Combination Igniting Means And Injector Patents (Class 123/297)
-
Patent number: 12037964Abstract: A hydrogen engine in which hydrogen gas is supplied into a combustion chamber as fuel, comprises: an injector for injecting hydrogen gas; a pressure accumulation chamber communicating with an injection hole of the injector; a communication hole communicating with the pressure accumulation chamber and the combustion chamber; and a pressure accumulation chamber defining portion provided between the injector and the combustion chamber and defining the pressure accumulation chamber and the communication hole. The pressure accumulation chamber defining portion is formed separately from the injector and has a thermal conductivity equal to or higher than a thermal conductivity of a combustion chamber wall defining the combustion chamber.Type: GrantFiled: November 8, 2023Date of Patent: July 16, 2024Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHAInventors: Kazuhiro Ohmae, Jun Miyagawa, Shiro Tanno, Shinji Harada
-
Patent number: 11795851Abstract: An electrical heating unit H for introduction into the exhaust gas system of an internal combustion engine, in particular upstream with respect to an exhaust gas purification unit, for instance a catalytic converter, which for its operation requires a temperature higher than the ambient temperature, comprises a casing (13) and at least one resistance heating element (14) which is designed as a band and is retained inside the casing (13), wherein the at least one heating band (14) is arranged so that it runs in a meandering pattern and with its flat face parallel or substantially parallel to the longitudinal axis of the casing (13). The heating unit H also comprises at least one support structure (19, 19.Type: GrantFiled: August 20, 2021Date of Patent: October 24, 2023Assignee: HJS EMISSION TECHNOLOGY GMBH & CO. KGInventors: Simon Steigert, Jochen Koll, Frank Röse
-
Patent number: 11739937Abstract: A plasma injection module includes a fuel receiving end, a discharge end opposite the fuel receiving end, and an axial fluid pathway extending between the fuel receiving end and the discharge end. An insulator assembly defines a first portion of the axial fluid pathway proximate to the fuel receiving end. An injection tube assembly having a permanent magnet is positioned downstream of the insulator. A voltage input connection is arranged downstream of the insulator assembly and upstream of the injection tube assembly. The voltage input connection secures a voltage source to the injection tube to form a plasma filament within and adjacent to the axial fluid pathway. During operation a permanent magnet produces a magnetic field that interacts with the plasma filament to rotate the plasma filament and increase an area of ignition between the plasma filament and the combustible material at the discharge end.Type: GrantFiled: February 10, 2021Date of Patent: August 29, 2023Assignee: University of Notre Dame du LacInventor: Sergey B. Leonov
-
Patent number: 11536139Abstract: A rotary piston and cylinder device (1) comprising a rotor (2), a stator (4) and a rotatable shutter (3), the rotor comprising a piston (5) which extends from the rotor into a working chamber, the rotor and the stator together defining a working chamber, the shutter arranged to extend through the working chamber and forming a partition therein, and the shutter comprising a slot which allows passage of the piston therethrough, a bearing (20) which mounts the rotor relative to the stator, the rotor comprising a formation (12; 30) which extends substantially axially away from the chamber, and the formation being radially outward of the bearing and extending around the axis of rotation, and the formation comprising a surface which at least in part defines a space between the rotor and the stator, and at least part of that space and/or the formation overlaps in an axial direction with the bearing.Type: GrantFiled: September 1, 2017Date of Patent: December 27, 2022Assignee: Lontra LimitedInventor: Stephen Francis Lindsey
-
Flexible ignition device for gasoline compression ignition combustion in internal combustion engines
Patent number: 11473551Abstract: This disclosure presents, in one or more embodiments, an ignition device for a gasoline compression ignition engine. The ignition device includes a shuttle plunger with a gas chamber. The gas chamber is delimited by at least one sidewall of the shuttle plunger and captures exhaust gases. The ignition device also includes an electromagnetic coil that actuates the shuttle plunger in a first direction, a main body with a cavity containing the shuttle plunger and the electromagnetic coil, and a center electrode, fixed to the shuttle plunger, that ignites a fuel mixture.Type: GrantFiled: August 31, 2021Date of Patent: October 18, 2022Assignee: SAUDI ARABIAN OIL COMPANYInventor: Nayan Engineer -
Patent number: 11208311Abstract: A device for influencing the volume flow of a filling product in a filling plant for filling with filling products includes a valve body with a valve seat and a valve cone which can be displaced relative to the valve seat, an actuator for positioning the valve cone relative to the valve seat, an electronic controller for controlling the actuator, and a housing which is directly connected to the valve body and in which the actuator and the electronic controller are disposed. An arrangement for reducing a heat input into the electronic controller is provided.Type: GrantFiled: September 29, 2017Date of Patent: December 28, 2021Assignee: KRONES AGInventors: Florian Angerer, Josef Doblinger
-
