Assignee: WEICHAI POWER CO., LTD.
    Inventors: Xuguang Tan, Dehui Tong, Xiaoyan Wang, Zhijie Li, Xiaoying Xu, Qiang Zhang, Guoxiang Li
  • Patent number: 10934947
    Abstract: A control device for an engine includes a valve-stopping mechanism 14b which holds intake and exhaust valves 41, 51 of the first and the fourth cylinders (idle cylinders) of four cylinders in closed states, a throttle valve control unit 115, an ignition period control unit 113, and an ECU 110 which controls the valve-stopping mechanism 14b, the throttle valve control unit 115, and the ignition period control unit 113. The ECU 110 sets a retard amount of the ignition period of the idle cylinder behind the basic ignition period at least in starting the all-cylinder operation in accordance with an amount of burned gas existing in the idle cylinder in switching to the all-cylinder operation from the reduced-cylinder operation.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: March 2, 2021
    Assignee: MAZDA MOTOR CORPORATION
    Inventors: Takano Nakai, Takaya Okugawa, Souichirou Chabata, Takafumi Nishio
  • Patent number: 10934956
    Abstract: A method for controlling an internal combustion engine is provided, which includes defining a first area in which the engine operates in a stoichiometric combustion mode and a second area in which the engine operates in a lean combustion mode, on an operation map defined by the engine load and speed, and causing a controller to determine that an operation point on the operation map shifts from the first area to the second area based on signals from an accelerator opening sensor and a crank angle sensor, predict a length of time that the operation point stays in the second area, switch a combustion mode to the lean combustion mode when the predicted time is longer than a given period of time, and maintain the stoichiometric combustion mode when the predicted time is shorter than the given period of time.
    Type: Grant
    Filed: February 6, 2020
    Date of Patent: March 2, 2021
    Assignee: Mazda Motor Corporation
    Inventors: Taiga Kamiji, Takuo Hirano, Chikako Ohisa, Yoshiaki Aritome
  • Patent number: 10895217
    Abstract: Provided is a control apparatus for an internal combustion engine which can achieve required torque and avoid the risk of an accidental fire even in the case where an error occurs in final injection termination timing. A microcomputer calculates T902 which has been further advanced from T106 which precedes ignition timing by time required for vaporization of fuel injected into a cylinder of an internal combustion engine. The microcomputer determines whether final injection termination timing (T903) comes after T106 or T902. When it has been determined that final injection termination timing (T1204) comes after T106 or T902, the microcomputer controls an injector or an ignition device so as to secure time for vaporization of the fuel injected into the cylinder of the internal combustion engine while satisfying a fuel injection amount required in one combustion cycle.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: January 19, 2021
    Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Osamu Mukaihara, Masahiro Toyohara, Shigeyuki Yufu
  • Patent number: 10890155
    Abstract: In a control method for internal combustion engine for forming a stratified air-fuel mixture in a combustion chamber and performing stratified combustion by injecting fuel at least once each time between an intake stroke and the first half of a compression stroke and in the second half of the compression stroke, spark ignition is started by flowing a relatively large discharge current into the ignition plug when flow energy around the ignition plug is increased by energy of a fuel spray injected in the second half of the compression stroke and, thereafter, the discharge current is made relatively smaller and discharged for a predetermined period.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: January 12, 2021
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Hirofumi Maeda, Masaharu Kassai
  • Patent number: 10876492
