Using Multiple Injectors Or Injections Patents (Class 123/299)
  • Patent number: 11220976
    Abstract: A method to control the combustion of a compression ignition engine having the steps of: establishing, for each combustion cycle, a fuel quantity to be injected into the cylinder; injecting a first fraction of the fuel quantity; heating a second fraction of the fuel quantity, which is equal to the remaining fraction of the fuel quantity, to an injection temperature higher than 100° C.; injecting the second fraction of the fuel quantity heated to the injection temperature into the cylinder at the end of the compression stroke and at no more than 60° from the top dead centre; and decreasing the injection temperature and the ratio between the second fraction and the first fraction as the internal combustion engine increases and as the rotation speed of the internal combustion engine increases.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: January 11, 2022
    Assignee: MARMOTORS S.R.L.
    Inventor: Luca Marmorini
  • Patent number: 11199152
    Abstract: Provided is an ignition control section and an injection control section. When partial compression ignition combustion is carried out, the ignition control section causes an ignition plug to carry out: main ignition in which a spark is generated in a late period of a compression stroke or an initial period of an expansion stroke to initiate SI combustion; and preceding ignition in which the spark is generated at earlier timing than the main ignition. Also, when the partial compression ignition combustion is carried out, the injection control section causes an injector to inject fuel at such timing that the fuel exists in a cylinder at an earlier time point than the preceding ignition. Ignition timing of the preceding ignition is set to be more retarded when an in-cylinder pressure specified by an in-cylinder pressure specification section is high than when the in-cylinder pressure is low.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: December 14, 2021
    Assignee: Mazda Motor Corporation
    Inventors: Kota Matsumoto, Tomonori Urushihara, Keiji Maruyama, Masanari Sueoka, Ryohei Ono, Yuji Harada, Toru Miyamoto, Atsushi Inoue, Tatsuhiro Tokunaga, Takuya Ohura, Yusuke Kawai, Tomohiro Nishida, Keita Arai, Yodai Yamaguchi
  • Patent number: 11193464
    Abstract: A fuel injection valve includes a needle valve that controls communication between a high pressure chamber and an injection hole, a follower valve provided inside a control chamber controlled by fuel pressure inside an intermediate chamber, and an open-close valve that controls communication between a first passage and a low pressure passage and communication between a second passage and the low pressure passage. The fuel injection valve is configured to control the gradient of the fuel injection rate from the injection hole with an improved configuration.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: December 7, 2021
    Assignee: DENSO CORPORATION
    Inventors: Hiroki Tanada, Naofumi Adachi, Masayuki Suzuki, Toshiaki Hijima, Motoya Kambara
  • Patent number: 11156181
    Abstract: A method of operating a hydrogen-fueled internal combustion engine. The engine is determined to have a mode control value, which represents a threshold torque. During operation of the engine, a demanded torque of the internal combustion engine is determined and compared to the threshold torque. If the demanded torque is less than the threshold torque, the engine is operated in a low load mode that uses spark ignition and pre-mixed combustion. If the demanded torque is greater than the threshold torque, the engine is operated in a high load mode that uses compression ignition and diffusion combustion.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: October 26, 2021
    Assignee: Southwest Research Institute
    Inventors: Terrance Francis Alger, Thomas E. Briggs, Jr., Graham Thomas Conway
  • Patent number: 11143153
    Abstract: An injector nozzle used with an internal combustion engine for shaping a fluid flow is provided. The nozzle has a body and an orifice plate provided at an outlet of the body. The body and the plate extend symmetrically with respect to a central axis. The plate has an interior surface and an opposite exterior surface, which are substantially parallel to each other to define a thickness of the plate. The plate has fluid passageways each having an orifice on the exterior surface. The fluid flow diverges through the fluid passageways to create stream jets. The imaginary extensions the passageways converge to create a focal point and an included angle associated with the focal point.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: October 12, 2021
    Assignee: NOSTRUM ENERGY PTE. LTD.