Patent number: 11053904Abstract: A fuel injector is described which is able to be preassembled in a receiving opening of a fuel-distributor line in a loss-proof manner in a structural unit in the form of a fuel charge assembly for transport to the final assembly at the vehicle manufacturer. A radial support disk for preventing the loss of the fuel injector is disposed on the inflow-side end of the inlet pipe by press-fitting the radial support disk in the receiving opening. The fuel injector is particularly suitable for the direct injection of fuel into a combustion chamber of a mixture-compressing internal combustion engine having externally supplied ignition.Type: GrantFiled: June 11, 2018Date of Patent: July 6, 2021Assignee: Robert Bosch GmbHInventors: Klaus Jung, Nelly Krause, Tobias Keller
-
Patent number: 10941746Abstract: An igniter (09) includes an elongated tubular housing (10) with a polygonal top (14) having a central aperture (16) defined therein, communicating into a central chamber (20) along a longitudinal axis to an end at a base (18). A terminal (13a) projects from the polygonal top (14). A channel (11a) along a longitudinal axis is formed within the housing (10) in which is mounted an insulator (15). At least a portion of the insulator (15) may extend from the base (18). An electrode (13) connected to the terminal (13a) or (13b) is embedded within the insulator (15), to an end in the base (18). Prongs (19) extend from the electrode (13) towards the outer periphery of the housing (10) or towards the central chamber (20). The prongs (19) end in proximity to the outer housing wall (11), or the inner housing wall (12). The prongs (19) may be one or more projections and have sharp edges for multiple and increased spark presentations.Type: GrantFiled: March 15, 2013Date of Patent: March 9, 2021Inventor: Alfred Anthony Black
-
Patent number: 10823127Abstract: Methods and systems are provided for a fuel injector. In one example, a system may include a fuel injector having a half-annular venturi shaped outlet passage arranged between an outlet surface of the fuel injector and a half-cone shaped end portion of a nozzle. The nozzle may further comprise one or more air entraining features working in tandem with the half-annular venturi outlet passage to promote air-fuel mixing.Type: GrantFiled: March 14, 2018Date of Patent: November 3, 2020Assignee: Ford Global Technologies, LLCInventor: Xiaogang Zhang
-
Patent number: 10364740Abstract: An engine additive fluid port includes a series of material layers arranged as a first oblong hollow member configured to seamlessly surround at least a portion of an intake port of an integrated cylinder head. The member penetrates into a cavity of the intake port via a plurality of nozzles featuring apertures capable of spraying a first fluid into the cavity.Type: GrantFiled: January 15, 2018Date of Patent: July 30, 2019Assignee: FORD GLOBAL TECHNOLOGIES, LLCInventor: Christopher Donald Wicks
-
Patent number: 10161626Abstract: Various technologies presented herein relate to enhancing mixing inside a combustion chamber to form one or more locally premixed mixtures comprising fuel and charge-gas to enable minimal, or no, generation of soot and/or other undesired emissions during ignition and subsequent combustion of the locally premixed mixtures. To enable sufficient mixing of the fuel and charge-gas, a jet of fuel can be directed to pass through a bore of a duct causing charge-gas to be drawn into the bore creating turbulence to mix the fuel and the drawn charge-gas. The duct can be located proximate to an opening in a tip of a fuel injector. The various technologies presented herein can be utilized in a number of combustion systems, such as compression-ignition (CI) reciprocating engines, spark-ignition (SI) reciprocating engines, gas-turbine (GT) engines, burners and boilers, wellhead/refinery flaring, etc.Type: GrantFiled: November 29, 2016Date of Patent: December 25, 2018Assignee: National Technology & Engineering Solutions of Sandia, LLCInventor: Charles J. Mueller
-
Patent number: 9970400Abstract: A pre-chamber fuel admission valve includes a fuel inlet, a fuel outlet, an actuated valve, and a check valve. The fuel inlet receives a supply of a fuel. The fuel outlet delivers the fuel to a pre-chamber. The actuated valve is between and in fluid communication with the fuel inlet and the fuel outlet. The actuated valve controls a flow of the fuel from the fuel inlet to the fuel outlet. The check valve is biased in a closed position and between and in fluid communication with the actuated valve and the fuel outlet. The check valve is configured to open and allow the fuel to exit the fuel outlet in response to a fuel pressure exceeding a pre-chamber pressure plus a bias pressure, and the check valve is configured to close in response to the pre-chamber pressure plus the bias pressure exceeding the fuel pressure.Type: GrantFiled: September 15, 2015Date of Patent: May 15, 2018Assignee: Caterpillar Inc.Inventor: Xinyu Ge
-
Patent number: 9726131Abstract: A fuel injection valve in which a valve element is formed at a distal end thereof with a flat portion 13c which is substantially parallel with an injection hole plate 11, injection hole entrances 12a are arranged inside an imaginary envelop 15 along an intersection between an extension 10b of a downstream inner wall of a seat portion of a valve seat and an upstream plane 11c of the injection hole plate and outside the flat plane at the distal end of the valve element, and the relation between the vertical distance h between the flat plane at the distal end of the valve element and the upstream plane of the injection hole plate with the valve opened and the diameter d of the injection hole entrance is h<d, and the injection hole 12 is formed to be inclined by a predetermined angle with respect to the direction of the thickness of the injection hole plate.Type: GrantFiled: January 29, 2007Date of Patent: August 8, 2017Assignee: Mitsubishi Electric CorporationInventors: Naoya Hashii, Keishi Nakano, Tsuyoshi Munezane