    Abstract: Provided is a device for controlling a fuel injection device capable of suppressing deterioration of exhaust performance while ensuring driving performance when acceleration of a vehicle is requested during an intake stroke. Therefore, when the acceleration of a vehicle is requested during an intake stroke in one combustion cycle, an engine control unit 9 estimates an increase (acceleration intake air amount Qad) of the amount of air taken in a combustion chamber 19 of an internal combustion engine 1 associated with the acceleration of the vehicle after the acceleration of the vehicle is requested in one combustion cycle based on a lift amount of an intake valve 3. The engine control unit 9 controls a fuel injection valve 5 so as to increase a fuel injection amount in one combustion cycle according to the acceleration intake air amount Qad.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: December 29, 2020
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Tomoaki Horii, Tei Ho, Kazuya Saito
  • Patent number: 10859015
    Abstract: A control system for a compression ignition engine includes a combustion chamber, a throttle valve, an injector, an ignition plug, an EGR system, a sensor device and a controller. The controller includes a first mode module, a second mode module and a changing module configured to change an engine mode from a first mode to a second mode in response to a change demand. The changing module outputs signals to the throttle valve and the injector in response to the demand so that an air-fuel ratio of mixture gas becomes a stoichiometric air-fuel ratio or a substantially stoichiometric air-fuel ratio, and outputs a signal to the EGR system so that an EGR gas amount decreases more than before the demand, and when the EGR gas amount is determined to be decreased to a given amount, the changing module permits that the second mode module starts the second mode.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: December 8, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Yuto Matsushima, Masayoshi Higashio, Yugou Sunagare, Shinji Takayama, Kenko Ujihara, Yuta Masuda
  • Patent number: 10837386
    Abstract: The exhaust purification system of an internal combustion engine has: exhaust purification catalysts 20, 24 arranged in an exhaust passage and able to store oxygen; and a control device 31 for calculating an EGR rate of intake gas supplied to combustion chambers 5 and for controlling an air-fuel ratio of the exhaust gas flowing into the catalysts. The control device alternately switches the air-fuel ratio between a rich air-fuel ratio and a lean air-fuel ratio, and controls the air-fuel ratio so that the air-fuel ratio is switched from the lean air-fuel ratio to the rich air-fuel ratio when the oxygen storage amount of the catalyst is greater, when the calculated EGR rate is relatively high, compared to when it is relatively low.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: November 17, 2020
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Kenji Inoshita
  • Patent number: 10823131
    Abstract: Operating a dual fuel engine system includes igniting a main charge of gaseous fuel in response to combustion of an early pilot shot of liquid fuel and production of a spark. Operating the system also includes covarying a spark timing parameter and a pilot shot delivery parameter, and reducing an error in a phasing of combustion of another main charge based on the covarying of the spark timing parameter and the pilot shot delivery parameter.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: November 3, 2020
    Assignee: Caterpillar Inc.
    Inventors: Bobby John, Jonathan Anders
  • Patent number: 10815916
    Abstract: A system and method is provided for the use of the ion current signal characteristics for onboard cycle-by-cycle, cylinder-by-cylinder measurement. The system may also control the engine operating parameters based on a predicted NOx emission level, CO emission level, CO2 emission level, O2 emission level, unburned hydrocarbon (HC) emission level, cylinder pressure, or a cylinder temperature measurement according to characteristics of the ion current signal.
    Type: Grant
    Filed: August 17, 2018
    Date of Patent: October 27, 2020
    Assignee: Wayne State University
    Inventors: Tamer H. Badawy, Fadi A. Estefanous, Naeim A. Henein
  • Patent number: 10815913
    Abstract: Systems, methods and apparatus for controlling operation of dual fuel engines are disclosed that regulate the fuelling amounts provided by a first fuel and a second fuel during operation of the engine. The first fuel can be a liquid fuel and the second fuel can be a gaseous fuel. The fuelling amounts are controlled to improve operational outcomes of the duel fuel engine.
    Type: Grant
    Filed: May 3, 2017
    Date of Patent: October 27, 2020
    Assignee: Cummins Inc.