    Inventors: Nirmal Mulye, Osanan L. Barros Neto, Frank S. Loscrudato, William R. Atkinson
  • Patent number: 11131259
    Abstract: A system and method for transitioning a firing fraction of a variable displacement internal combustion engine when generating a desired torque output. During and following the transition to the second firing fraction, a charge of a combustion recipe is ascertained and used operating the cylinders of the variable displacement internal combustion engine to generate the desired torque output. The charge is preferably optimized for the engine operating at the second firing fraction, at least relative to the previous charge of the previous combustion recipe used with the first firing fraction.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: September 28, 2021
    Assignees: Tula Technology, Inc., Cummins Inc.
    Inventors: Louis J. Serrano, Xiaoping Cai, Shikui Kevin Chen, Benjamin M. Wolk, Avra Brahma, Justin R. Lee
  • Patent number: 11111846
    Abstract: In certain embodiments, Lube Oil Controlled Ignition (LOCI) Engine Combustion overcomes the drawbacks of known combustion technologies. First, lubricating oil is already part of any combustion engine; hence, there is no need to carry a secondary fuel and to have to depend on an additional fuel system as in the case of dual-fuel technologies. Second, the ignition and the start of combustion rely on the controlled autoignition of the lubricating oil preventing the occurrence of abnormal combustion as experienced with the Spark Ignition technology. Third, LOCI combustion is characterized by the traveling of a premixed flame; hence, it has a controllable duration resulting in a wide engine load-speed window unlike the Homogeneous Charge Compression Ignition technology where the engine load-speed window is narrow. Adaptive Intake Valve Closure may be used to control in-cylinder compression temperature to be high enough to realize the consistent auto ignition of the lubricating oil mist.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: September 7, 2021
    Assignee: Prometheus Applied Technologies, LLC
    Inventors: Maria-Emmanuella Sotiropoulou, Luigi P. Tozzi
  • Patent number: 11085410
    Abstract: A fuel injector assembly in one embodiment includes a nozzle, at least one needle, and at least one actuator. The nozzle includes at least one cavity in fluid communication with nozzle openings. The at least one needle is movably disposed within the at least one cavity, and prevents flow through the nozzle openings in a closed position. The at least one actuator is configured to move the at least one needle within the cavity. The at least one actuator is configured to move the at least one needle to at least a first fuel delivery configuration and a second fuel delivery configuration. A first amount of fuel is delivered through the nozzle openings with the at least one needle in the first fuel delivery configuration, and a second amount of fuel is delivered through the nozzle openings with the at least one needle in the second fuel delivery configuration.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: August 10, 2021
    Assignee: Transportation IP Holdings, LLC
    Inventors: Victor Manuel Salazar, Adam E. Klingbeil, Pradheepram Ottikkutti
  • Patent number: 11053869
    Abstract: The present invention describes a fuel-management system for minimizing particulate emissions in turbocharged direct injection gasoline engines. The system optimizes the use of port fuel injection (PFI) in combination with direct injection (DI), particularly in cold start and other transient conditions. In the present invention, the use of these control systems together with other control systems for increasing the effectiveness of port fuel injector use and for reducing particulate emissions from turbocharged direct injection engines is described. Particular attention is given to reducing particulate emissions that occur during cold start and transient conditions since a substantial fraction of the particulate emissions during a drive cycle occur at these times. Further optimization of the fuel management system for these conditions is important for reducing drive cycle emissions.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: July 6, 2021
    Assignee: Ethanol Boosting Systems, LLC
    Inventors: Daniel R. Cohn, Leslie Bromberg
  • Patent number: 11015540
    Abstract: An apparatus comprises a first circuit and a second circuit. The first circuit is structured to determine that a combustion cylinder is operating in a transition period between an exhaust stroke and an intake stroke of the combustion cylinder. The second circuit is structured to provide an injection command during the transition period to a fuel injector associated with the combustion cylinder, the injection command being to inject fuel into a combustion chamber of the combustion cylinder such that at least a portion of the fuel escapes from the combustion chamber through an exhaust port of the combustion cylinder.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: May 25, 2021
    Assignee: Cummins Inc.