-
Patent number: 9693442Abstract: To make it easy to adjust a location of an emission antenna in a plasma generation device that generates plasma by a discharge and enlarges the plasma by an electromagnetic wave. A plasma generation device 30 includes an electromagnetic wave generation device 31, an emission antenna 16, a high voltage generation device 14, and a discharge electrode 15. The emission antenna 16 forms a discharge gap together with the discharge electrode 15 which a high voltage outputted from the high voltage generation device 14 is applied to. The plasma generation device 30 enlarges discharge plasma using the electromagnetic wave emitted from the emission antenna 16 caused by the electromagnetic wave outputted from the electromagnetic wave generation device 31, where the discharge plasma is generated at the discharge gap by an output of a high voltage from the high voltage generation device 14.Type: GrantFiled: June 27, 2012Date of Patent: June 27, 2017Assignee: IMAGINEERING, INC.Inventor: Yuji Ikeda
-
Patent number: 9689362Abstract: A fuel injection valve equipped with an in-cylinder pressure sensor is provided, in which the fuel injection valve is fitted into an injection valve mounting hole provided in an engine, the in-cylinder pressure sensor is attached to a valve housing part of the fuel injection valve, the in-cylinder pressure sensor having a front end facing the combustion chamber and detecting a pressure of the combustion chamber, and a signal transmission device is connected to the in-cylinder pressure sensor, the signal transmission device transmitting an output signal thereof to an outside. The signal transmission device is disposed on the valve housing part and covered together with a part of the valve housing part by an insulating layer. In such arrangement, the signal transmission device is protected by the insulating layer, and a contact between the signal transmission device and an inner face of the injection valve mounting hole is prevented.Type: GrantFiled: October 12, 2016Date of Patent: June 27, 2017Assignee: Keihin CorporationInventors: Gaku Sato, Yuki Kojima, Nakaya Nakamura
-
Patent number: 9670849Abstract: Methods and systems are provided for refurbishing an engine using ionized air. During a service mode, a service technician may stream ionized air from an external ionized air source to an engine cylinder via the engine intake system. Concurrently, the service technician may connect a service tool to a vehicle diagnostics port to relay operator input, the input allowing a vehicle control system to rotate the engine and adjust engine throttle and cams.Type: GrantFiled: February 26, 2015Date of Patent: June 6, 2017Assignee: Ford Global Technologies, LLCInventors: Douglas Raymond Martin, Kenneth James Miller
-
Patent number: 9651455Abstract: A mass-airflow measurement conversion apparatus for internal combustion engine carburetors includes a plurality of pressure sensors disposed at different location along an air intake path of an internal combustion engine, each sensor adapted to sense a pressure of air flowing into the internal combustion engine and output an electrical signal as a pressure signal corresponding to the sensed air pressure; and a calculation section that receives the pressure signals and generates a mass air flow signal as an output signal based on the received pressure signals.Type: GrantFiled: June 12, 2015Date of Patent: May 16, 2017Assignee: BG Soflex, LLCInventors: Bruce A. Bowling, Albert C. Grippo
-
Patent number: 9410474Abstract: Embodiments of injectors configured for adaptively injecting multiple different fuels and coolants into a combustion chamber, and for igniting the different fuels, are disclosed herein. An injector according to one embodiment includes a body having a first end portion and a second end portion. The injector further includes a first flow channel extending through the body, and a second flow channel extending through the body that is separate from the first flow channel and electrically isolated from the first flow channel. The first flow channel is configured to receive a first fuel, and the second flow channel is configured to receive at least one of a second fuel and a coolant. The injector further comprises a valve carried by the body that is movable between a closed position and an open position to introduce at least one of the second fuel and the coolant into a combustion chamber.Type: GrantFiled: April 16, 2013Date of Patent: August 9, 2016Assignee: McAlister Technologies, LLCInventors: Roy Edward McAlister, Melvin James Larsen
-
Patent number: 9404443Abstract: A method for operating an internal combustion engine including a combustion chamber and configured to perform at least a compression stroke and a power stroke. The method comprises direct injecting a first substance having a positive Joule-Thomson coefficient into the combustion chamber during a compression stroke, thereby reducing an amount of work otherwise may be used to perform the compression stroke and direct injecting a second substance having a negative Joule-Thomson coefficient into the combustion chamber during a power stroke, thereby increasing an amount of work otherwise produced from the power stroke.Type: GrantFiled: March 14, 2014Date of Patent: August 2, 2016Assignee: McAlister Technologies, LLCInventor: Roy Edward McAlister
-
Patent number: 9322373Abstract: The inventive subject matter provides apparatus, systems and methods for treating and delivering a fuel to a combustion chamber of an engine in order to improve efficiency of the engine. In one aspect of the invention, a fuel injector that cooperates with an internal combustion engine to combust a first fuel to produce power is presented. The fuel injector includes a fuel inlet, a pre-conditioning vortex chamber, and an excitation chamber. The fuel injector includes a vortex chamber that conforms a pulsed amount of the first fuel to produce a vortex that includes a coherent dynamic pressure wave. The fuel injector also includes an excitation mechanism that at least partially ignites the fuel.Type: GrantFiled: June 5, 2014Date of Patent: April 26, 2016Assignee: ThrivalTech, LLCInventors: Garrett Hill, Scott Lazar, Dustin Stonehouse