    Inventors: C. Larry Bruner, Phanindra V. Garimella, Geomy George, Timothy P. Lutz, J. Steven Kolhouse, Edmund P. Hodzen, Robert Charles Borregard, Mark A. Rosswurm, Axel Otto zur Loye
  • Patent number: 10808601
    Abstract: An internal combustion engine includes a fuel injection nozzle provided with a nozzle hole for injecting fuel, the nozzle hole exposed from a cylinder head of the internal combustion engine to a combustion chamber, and a hollow duct, an inlet and an outlet of which are exposed to the combustion chamber. The duct is provided in a manner allowing fuel spray injected from the nozzle hole of the fuel injection nozzle to pass through from the inlet to the outlet. The fuel injection nozzle and the duct are configured such that a part of fuel spray that is injected in pilot injection that is performed before main injection directly adheres to an inner wall surface of the duct.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: October 20, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Takeshi Hashizume
  • Patent number: 10801393
    Abstract: A control system for a compression ignition engine configured to start compression ignition combustion by igniting mixture gas formed by injecting fuel into combustion chambers is provided, which includes combustion chambers each defined in respective cylinders so that displacements of the combustion chambers change by respective pistons reciprocating, a throttle valve, ignition plugs, injectors, a sensor having measuring parts including an atmospheric-pressure detector configured to detect an atmospheric pressure, and configured to measure parameters related to operation of the engine, and a controller. The controller executes a lean compression ignition combustion control in which compression ignition combustion is performed at a given lean air-fuel ratio higher than a stoichiometric air-fuel ratio.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: October 13, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Yuto Matsushima, Masayoshi Higashio, Yugou Sunagare, Shinji Takayama, Kenko Ujihara, Yuta Masuda
  • Patent number: 10801436
    Abstract: In a first region on a low load side of an operation region of a direct fuel injection engine, homogenous combustion is performed, while, in a second region of the operation region on a load side higher than the first region, stratified combustion is performed. In the stratified combustion, a fuel is dispersed in a cylinder by a first injection operation and a fuel is unevenly distributed in a vicinity of the ignition plug by a second injection operation. Shift control by the stratified combustion is executed at a time of shifting when an operation state of the engine has shifted from the first region to the second region, and in the shift control, a fuel in an amount larger than a target amount of the second injection operation in the second region is injected by the second injection operation and then, an injection amount of the second injection operation is decreased toward the target amount.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: October 13, 2020
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Masaharu Kassai, Takayoshi Kodama
  • Patent number: 10800227
    Abstract: An air-conditioning control apparatus is mounted in a vehicle that is capable of unmanned travelling. The apparatus has a determining section and an output section. The determining section determines whether an occupant is in the vehicle and whether the vehicle is traveling. The output section performs an air-conditioning control including temperature adjusting using a radiator through heat exchange with air outside the vehicle. The output section performs the air-conditioning control when the vehicle is in an unmanned state and a travelling state, and refrains from performing the air-conditioning control when the vehicle is in the unmanned state and a stop state.
    Type: Grant
    Filed: November 5, 2019
    Date of Patent: October 13, 2020
    Assignee: DENSO CORPORATION
    Inventor: Koji Sakai
  • Patent number: 10794310
    Abstract: In some examples, a system including one or more processors may receive sensor data from one or more sensors indicating one or more engine parameters of an engine including a combustion chamber. Based on the sensor data, the system may determine a homogeneity index indicative of a homogeneity of an air-fuel mixture within the combustion chamber. Furthermore, the system may determine an estimated amount of NOx in the exhaust gas based at least in part on the homogeneity index. In addition, based at least partially on the estimated amount of NOx in the exhaust gas, the system may send an instruction to control an engine component.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: October 6, 2020
    Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Zicheng Ge, Yahodeep Lonari, Kazuhiro Oryoji
  • Patent number: 10794237
    Abstract: A control device has a VVT (variable valve timing) mechanism which changes opening or closing timing of at least one of an intake valve and an exhaust valve, and includes: a processor; a sensor for detecting atmospheric pressure; and a sensor for detecting the amount of air flowing through an intake air flow path. The processor calculates a charging efficiency based on the detected amount of air, calculates a volumetric efficiency from the detected amount of air and the detected atmospheric pressure, calculates the charging efficiency valve opening timing of the intake valve based on the charging efficiency, calculates the volumetric efficiency valve opening timing of the intake valve based on the volumetric efficiency, and sets the valve opening timing(s) of at least one of the intake valve and the exhaust valve based on one of the charging efficiency valve opening timing and the volumetric efficiency valve opening timing.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: October 6, 2020
    Assignee: MITSUBISHI JIDOSHA KOGYO KABUSHIKI KAISHA
    Inventors: Ryosuke Itano, Toshiyuki Miyata, Hitoshi Toda, Tsuyoshi Tadanaga
  • Patent number: 10781760
    Abstract: Fuel management system for enhanced operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder. It is preferred that the direct injection occur after the inlet valve is closed. It is also preferred that stoichiometric operation with a three way catalyst be used to minimize emissions. In addition, it is also preferred that the anti-knock agents have a heat of vaporization per unit of combustion energy that is at least three times that of gasoline.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: September 22, 2020
    Assignee: Massachusetts Institute of Technology
    Inventors: Leslie Bromberg, Daniel R. Cohn, John B. Heywood
  • Patent number: 10753267
    Abstract: Embodiments of apparatus are disclosed for affecting working fluid flow in a system that delivers material between two locations by carrying the material in the working fluid. For example, embodiments of the disclosed apparatus may be used in an internal combustion engines to carry fuel droplets to a combustion area using air as the working fluid. The apparatus may include a passage including a funnel portion and tumble area that direct working fluid into a stratified stream. The stratified stream may include an outer boundary flow having a toroidal and/or helical flow characteristic and an inner flow carrying injected material that is bound by the outer flow.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: August 25, 2020
    Inventors: Elario D. Dalmas, II, Brett J. Leathers
  • Patent number: 10718257
    Abstract: A method of operating a dual-fuel combustion system includes reciprocating a piston between a bottom dead center and a top dead center of a cylinder, the piston including a piston bowl, a circumferentially extending recess located radially outside of the piston bowl, and a plurality of diverters in the recess. The method includes opening an intake valve to introduce a first fuel, and injecting, by a set of fuel injector orifices substantially aligned with the diverters, a second fuel toward the diverters. The method also includes autoigniting the second fuel to ignite the first fuel.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: July 21, 2020
    Assignee: Caterpillar Inc.
    Inventors: Jonathan W. Anders, Bobby John
  • Patent number: 10712373
    Abstract: The subject matter of this specification can be embodied in, among other things, a method for characterizing a fluid injector that includes receiving a collection of waveform data, identifying a pull locus, determining a detection threshold level value, identifying a first subset of the collection of data representative of a selected first electrical waveform of the collection of electrical waveforms, identifying an opening value, identifying a representative closing value, identifying an anchor value, identifying a second subset of the collection of data based on the collection of data, the pull locus, the first subset, and the opening value, identifying a maximum electrical value, identifying an opening locus based the collection of data, the anchor value, and the maximum electrical value, identifying a hold value, and providing characteristics associated with the fluid injector comprising the pull locus, the opening locus, the hold value, the anchor value, and the representative closing value.
    Type: Grant
    Filed: July 26, 2019
    Date of Patent: July 14, 2020
    Assignee: Woodward, Inc.