    Inventors: Chandan Mahato, John L. Hoehne, E. Nathan Linen, Shounak Mishra, Boopathi S. Mahadevan, Foy C. Henderson
  • Patent number: 10961932
    Abstract: An internal combustion engine control device includes a combustion degree of stoppage determination unit which determines whether stoppage of combustion of an internal combustion engine has reached a threshold degree, and an internal combustion engine control unit which performs a normal control in the case that the combustion of the engine is resumed in a state where stoppage of combustion has not reached the threshold degree, and performs a soot suppression control in the case that the engine combustion is resumed in a state where stoppage of combustion has reached the threshold degree. In the soot suppression control, the split injection or the single injection is carried out within the predetermined stroke, and the engine control unit causes a fuel injection timing in the single injection of the soot suppression control to be delayed with respect to the fuel injection timing in the single injection of the normal control.
    Type: Grant
    Filed: October 3, 2019
    Date of Patent: March 30, 2021
    Assignee: Honda Motor Co., Ltd.
    Inventors: Eiji Hashimoto, Naoki Fukuoka, Masayuki Yoshiiri, Kengo Takada, Mitsuo Hashizume
  • Patent number: 10934966
    Abstract: A combustion control system for a dual fuel engine includes a combustion control unit structured to receive phasing data for combustion of a main charge of gaseous fuel ignited by way of pilot shots of a liquid fuel, output a pilot fueling command based on the phasing data, and output a valve timing command. The combustion control unit is further structured to vary a phasing of combustion of a main charge of a gaseous fuel ignited by pilot shots of a liquid fuel based on an adjustment to at least one of a pilot shot delivery parameter or a valve timing parameter such as intake valve closing timing from a first engine cycle to a second engine cycle. Control of the intake valve timing can be based on a main pilot shot timing error.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: March 2, 2021
    Assignee: Caterpillar Inc.
    Inventors: Jonathan W. Anders, Jason Jon Rasmussen, Bobby John
  • Patent number: 10907568
    Abstract: A control device for a compression ignition engine is provided, which causes an injector to perform a pre-injection and a main injection, sets fuel injection timings of these injections so that an interval between a first peak of a heat release rate resulting from the combustion of fuel injected by the pre-injection and a second peak of the heat release rate resulting from the combustion of fuel injected by the main injection becomes an interval to make pressure waves caused by these combustions cancel each other out, and when an increase of an oxygen concentration of intake air supplied to a combustion chamber is detected, controls the injector to reduce the injection amount and retard the injection timing of the pre-injection compared with a case where the concentration increase is not detected under a condition that engine load and speed are the same.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: February 2, 2021
    Assignee: Mazda Motor Corporation
    Inventors: Takeru Matsuo, Yoshie Kakuda, Sangkyu Kim, Daisuke Shimo
  • Patent number: 10900450
    Abstract: A fuel system for an internal combustion engine includes a fuel injector having a nozzle with first and second sets of spray orifices formed therein. The fuel injector also includes a first and a second outlet check movable to open and close the first and second sets of spray orifices. Spray plume ducts are supported at fixed orientations relative to a nozzle of the fuel injector, and each are oriented in-line with a center axis defined by one of the spray orifices. The spray plume ducts may be directly attached to the fuel injector or to a duct carrier mounted to an engine head.