-
Patent number: 9297342Abstract: The present disclosure is directed to integrated injector/igniters providing efficient injection, ignition, and complete combustion of various types of fuels. One example of such an injectors/igniter can include a body having a base portion opposite a nozzle portion. The base portion receives the fuel into the body and the nozzle portion can be positioned adjacent to the combustion chamber. The injector further includes a valve carried by the nozzle portion that is movable between a closed position and an open position to inject the fuel into the combustion chamber. An actuator is coupled the valve and extends longitudinally through the body towards the base portion, and a driver is carried by the body and is movable between a first position and a second position. Thermochemical regeneration of waste heat produced by combustion and associated combustion events is captured and invested in endothermic reactions to improve efficiency of the combustion event.Type: GrantFiled: October 1, 2013Date of Patent: March 29, 2016Assignee: McAlister Technologies, LLCInventor: Roy Edward McAlister
-
Patent number: 9222851Abstract: A mass-airflow measurement conversion apparatus for internal combustion engine carburetors includes a plurality of pressure sensors disposed at different location along an air intake path of an internal combustion engine, each sensor adapted to sense a pressure of air flowing into the internal combustion engine and output an electrical signal as a pressure signal corresponding to the sensed air pressure; and a calculation section which receives the pressure signals and generates a mass air flow signal as an output signal based on the received pressure signals.Type: GrantFiled: August 17, 2011Date of Patent: December 29, 2015Assignee: BG SOFLEX LLCInventors: Bruce A. Bowling, Albert C. Grippo
-
Patent number: 9175654Abstract: Embodiments of injectors suitable for injection ports having relatively small diameters are disclosed herein. An injector according to one embodiment includes a body having a first end portion opposite a second end portion. The second end portion is configured to be positioned adjacent to a combustion chamber and the first end portion is configured to be spaced apart from the combustion chamber. The injector also includes an ignition conductor extending through the body from the first end portion to the second end portion, and an insulator extending longitudinally along the ignition conductor and surrounding at least a portion of the ignition conductor. The injector further includes a valve extending longitudinally along the insulator from the first end portion to the second end portion. The valve includes a sealing end portion, and the valve is movable along the insulator between an open position and a closed position.Type: GrantFiled: September 10, 2013Date of Patent: November 3, 2015Assignee: McAlister Technologies, LLCInventor: Roy Edward McAlister
-
Patent number: 9151258Abstract: Embodiments of injectors configured for adaptively injecting and igniting various fuels in a combustion chamber are disclosed herein. An injector according to one embodiment includes an end portion configured to be positioned adjacent to a combustion chamber, and an ignition feature carried by the end portion and configured to generate an ignition event. The injector also includes a force generator assembly and a movable valve. The force generator assembly includes a first force generator separate from a second force generator. The first force generator creates a motive force to move the valve between the closed and open positions into the combustion chamber. The second force generator is electrically coupled to the ignition feature and provides voltage to the ignition feature to at least partially generate the ignition event.Type: GrantFiled: October 22, 2013Date of Patent: October 6, 2015Assignee: McAlister Technologies, Inc.Inventor: Roy Edward McAlister
-
Patent number: 9151252Abstract: A combustion system is presented. The combustion system includes a hollow combustion chamber having a chamber head, chamber sidewalls, and a chamber bottom. Further, the combustion system includes a fuel injector coupled to the combustion chamber and configured to introduce a plurality of fuel droplets in the combustion chamber. Moreover, the combustion system includes a first electrode and a second electrode disposed on or about the combustion chamber such that an electromagnetic field is generated between the first electrode and the second electrode in response to an applied electric signal, and where the electromagnetic field is configured to control a trajectory of the plurality of fuel droplets within the combustion chamber.Type: GrantFiled: September 28, 2012Date of Patent: October 6, 2015Assignee: General Electric CompanyInventors: Yaru Najem Mendez Hernandez, Jorge Carretero Benignos, Joerg Hermann Stromberger, Sean Craig Jenkins
-
Publication number: 20150144094Abstract: The present disclosure is directed to injectors with integrated igniters providing efficient injection, ignition, and complete combustion of various types of fuels. These integrated injectors/igniters can include, for example, multiple drivers used to shape charges, controllers used to modify operations based on ionization parameters, and so on.Type: ApplicationFiled: October 6, 2014Publication date: May 28, 2015Inventor: Roy Edward McAlister
-