    Inventors: Kamran Eftekhari Shahroudi, Suraj Nair
  • Patent number: 10704524
    Abstract: A control system of a compression-ignition engine which performs SPCCI combustion in which mixture gas is ignited with a spark plug to be partially combusted by SI combustion and the rest of mixture gas self-ignites to be combusted by CI combustion, is provided. When the engine is operated at least in a given first operating range, a controller of the device controls a variable intake mechanism so that an A/F lean environment where an air-fuel ratio in a cylinder becomes higher than a stoichiometric air-fuel ratio is formed, while causing the spark plug to perform spark ignition at a given timing so that the mixture gas combusts by SPCCI combustion, and controls so that, under the same engine load condition, an intake valve close timing is more retarded as the engine speed decreases, within a range where an amount of air inside the cylinder decreases by retarding the close timing.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: July 7, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Masanari Sueoka, Atsushi Inoue, Keiji Maruyama, Takuya Ohura, Tomohiro Nishida, Yusuke Kawai, Tetsuya Chikada, Tatsuhiro Tokunaga
  • Patent number: 10704523
    Abstract: A control system of a compression-ignition engine includes an intake variable mechanism and a controller. In a second operating range, the controller controls the intake variable mechanism so that, while partial compression-ignition combustion is performed under an air-fuel ratio (A/F) lean environment, an intake valve open timing takes timing at an advanced side of an exhaust TDC. In a first operating range on a lower load side, the controller controls the intake variable mechanism so that, while the partial compression-ignition combustion is performed under the A/F lean environment, under the same engine speed condition, the intake valve close timing is more retarded within a range on a retarded side of an intake BDC as the engine load decreases, and an absolute value of a change rate of the intake valve close timing to the engine load becomes larger than in the second range.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: July 7, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Masanari Sueoka, Atsushi Inoue, Keiji Maruyama, Takuya Ohura, Tomohiro Nishida, Yusuke Kawai, Tetsuya Chikada, Tatsuhiro Tokunaga
  • Patent number: 10675587
    Abstract: An exhaust purification system including a NOx catalyst 32 provided in an exhaust passage of an internal combustion engine 10 and purifying NOx in exhaust; a MAF sensor 40 for acquiring an air flow-rate of the internal-combustion engine 10; a control unit 60, 70 that execute catalyst regeneration treatment of recovering a NOx purification ability of the NOx catalyst 32 by performing, in combination, air-based control of reducing air flow-rate of the internal-combustion engine 10 to a predetermined target air flow-rate and injection-based control of increasing a fuel injection amount, wherein, in a case of executing the catalyst regeneration treatment, the control unit 60, 70 starts with the air-based control and starts the injection-based control when the air flow-rate acquired by the MAF sensor 40 is reduced to the target air flow-rate.
    Type: Grant
    Filed: March 8, 2016
    Date of Patent: June 9, 2020
    Assignee: ISUZU MOTORS LIMITED
    Inventors: Teruo Nakada, Takayuki Sakamoto, Daiji Nagaoka, Hiroyuki Yuza
  • Patent number: 10655546
    Abstract: Provided is a control device for controlling an internal combustion engine including a fuel injection valve, an ignition device, and a variable valve operating device configured to switch between a base opening/closing mode of an intake valve and a continuous valve opening mode. The control device is configured to execute a cold start control at a cold start. The cold start control includes: a startability improvement processing executed in a predetermined number of cycles after the start of cranking; and a combustion start processing executed after this predetermined number of cycles. In the startability improvement processing, the continuous valve opening mode is selected in at least an expansion stroke and an exhaust stroke, and fuel injection is executed without ignition. In the combustion start processing, the base opening/closing mode is selected continuously during one cycle, and ignition is executed.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: May 19, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Shigeki Miyashita
  • Patent number: 10648443
    Abstract: A control apparatus for a compression autoignition engine controls compression autoignition by ignition. The control apparatus includes an injector, a spark plug, and a controller. The controller controls the injector so that fuel is injected by a plurality of divided injections, and thereafter, outputs a control signal to the spark plug at predetermined ignition timing so that, by ignition, unburned air-fuel mixture combusts by autoignition. Control is performed so that, when load on the engine is high, an amount of fuel injected at later timing among the plurality of injections becomes larger than when the load is low.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: May 12, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Atsushi Inoue, Masanari Sueoka, Kota Matsumoto, Tomonori Urushihara
  • Patent number: 10648409