    Type: Grant
    Filed: August 5, 2019
    Date of Patent: January 26, 2021
    Assignees: Caterpillar Inc., Perkins Engines Company Limited
    Inventors: Bobby John, Robert Michael Campion, Jonathan W. Anders
  • Patent number: 10883442
    Abstract: A fuel injection device includes a first driver for driving a first valve and a second driver for driving a second valve. A control device performs an open control of the first valve multiple times by using the first driver, for enabling multistage fuel injection from an injection hole in one fuel cycle of an internal combustion engine via a high pressure fuel passage. The control device performs an open-close control of the second valve by using the second driver during an open control of the first valve by using the first driver, for controlling an inclination of injection rate of the fuel injection. The control device stops an output of a drive signal to the second driver when detecting an overheat of a drive circuit based on a temperature detection result of a temperature sensor.
    Type: Grant
    Filed: January 7, 2020
    Date of Patent: January 5, 2021
    Assignee: DENSO CORPORATION
    Inventors: Yuichi Aotsuka, Naoya Wakayama
  • Patent number: 10837391
    Abstract: A control system for a compression ignition engine is provided, which includes a combustion chamber, a throttle valve, an injector, an ignition plug, a sensor, and a controller. A changing module of the controller outputs a signal to the throttle valve so that an air amount increases more than before a demand of changing from a first mode to a second mode, and outputs to the injector a signal to increase a fuel amount according to the air amount increase so that an air-fuel ratio of mixture gas becomes at or substantially at a stoichiometric air-fuel ratio, and outputs to the ignition plug a signal to retard an ignition timing so that an engine torque increase caused by the fuel amount increase is reduced. The changing module reduces the retarding of the ignition timing when the ignition timing is determined to have reached a retard limit.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: November 17, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Yuta Masuda, Masayoshi Higashio, Yugou Sunagare, Michio Ito, Kenko Ujihara, Yuto Matsushima
  • Patent number: 10830163
    Abstract: Methods and systems are disclosed for operating an engine that includes a knock control system that may determine contributions of individual noise sources to an engine background noise level. The contributions of the individual noise sources may be the basis for establishing the presence or absence of knock in one or more engine cylinders.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: November 10, 2020
    Assignee: Ford Global Technologies, LLC
    Inventors: Rani Kiwan, Christopher P. Glugla, Mohannad Hakeem, James M. Kindree
  • Patent number: 10808635
    Abstract: Unique engine controls and apparatuses, methods and systems relating to the same are disclosed. One embodiment is method which utilizes an in-cylinder [O2] mass fraction model to generate exhaust gas recirculation (EGR) fraction references for both transient and steady state operating conditions. Further embodiments, forms, objects, features, advantages, aspects, and benefits shall become apparent from the following description and drawings.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: October 20, 2020
    Assignee: Cummins Inc.
    Inventors: Quresh Sutarwala, Gayatri Adi, Paul V. Moonjelly
  • Patent number: 10794251
    Abstract: An engine has an injector communicating with a combustion chamber to introduce a plurality of dosing shots to mix with exhaust gases and regenerate an aftertreatment device downstream of the combustion chamber. An apportionment strategy can apportion a per cylinder quantity, representing the quantity of dosing fuel to introduce per cylinder per combustion cycle, among a predefined number of dosing shots each having a first per shot quantity. The strategy compares the predefined number of dosing shots with a temporal dosing window to determine if predefined number of dosing shots can be conducted within the temporal dosing window. If so, the strategy proceeds to introduce the predefined number of dosing shots and if not, the strategy may recalculate a reduced number of dosing shots and reapportions a second per shot quantity.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: October 6, 2020
    Assignee: Caterpillar Inc.