Publication number: 20150107549Abstract: The present disclosure is directed to systems and methods for adjusting the operation of a gasoline-fueled engine based on monitored conditions within a combustion chamber of the engine. In some cases, the system monitors regions within the combustion chamber, identifies or determines a satisfactory condition, and applies an ionization voltage to a fuel injector to initiate a combustion event during the satisfactory condition. In some cases, the system monitors the conditions within the combustion chamber, determines a monitored condition is associated with an adjustment, and adjusts a parameters of a combustion event in order to adjust ionization levels within a combustion chamber.Type: ApplicationFiled: May 21, 2014Publication date: April 23, 2015Applicant: McAlister Technologies, LLCInventor: Roy Edward McAlister
-
Patent number: 9004042Abstract: A prechamber spark plug may have a prechamber having a pre-determined aspect ratio and hole pattern to achieve particular combustion performance characteristics. The aspect ratio and hole pattern may induce a rotational flow of fuel-air in-filling streams inside the prechamber volume. The rotational flow of the fuel-air mixture may include both radial flow and axial flow characteristics based on the aspect ratio and hole pattern. Axial flow characteristics can include a first axial direction proximate the periphery of the rotational flow and a counter second axial direction approaching the center of the rotational flow. The radial and axial flow characteristics may further include radial air-fuel ratio stratification and/or axial air-fuel ratio stratification. The rotational flow, the radial flow and the axial flow may be adjusted by alteration of the aspect ratio and hole pattern to achieve particular combustion performance characteristics in relation to a wide variety of spark gap geometries.Type: GrantFiled: September 1, 2012Date of Patent: April 14, 2015Assignee: Prometheus Applied Technologies, LLCInventors: Luigi P Tozzi, Maria-Emmanuella Sotiropoulou
-
Publication number: 20150075486Abstract: A fuel injector-igniter incorporating adaptive swirl injection and ignition. The fuel injector-igniter comprises a housing, an actuator, and a valve. The valve includes a valve head operative to open and close against a valve seat in response to activation of the actuator. The valve seat includes an electrode portion extending beyond the valve head and within the housing to form at least one gap, such as an annular gap. A current discharge between the housing and electrode portion establishes a plasma and electromagnetic forces driving the plasma from the gap. The injector-igniter may further comprise a power supply connected to the housing and valve seat that is operative to provide the current discharge. The electrode portion includes a plurality of flow shaping features, such as a plurality of twisted fins disposed around the electrode portion and thereby operative to impart a rotation to the plasma.Type: ApplicationFiled: July 15, 2014Publication date: March 19, 2015Inventor: Roy Edward McAlister
-
Publication number: 20150059685Abstract: Methods, systems, and devices are disclosed for injecting and igniting a fuel using corona discharge for combustion. In one aspect, a method to ignite a fuel in an engine includes injecting ionized fuel particles into a combustion chamber of an engine, and generating one or more corona discharges at a particular location within the combustion chamber to ignite the ionized fuel particles, in which the generating includes applying an electric field at electrodes configured at a port of the combustion chamber, the electric field applied at a frequency that does not produce an ion current or spark on or between the electrodes.Type: ApplicationFiled: April 30, 2014Publication date: March 5, 2015Applicant: McAlister Technologies, LLCInventor: Roy Edward McAlister
-
Publication number: 20150059684Abstract: Methods, systems, and devices are disclosed for injecting a fuel using Lorentz forces. In one aspect, a method to inject a fuel includes distributing a fuel between electrodes configured at a port of a chamber, generating an ion current of ionized fuel particles by applying an electric field between the electrodes to ionize at least some of the fuel, and producing a Lorentz force to accelerate the ionized fuel particles into the chamber. In some implementations of the method, the accelerated ionized fuel particles into the chamber initiate a combustion process with oxidant compounds present in the chamber. In some implementations, the method further comprises applying an electric potential on an antenna electrode interfaced at the port to induce a corona discharge into the chamber, in which the corona discharge ignites the ionized fuel particles within the chamber.Type: ApplicationFiled: April 30, 2014Publication date: March 5, 2015Applicant: McAlister Technologies, LLCInventor: Roy Edward McAlister
-
Publication number: 20140373807Abstract: A method for converting a fuel-injected diesel engine to be powered by natural gas includes removing a fuel injector from a cylinder of the engine, replacing the removed fuel injector with a combined fuel injection and ignition unit having a natural gas flow path and an ignition device, coupling the natural gas flow path to a pressurized natural gas fuel supply, and connecting the ignition device to an ignition control system. The combined fuel injection and ignition unit is configured to inject the natural gas into the cylinder, and the ignition device is configured to ignite the natural gas in the cylinder, under control and coordination of the ignition control system for operation of the engine.Type: ApplicationFiled: June 18, 2014Publication date: December 25, 2014Inventors: Carlos Alberto Repelli, Edwin DeSteiguer Snead, Thomas Schwertner