    Abstract: A control apparatus for a compression autoignition engine includes an engine, a state quantity setting device, a spark plug, and a controller. After the spark plug ignites air-fuel mixture to start combustion, unburned air-fuel mixture is combusted by autoignition. The controller changes, according to an operation state of the engine, a heat amount ratio that represents an index associated with a ratio of an amount of heat generated by air-fuel mixture being combusted by flame propagation, to a total amount of heat generated by air-fuel mixture in the combustion chamber being combusted.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: May 12, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Atsushi Inoue, Masanari Sueoka, Kota Matsumoto, Tomonori Urushihara
  • Patent number: 10619580
    Abstract: Fuel management system for enhanced operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder. It is preferred that the direct injection occur after the inlet valve is closed. It is also preferred that stoichiometric operation with a three way catalyst be used to minimize emissions. In addition, it is also preferred that the anti-knock agents have a heat of vaporization per unit of combustion energy that is at least three times that of gasoline.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: April 14, 2020
    Assignee: Massachusetts Institute of Technology
    Inventors: Leslie Bromberg, Daniel R. Cohn, John B. Heywood
  • Patent number: 10605193
    Abstract: A control system for a compression-ignition engine is provided, which includes an engine having a combustion chamber, an injector configured to supply fuel into the combustion chamber, a spark plug, a swirl valve provided to an intake passage of the engine, and a controller connected to the injector, the spark plug and the swirl valve to control them. The controller includes a processor configured to execute a swirl adjusting module to adjust an opening of the swirl valve to generate a swirl flow inside the combustion chamber, a fuel injection timing controlling module to control a fuel injection timing and control the injector to retard the fuel injection timing as an engine speed increases, and a combustion controlling module to control the spark plug to ignite at a given ignition timing after the swirl generation and the fuel injection, so that partial compression-ignition combustion is performed.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: March 31, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Masanari Sueoka, Takuya Ohura, Tatsuhiro Tokunaga, Keiji Maruyama, Tomohiro Nishida
  • Patent number: 10590874
    Abstract: Methods and systems are provided for mitigating issues related to sluggish engine performance. In one example, a method comprises, responsive to an indication of degradation of one or more cylinders in the engine, reducing carbon buildup associated with the one or more cylinders via injecting a diesel exhaust fluid into an intake manifold of the engine while the engine is combusting air and fuel. In this way, a water content of the diesel exhaust fluid may be vaporized in the one or more engine cylinders, which may effectively reduce the carbon buildup.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: March 17, 2020
    Assignee: Ford Global Technologies, LLC
    Inventor: Aed M. Dudar
  • Patent number: 10539098
    Abstract: A control system of a compression-ignition engine is provided, which includes an engine configured to cause combustion of mixture gas inside a combustion chamber, a spark plug, and a controller configured to operate the engine. The combustion is performed in a given mode in which, after the spark plug ignites the mixture gas to start combustion, unburned mixture gas combusts by self-ignition. The controller has a heat amount ratio changing module configured to change, according to an engine operating state, a heat amount ratio as an index relating to a ratio of a heat amount generated when the mixture gas combusts by flame propagation with respect to a total heat amount generated when the mixture gas inside the combustion chamber combusts. The controller causes the changing module to increase the heat amount ratio at a high engine speed than at a low engine speed.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: January 21, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Atsushi Inoue, Kota Matsumoto, Yusuke Kawai, Toru Miyamoto, Yudai Koshiro
  • Patent number: 10533526
    Abstract: The present connection structure of an intake pipe is a connection structure of an intake pipe for an engine head. The connection structure includes a partition wall member partitioning an intake passage along its axial direction and being inserted into the engine head, and an elastic gasket having a frame shape provided between the engine head and the intake pipe to seal therebetween. The intake pipe is provided at its connection end portion with an elastic body that presses the partition wall member in its insertion direction.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: January 14, 2020
    Assignee: TOYOTA BOSHOKU KABUSHIKI KAISHA
    Inventor: Takuma Yamaguchi
  • Patent number: 10526928
    Abstract: A valve train assembly includes a rocker arm assembly, and axial shifting cam assembly, and a lost motion device. The axial shifting cam assembly is movable between a first axial position and a second axial position on a camshaft, the cam assembly having a first cam having a first lobe, and a second cam having a second lobe. The first and second lobes are configured to each selectively engage the rocker arm assembly to respectively perform a first and a second discrete valve lift event. The lost motion device is operably associated with the rocker arm assembly and configured to perform a third discrete valve lift event, distinct from the first and second valve lift events.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: January 7, 2020
    Assignee: Eaton Corporation
    Inventors: Philip William Wetzel, Douglas J. Nielsen, James E. McCarthy, Jr.