    Inventors: James S. Ulstad, Kranti K. Nellutla, Greg L. Armstrong, Steven Y. Tian, Brian P. Brennan, Sasidhar Rayasam, Anand KrishnamurthyGopalan
  • Patent number: 10794320
    Abstract: Methods and systems for simultaneously operating port fuel injectors and direct fuel injectors of an internal combustion engine are described. In one example, port fuel injection timing is adjusted to reduce particulate matter formation in the engine so that particulate filter loading may be reduced until a time when the particulate filter may be purged.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: October 6, 2020
    Assignee: Ford Global Technologies, LLC
    Inventors: Stephen George Russ, Ethan D. Sanborn, Joseph Lyle Thomas, Gopichandra Surnilla
  • Patent number: 10788025
    Abstract: A fuel pump includes a cylinder that forms a compression chamber which pressurizes a fuel, a plunger that compresses the fuel in the compression chamber, a cam that pushes the plunger, and a driven gear that engages a driving gear to transmit a rotational driving force. A profile of the cam is configured such that a peak arrival range is half or less of a compression range. Cam speed is obtained by differentiating a lift amount of the plunger by a rotation angle of the cam, the compression range is an angle range during which the plunger is pushed in the direction of compressing the fuel, and the peak arrival range is an angle range from a start of the compression range until a most retarded position of a peak of the cam speed.
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: September 29, 2020
    Assignee: DENSO CORPORATION
    Inventors: Michihisa Ishikura, Seiji Kunihiro
  • Patent number: 10787986
    Abstract: A fuel pump controller performs a feedback control of an actual fuel pressure of a feed pump to a command fuel pressure which is from an external element. The pump controller changes a gain for the feedback control to a value larger than a minimum value of the gain in response to an acceleration command information which is to accelerate a vehicle by using an internal combustion engine.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: September 29, 2020
    Assignee: DENSO CORPORATION
    Inventors: Minoru Kobayashi, Makoto Asai
  • Patent number: 10774759
    Abstract: The present invention describes a fuel-management system for minimizing particulate emissions in turbocharged direct injection gasoline engines. The system optimizes the use of port fuel injection (PFI) in combination with direct injection (DI), particularly in cold start and other transient conditions. In the present invention, the use of these control systems together with other control systems for increasing the effectiveness of port fuel injector use and for reducing particulate emissions from turbocharged direct injection engines is described. Particular attention is given to reducing particulate emissions that occur during cold start and transient conditions since a substantial fraction of the particulate emissions during a drive cycle occur at these times. Further optimization of the fuel management system for these conditions is important for reducing drive cycle emissions.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: September 15, 2020
    Assignee: Ethanol Boosting Systems, LLC
    Inventors: Daniel R. Cohn, Leslie Bromberg
  • Patent number: 10767610
    Abstract: A liquid fuel injector for a fuel system in an internal combustion engine includes two injection control valves for controlling two outlet checks. A common nozzle supply cavity is fluidly connected to an inlet passage and supplies each of the two sets of nozzle outlets opened and closed by the outlet checks. A first nozzle outlet set forms a narrower spray angle and has a first combination of outlet number and outlet size, and a second nozzle outlet set forms a wider spray angle and has a second combination of outlet number and outlet size. The first nozzle outlet set has a greater steady flow than the second nozzle outlet set.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: September 8, 2020
    Assignee: Caterpillar Inc.
    Inventors: Jonathan W Anders, Bobby John, Robert Campion
  • Patent number: 10753295
    Abstract: A controller for an internal combustion engine includes processing circuitry that performs a dither control process on condition that a temperature increase request of a catalyst is made. The processing circuitry operates fuel injection valves so that during the dither control process, one or more cylinders are lean combustion cylinders in a first period and another one or more cylinders are rich combustion cylinders and so that the average value of an exhaust gas-fuel ratio is a target air-fuel ratio in a second period including the first period. The dither control process is restricted in a manner that, on condition that the rich process is performed, the degree of richening of the richest exhaust gas-fuel ratio of exhaust gas-fuel ratios in the cylinders is reduced.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: August 25, 2020
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Keiichi Myojo, Yuki Nose, Eiji Ikuta
  • Patent number: 10746140
    Abstract: A fuel injection control system may include a variable exhaust valve mechanism configured to primarily open an exhaust valve directly before an intake stroke in which an intake valve is opened and to secondarily open the exhaust valve during the intake stroke such that valve overlap occurs; an exhaust injector provided at an exhaust side to inject fuel; and a controller for controlling the exhaust injector such that fuel is injected through the exhaust injector before the exhaust valve is opened secondarily before or during the intake stroke.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: August 18, 2020
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Myung Jun Lee, Joon Kyu Lee, Soo Hong Lee
  • Patent number: 10746124
    Abstract: A method for adapting an injection quantity in an injection system of an internal combustion engine of a mild-hybrid motor vehicle or motor vehicle having a starter-generator or integrated starter-generator is disclosed. In an operating phase in which the e-machine of the motor vehicle drives the internal combustion engine, at least one small-quantity test injection is performed into a cylinder of the internal combustion engine. The associated injection quantity is determined based on a resulting torque. Corresponding correction variables for the adaptation of the injection quantity are determined therefrom. The method may eliminate the need to perform test injections during overrun phases of the internal combustion engine.