-
Publication number: 20140345563Abstract: The present disclosure is directed to injectors with integrated igniters providing efficient injection, ignition, and complete combustion of various types of fuels. These integrated injectors/igniters can include, for example, insulators with adequate mechanical and dielectric strength to enable high-energy plasma generation by components that have very small dimensions, multifunction valving that is moved to injector multiple bursts of fuel and to induce plasma projection, a fuel control valve at the interface to the combustion chamber for the purpose of eliminating fuel drip at undesired times, and one or more components at the interface of the combustion chamber for the purpose of blocking transmission of combustion sourced pressure.Type: ApplicationFiled: January 22, 2014Publication date: November 27, 2014Applicant: McAlister Technologies, LLCInventor: Roy Edward McAlister
-
Patent number: 8851046Abstract: The present disclosure is directed to injectors with integrated igniters providing efficient injection, ignition, and complete combustion of various types of fuels. These integrated injectors/igniters can include, for example, multiple drivers used to shape charges, controllers used to modify operations based on ionization parameters, and so on.Type: GrantFiled: June 12, 2012Date of Patent: October 7, 2014Assignee: McAlister Technologies, LLCInventor: Roy E. McAlister
-
Patent number: 8851047Abstract: Fuel injector-igniters with variable gap electrodes. A fuel injector-igniter comprises a housing, an actuator disposed in the housing, and a valve including a valve head operative to open and close against a valve seat in response to activation of the actuator. An electrode cage surrounds the valve head and includes at least one aperture. At least one reed electrode extends from the electrode cage to form a gap between the reed electrode and the housing. The valve head includes a magnet, such as a permanent magnet, wherein the magnet is operative to move the reed electrode toward the electrode cage when the valve head opens, thereby increasing the gap.Type: GrantFiled: March 14, 2013Date of Patent: October 7, 2014Assignee: McAllister Technologies, LLCInventor: Roy Edward McAlister
-
Publication number: 20140261303Abstract: A vehicular fuel system with onboard fuel characterization including an onboard combustion modifier source capable of supplying a combustion modifier agent, such as hydrogen, and a fuel tank capable of storing a fuel. An injector-igniter is operative to direct inject the fuel and a proportionate amount of the modifier agent into a cylinder of an internal combustion engine. An engine control unit is operatively connectable to the combustion modifier source and the injector. The system may further comprise a mixing valve operative to proportionately mix the fuel and modifier agent. The combustion modifier source may be a tank containing hydrogen or a thermo-chemical reactor, for example.Type: ApplicationFiled: March 15, 2013Publication date: September 18, 2014Applicant: MCALISTER TECHNOLOGIES, LLCInventor: Roy Edward McAlister
-
Publication number: 20140245991Abstract: A system for transferring and igniting a fuel comprising a fuel supply and a cryogenic fuel processor connected to the fuel supply and operative to remove impurities from the fuel. The system includes a power supply and an injector-igniter. The injector-igniter includes an injector housing connected to the power supply and having a fuel inlet connected to the fuel processor. An actuator body is disposed in the housing and a conductor sleeve is connected to the power supply and supported between the actuator body and injector housing with a first annular gap between the injector housing and the conductor sleeve. There is also a second annular gap between the actuator body and conductor sleeve, wherein the first and second annular gaps are in fluid communication with the fuel inlet, whereby fuel provides a dielectric between the conductor sleeve and the injector housing.Type: ApplicationFiled: February 6, 2014Publication date: September 4, 2014Applicants: Advanced Green Technologies, LLC, McAlister Technologies, LLCInventors: Roy Edward McAlister, David Grottenthaler, Ryan Kemmet
-
Patent number: 8820293Abstract: A fuel injection system comprising an injector-igniter and a fuel tank in fluid communication with the injector-igniter. The injector igniter includes an injector housing and a valve assembly. The valve assembly includes a valve and a valve seat electrode located within the injector housing. The valve seat electrode forms an annular spark gap between the electrode and an electrode portion of the injector housing. An actuator, such as a piezoelectric actuator, is disposed in the housing and connected to the valve. In some embodiments, the system further comprises a thermochemical reactor operatively coupled to the injector-igniter to provide a supplemental supply of hydrogen for combustion enhancement. In other embodiments, a hydraulic stroke amplifier is disposed between the actuator and valve.Type: GrantFiled: March 15, 2013Date of Patent: September 2, 2014Assignee: McAlister Technologies, LLCInventor: Roy Edward McAlister
-
Publication number: 20140230779Abstract: Embodiments of injectors configured for adaptively injecting and igniting various fuels in a combustion chamber are disclosed herein. An injector according to one embodiment includes an end portion configured to be positioned adjacent to a combustion chamber, and an ignition feature carried by the end portion and configured to generate an ignition event. The injector also includes a force generator assembly and a movable valve. The force generator assembly includes a first force generator separate from a second force generator. The first force generator creates a motive force to move the valve between the closed and open positions into the combustion chamber. The second force generator is electrically coupled to the ignition feature and provides voltage to the ignition feature to at least partially generate the ignition event.Type: ApplicationFiled: October 22, 2013Publication date: August 21, 2014Applicant: McAlister Technologies, LLCInventor: Roy Edward McAlister