  • Patent number: 10519830
    Abstract: The invention describes a method for adjusting the pressure in a pumping system (10) of a motor vehicle with an internal combustion engine. The pumping system (10) comprises one or more pumps, wherein each pump is provided with a respective driving motor, and at least one programmable electronic control unit (12). The method comprises the steps of adjusting or mapping the programmable electronic control unit (12) of the pumping system (10), carried out by setting a set of predefined operating parameters of each pump in the programmable electronic control unit (12) of the pumping system (10), and of controlling the operation of the pumping system (10), wherein such control is an open-loop control and wherein the control action is independent from the values of the output parameters of the pumping system (10).
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: December 31, 2019
    Assignee: FLUID-O-TECH S.R.L.
    Inventors: Diego Andreis, Francesco Tirelli
  • Patent number: 10487721
    Abstract: An internal combustion engine (10), including a cylinder (15) with a cylinder wall (12) defining a combustion chamber (32), a piston (13) reciprocally disposed within the combustion chamber (32) a crankcase (16) including a crankshaft (11) rotatably disposed therein, the piston (13) being connected to the crankshaft (11) by a connecting rod (17), a first scavenger duct (3) extending between the combustion chamber (32) and the crankcase (16), the first scavenger duct (3) including a top port (31a) and a bottom port (31b), a fuel and air inlet channel (22) in fluid communication with the crankcase (16) by way of a piston ported fuel and air inlet port (23) so that the fuel and air inlet channel (22) delivers a fuel and air mixture to the crankcase (16), and an airhead channel (6) in fluid communication with the first scavenger duct (3) by way of a first piston ported air inlet port (7), characterized in that the fuel and air inlet channel (22) is in fluid communication with the airhead channel (6) so that the f
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: November 26, 2019
    Assignee: HUSQVARNA AB
    Inventors: Alexander Lundgren, Joel Berneklev, Tommy Shoug
  • Patent number: 10487720
    Abstract: A control system of a compression-ignition engine is provided, which includes an engine, an injector, a spark plug, and a controller connected to the injector and the spark plug, and configured to operate the engine by outputting a control signal to the injector and the spark plug. After the spark plug ignites mixture gas to start combustion, unburned mixture gas combusts by self-ignition. The controller outputs the control signal to the injector to perform a first-stage injection of fuel and then a second-stage injection in which fuel is injected to at least form the mixture gas around the spark plug. The controller also outputs the control signal to the injector to control a ratio of the injection amount of the second-stage injection with respect to the injection amount of the first-stage injection to be higher at a high engine speed than at a low engine speed.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: November 26, 2019
    Assignee: Mazda Motor Corporation
    Inventors: Atsushi Inoue, Kota Matsumoto, Yusuke Kawai, Toru Miyamoto, Yudai Koshiro
  • Patent number: 10480438
    Abstract: Disclosed herein is a fuel injection control device for a direct injection engine including an engine body (engine 1) and a fuel injection control unit (engine controller 100). The fuel injection control unit injects a fuel in a predetermined injection mode into a combustion chamber (17) such that while the engine body is warm, an air-fuel mixture layer and a heat-insulating gas layer, surrounding the air-fuel mixture layer, are formed in the combustion chamber at a point in time when an air-fuel mixture ignites, and changes the injection mode of the fuel into the combustion chamber such that while the engine body is cold, the lower the temperature of the engine body is, the thinner the heat-insulating gas layer becomes.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: November 19, 2019
    Assignee: MAZDA MOTOR CORPORATION
    Inventors: Takeshi Nagasawa, Keiji Araki, Noriyuki Ota, Kenji Uchida, Ryohei Ono, Kiyotaka Sato, Hidefumi Fujimoto