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: August 18, 2020
    Assignee: CONTINENTAL AUTOMOTIVE GMBH
    Inventor: Janos Radeczky
  • Patent number: 10731593
    Abstract: Methods and systems are provided for improved injector balancing. In one example, fuel rail pressure samples collected during a noisy zone of injector operation are discarded while samples collected during a quiet zone are averaged to determine an injector pressure. The injector pressure is then used to infer injection volume, injector error, and update an injector transfer function.
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: August 4, 2020
    Assignee: Ford Global Technologies, LLC
    Inventors: Gopichandra Surnilla, Joseph Lyle Thomas, Ross Dykstra Pursifull
  • Patent number: 10711712
    Abstract: Fuel management system for efficient operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder of the engine. A fuel management microprocessor system controls injection of the anti-knock agent so as to control knock and minimize that amount of the anti-knock agent that is used in a drive cycle. It is preferred that the anti-knock agent is ethanol. The use of ethanol can be further minimized by injection in a non-uniform manner within a cylinder. The ethanol injection suppresses knock so that higher compression ratio and/or engine downsizing from increased turbocharging or supercharging can be used to increase the efficiency or the engine.
    Type: Grant
    Filed: May 28, 2019
    Date of Patent: July 14, 2020
    Assignee: Massachusetts Institute of Technology
    Inventors: Daniel R. Cohn, John B. Heywood, Leslie Bromberg
  • Patent number: 10711728
    Abstract: A control device for an internal combustion engine provided with a combustion control part successively performing at least first main fuel injection and second main fuel injection for causing premix charged compression ignition of fuel so that a pressure waveform showing a change of a rate of cylinder pressure rise over time becomes a two-peak shape and a peak ratio which is a ratio of a first peak value of a first peak of the pressure waveform and a second peak value of a second peak falls within a predetermined range. The combustion control part calculates the ignition delay time of the fuel injected by the second main fuel injection (second ignition delay time) and reflects the injection correction amount in the target injection amount of the second main fuel injection (second target injection amount) if an injection correction amount is set for the amount of fuel injected from the fuel injector and the second ignition delay time is less than a predetermined value.
    Type: Grant
    Filed: April 1, 2019
    Date of Patent: July 14, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Hajime Shimizu
  • Patent number: 10704486
    Abstract: The purpose of the present invention is to provide a drive device that improves the precision of injection quantities by stabilizing the behavior of a valve body 214 under the condition that a valve body reaches a height position lower than a maximum height position and making the injection pulse width and the injection quantity gradient small.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: July 7, 2020
    Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Ryo Kusakabe, Takatoshi Iizuka, Takao Miyake, Masashi Sugaya, Kiyotaka Ogura, Shirou Yamaoka
  • Patent number: 10697384
    Abstract: During a catalyst rapid warm-up at a time of a cold start of an engine, a fuel is injected by a required injection quantity through a multi-stage injection consisting of a fuel injection by a full lift injection during an intake stroke and a fuel injection by a partial lift injection during a compression stroke. In a case where a deterioration of a combustion state is confirmed, a correction for increasing the required injection quantity, which is to enrich an air-fuel ratio, is performed. At a time of the enriching quantity increase, a sum of injection quantities of the multi-stage injection is increased by the amount of the correction for increasing the required injection quantity without the injection quantity and an injection timing of the fuel injection by the partial lift injection being changed from a base time.