-
Publication number: 20140224210Abstract: Embodiments of injectors suitable for injection ports having relatively small diameters are disclosed herein. An injector according to one embodiment includes a body having a first end portion opposite a second end portion. The second end portion is configured to be positioned adjacent to a combustion chamber and the first end portion is configured to be spaced apart from the combustion chamber. The injector also includes an ignition conductor extending through the body from the first end portion to the second end portion, and an insulator extending longitudinally along the ignition conductor and surrounding at least a portion of the ignition conductor. The injector further includes a valve extending longitudinally along the insulator from the first end portion to the second end portion. The valve includes a sealing end portion, and the valve is movable along the insulator between an open position and a closed position.Type: ApplicationFiled: September 10, 2013Publication date: August 14, 2014Applicant: McAlister Technologies, LLCInventor: Roy Edward McAlister
-
Patent number: 8800527Abstract: A fuel injector-igniter incorporating adaptive swirl injection and ignition. The fuel injector-igniter comprises a housing, an actuator, and a valve. The valve includes a valve head operative to open and close against a valve seat in response to activation of the actuator. The valve seat includes an electrode portion extending beyond the valve head and within the housing to form at least one gap, such as an annular gap. A current discharge between the housing and electrode portion establishes a plasma and electromagnetic forces driving the plasma from the gap. The injector-igniter may further comprise a power supply connected to the housing and valve seat that is operative to provide the current discharge. The electrode portion includes a plurality of flow shaping features, such as a plurality of twisted fins disposed around the electrode portion and thereby operative to impart a rotation to the plasma.Type: GrantFiled: March 12, 2013Date of Patent: August 12, 2014Assignee: McAlister Technologies, LLCInventor: Roy Edward McAlister
-
Publication number: 20140216396Abstract: A direct injection engine includes an ignition assistance section applying energy to fuel injected into a cylinder using an injector to assist auto-ignition combustion of the fuel when the engine is within an auto-ignition combustion operation range. A start time of fuel injection is set within a period from a terminal stage of a compression stroke to a compression top dead center. The energy is applied to the fuel injected into the cylinder in a period from start of the fuel injection to an initial stage of an expansion stroke such that a time of a specific crank angle when an increase rate of in-cylinder pressure, which is a ratio of a change in the in-cylinder pressure to a change in a crank angle in motoring the engine, reaches a negative maximum value overlaps a combustion period when a combustion mass percentage of the fuel ranges from 10% to 90%.Type: ApplicationFiled: August 28, 2012Publication date: August 7, 2014Applicant: MAZDA MOTOR CORPORATIONInventors: Hiroyuki Yamashita, Kazuaki Narahara, Tatsuya Tanaka, Yoshitomo Takahashi, Yusuke Nakao, Takashi Ikai, Hidefumi Fujimoto, Masatoshi Seto, Yoshio Tanita, Kazuo Ichikawa, Shingo Kai, Susumu Masuyama, Hirokazu Nakahashi, Keiji Araki
-
Patent number: 8757129Abstract: The inventive subject matter provides apparatus, systems and methods for treating and delivering a fuel to a combustion chamber of an engine in order to improve efficiency of the engine. In one aspect of the invention, a fuel injector that cooperates with an internal combustion engine to combust a first fuel to produce power is presented. The fuel injector includes a fuel inlet, a pre-conditioning vortex chamber, and an excitation chamber. The fuel injector includes a vortex chamber that conforms a pulsed amount of the first fuel to produce a vortex that includes a coherent dynamic pressure wave. The fuel injector also includes an excitation mechanism that at least partially ignites the fuel.Type: GrantFiled: July 24, 2013Date of Patent: June 24, 2014Assignee: Thrival Tech, LLCInventors: Garrett Hill, Scott Lazar, Dustin Stonehouse
-
Patent number: 8752524Abstract: Methods, systems, and devices are disclosed for injecting a fuel using Lorentz forces. In one aspect, a method to inject a fuel includes distributing a fuel between electrodes configured at a port of a chamber, generating an ion current of ionized fuel particles by applying an electric field between the electrodes to ionize at least some of the fuel, and producing a Lorentz force to accelerate the ionized fuel particles into the chamber. In some implementations of the method, the accelerated ionized fuel particles into the chamber initiate a combustion process with oxidant compounds present in the chamber. In some implementations, the method further comprises applying an electric potential on an antenna electrode interfaced at the port to induce a corona discharge into the chamber, in which the corona discharge ignites the ionized fuel particles within the chamber.Type: GrantFiled: March 15, 2013Date of Patent: June 17, 2014Assignee: McAlister Technologies, LLCInventor: Roy Edward McAlister
-
Patent number: 8746197Abstract: Methods, systems, and devices are disclosed for injecting and igniting a fuel using corona discharge for combustion. In one aspect, a method to ignite a fuel in an engine includes injecting ionized fuel particles into a combustion chamber of an engine, and generating one or more corona discharges at a particular location within the combustion chamber to ignite the ionized fuel particles, in which the generating includes applying an electric field at electrodes configured at a port of the combustion chamber, the electric field applied at a frequency that does not produce an ion current or spark on or between the electrodes.Type: GrantFiled: March 15, 2013Date of Patent: June 10, 2014Assignee: McAlister Technologies, LLCInventor: Roy Edward McAlister
-
Patent number: 8673084Abstract: Methods for removing and preventing the buildup of unwanted deposits and varnishes on combustion chamber surfaces, particularly injector-igniter components that are exposed to combustion events. A method of removing deposits from an injector-igniter comprises monitoring the current across a pair of electrodes in the injector-igniter, comparing the current with a predetermined threshold level, and performing a cleaning cycle if the current exceeds the threshold level. The cleaning cycle may comprise injecting oxidant through the injector-igniter and into the combustion chamber. The cleaning cycle may further comprise ionizing the oxidant with an electrical discharge having a first polarity and ionizing the oxidant a second time with an electrical discharge having a second polarity. In other cases the cleaning cycle comprises injecting hydrogen through the injector-igniter and into the combustion chamber. In still other cases the cleaning cycle may comprise injecting coolant onto the electrodes.Type: GrantFiled: March 12, 2013Date of Patent: March 18, 2014Assignee: McAlister Technologies, LLCInventor: Roy Edward McAlister
-
Publication number: 20140048037Abstract: The present disclosure is directed to various embodiments of systems and methods for reducing the production of harmful emissions in combustion engines. One method includes correlating combustion chamber temperature to acceleration of a power train component, such as a crankshaft. Once the relationship between acceleration/deceleration of the component and combustion temperature are known, an engine control module can be configured to adjust combustion parameters to reduce combustion temperature when acceleration data indicates peak combustion temperature is approaching a harmful level, such as a level conducive to the formation of undesirable oxides of nitrogen. Various embodiments of the methods and systems disclosed herein can employ injectors with integrated igniters providing efficient injection, ignition, and complete combustion of various types of fuels.Type: ApplicationFiled: February 5, 2013Publication date: February 20, 2014Applicant: MCALISTER TECHNOLOGIES, LLCInventor: MCALISTER TECHNOLOGIES, LLC
-
Patent number: 8646432Abstract: A system for transferring and igniting a fuel comprising a fuel supply and a cryogenic fuel processor connected to the fuel supply and operative to remove impurities from the fuel. The system includes a power supply and an injector-igniter. The injector-igniter includes an injector housing connected to the power supply and having a fuel inlet connected to the fuel processor. An actuator body is disposed in the housing and a conductor sleeve is connected to the power supply and supported between the actuator body and injector housing with a first annular gap between the injector housing and the conductor sleeve. There is also a second annular gap between the actuator body and conductor sleeve, wherein the first and second annular gaps are in fluid communication with the fuel inlet, whereby fuel provides a dielectric between the conductor sleeve and the injector housing.Type: GrantFiled: March 12, 2013Date of Patent: February 11, 2014Assignee: McAlister Technologies, LLCInventors: Roy Edward McAlister, David Leigh Grottenthaler, Ryan Kennedy Kemmet
-
Publication number: 20140026848Abstract: In an ignition device, a base section of a discharge chamber is formed by a part of a central dielectric body. A front section of a ground electrode and a front end section of the central dielectric body are projected toward a combustion chamber of a head cylinder of an internal combustion engine by a predetermined height which is measured from a top ceiling wall of the head cylinder. The predetermined height of the front end section of the central dielectric body projected into the inside of the head cylinder is the same or higher than the predetermined height of the front end section of the ground electrode projected into the inside of the head cylinder. The predetermined height of the front end section of the ground electrode is within a range of 3 mm to 25 mm.Type: ApplicationFiled: July 17, 2013Publication date: January 30, 2014Inventors: Yuya ABE, Akimitsu SUGIURA, Shinichi OKABE
-
Patent number: 8635985Abstract: The present disclosure is directed to injectors with integrated igniters providing efficient injection, ignition, and complete combustion of various types of fuels. These integrated injectors/igniters can include, for example, insulators with adequate mechanical and dielectric strength to enable high-energy plasma generation by components that have very small dimensions, multifunction valving that is moved to injector multiple bursts of fuel and to induce plasma projection, a fuel control valve at the interface to the combustion chamber for the purpose of eliminating fuel drip at undesired times, and one or more components at the interface of the combustion chamber for the purpose of blocking transmission of combustion sourced pressure.Type: GrantFiled: December 7, 2009Date of Patent: January 28, 2014Assignee: McAlister Technologies, LLCInventor: Roy E. McAlister