    Type: Grant
    Filed: May 25, 2016
    Date of Patent: June 30, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Akihiko Higuchi, Tomohiro Nakano, Eiji Murase
  • Patent number: 10690068
    Abstract: A method for operating an engine, such as a dual-fuel engine, that includes a plurality of cylinders in which an air/gas mixture of air and gaseous fuel is ignited during a power stroke using an ignition fluid that is injected into each cylinder during a power stroke of the cylinder. The air/gas mixture is injected into each cylinder, and the injection fluid is injected into the each cylinder into which the air/gas mixture has been injected. The ignition fluid is injected into the each cylinder in at least two consecutive injections during the power stroke of the each cylinder.
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: June 23, 2020
    Assignee: MAN Energy Solutions SE
    Inventors: Matthias Auer, Markus Bauer, Paul Hagl, Markus-Christian Meier, Jürgen Metzger
  • Patent number: 10677210
    Abstract: Disclosed is an air-assisted fuel injection system, comprising a cylindrical bore; a plunger and a barrel within the cylindrical bore, the plunger having a flat surface; and a securing means abutting against the flat surface to keep the plunger from rotating within the cylindrical bore.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: June 9, 2020
    Assignee: CFR ENGINES CANADA ULC
    Inventors: Gary Webster, Luc Menard, David Gardiner
  • Patent number: 10648410
    Abstract: Provided is a piston temperature state monitoring system for an internal combustion engine and a piston temperature monitoring method for an internal combustion engine which are capable of properly managing a history of a piston temperature. When the number of times of a piston temperature suppression control is counted, if a ratio of a temperature difference which is the difference between a maximum limit temperature and a piston temperature to a margin width which is the difference between the maximum limit temperature and a control start temperature is equal to or less than a count threshold ratio set in advance or calculated, a count output system outputs a count signal.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: May 12, 2020
    Assignee: ISUZU MOTORS LIMITED
    Inventors: Yoshifumi Hanamura, Takuro Mita, Nobuo Aoki, Toshiaki Adachi, Tamotsu Anagama, Satoshi Uehara, Noriyuki Tsukamoto, Yorimasa Tsubota
  • Patent number: 10641197
    Abstract: A control system for a compression-ignition engine is provided, which includes an engine having a combustion chamber, an injector configured to supply fuel into the combustion chamber, a spark plug, a swirl valve provided to an intake passage of the engine, and a controller. The controller includes a processor configured to execute a swirl adjusting module to adjust a swirl valve opening to generate a swirl flow inside the combustion chamber, a fuel injection amount controlling module to control fuel injection amounts of pre-injection and post-injection so as to increase a ratio of an injection amount of the post-injection to a total fuel injection amount into the combustion chamber in one cycle as an engine speed increases, and a combustion controlling module to control the spark plug to ignite at a given ignition timing after the swirl generation and fuel injection, so that partial compression-ignition combustion is performed.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: May 5, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Masanari Sueoka, Takuya Ohura, Tatsuhiro Tokunaga, Keiji Maruyama, Tomohiro Nishida
  • Patent number: 10641192
    Abstract: A control system for a compression-ignition engine is provided, which includes an engine having a combustion chamber formed by a cylinder, a piston and a cylinder head, an injector, a spark plug, an exhaust gas recirculation (EGR) device configured to introduce into the combustion chamber a portion of burned gas generated inside the combustion chamber as EGR gas, an EGR controller to change an EGR ratio, the EGR controller changing the EGR ratio so that a compression start temperature of the combustion chamber rises as an engine speed increases, and a controller connected to the injector and the spark plug to control them. The controller includes a processor configured to execute a combustion controlling module to output an ignition instruction to the spark plug so as to ignite at an ignition timing after the EGR ratio adjustment so that partial compression-ignition combustion is performed.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: May 5, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Masanari Sueoka, Takuya Ohura, Tatsuhiro Tokunaga, Keiji Maruyama, Tomohiro Nishida
  • Patent number: 10641188
    Abstract: A control apparatus for an engine includes an engine, a state quantity setting device, an injector, a spark plug, and a controller. The controller sets a G/F in a range from 18 to 50. After the spark plug ignites air-fuel mixture, unburned air-fuel mixture is combusted by autoignition.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: May 5, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Atsushi Inoue, Masanari Sueoka, Kota Matsumoto, Tomonori Urushihara
  • Patent number: 10605214
    Abstract: The present invention relates to a fuel pump for pumping fuel, comprising a piston (2) and a diaphragm seal element (3), which seals on an inner annular seal seat (4) and an outer annular seal seat (5), wherein the following equation is satisfied: (Ra2?ra2)/(ri+L)2=ra/ri, where ri is the inner radius of the inner seal seat (4), ra is the inner radius of the outer seal seat (5), Ra is the outer diameter of the piston (2) and L is a difference between an outer radius (Ria) of the inner seal seat (4) and the inner radius (ri) of the inner seal seat (4). The invention further relates to a method for operating a fuel pump.
    Type: Grant
    Filed: September 2, 2015
    Date of Patent: March 31, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Andreas Krause, Juergen Koreck, Siamend Flo, Walter Maeurer
  • Patent number: 10570830
    Abstract: For controlling injection of a mixture fuel of ethanol and gasoline in an internal combustion engine, ethanol concentration of the mixture fuel supplied to the engine is detected, target operation information related to the engine is obtained, a division scheme of a plurality of injection regions is determined based on the ethanol concentration, an injection region corresponding to the target operation information is determined in the determined division scheme of injection regions corresponding to the ethanol concentration, and while performing injection of the mixture fuel corresponding to the determined injection region, at least one of injection timing and injection duration of the mixture fuel is varied according to the ethanol concentration.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: February 25, 2020
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventor: Young Kyu Oh
  • Patent number: 10570835
    Abstract: A method involves receiving a plurality of engine parameters and a sensed ambient operating condition during operation of an engine and determining a current substitution rate based on the plurality of engine parameter. The method also involves determining at least one of a pre-combustion temperature and an end gas temperature based on the plurality of engine parameters and the sensed ambient operating condition and determining a maximum substitution rate based on at least one of the pre-combustion temperature and the end gas temperature. The method further involves comparing the current substitution rate with the maximum substitution rate and controlling at least one engine parameter among the plurality of engine parameters if the current substitution rate is different from the maximum substitution rate so as to generate the current substitution rate to less than or equal to the maximum substitution rate.
    Type: Grant
    Filed: September 4, 2014
    Date of Patent: February 25, 2020
    Assignee: Transportation IP Holdings, LLC
    Inventors: Thomas Michael Lavertu, Adam Edgar Klingbeil, Omowoleola Chukwuemeka Akinyemi, Victor Manuel Salazar, Roy James Primus
  • Patent number: 10550793
    Abstract: A fuel injection control device divides an amount of fuel corresponding to an injection amount required for a single combustion into portions corresponding to multiple fuel injections, causes the direct injector to inject the fuel in the multiple times, and causes the direct injector to execute a partial-lift injection as a final fuel injection. The device includes a total injection amount calculation section, an individual injection amount calculation section, and an injection amount changing section. The injection amount changing section executes, as a first changing process, a process for increasing the injection amount at the final fuel injection to a value between a partial-lift injection lower limit value and a partial-lift injection upper limit value and reducing the injection amount at a fuel injection other than the final fuel injection by the increased amount of the injection amount at the final fuel injection.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: February 4, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Akihiko Higuchi, Tomohiro Nakano, Eiji Murase
  • Patent number: 10550790
    Abstract: An engine system uses data associated with at least one operating condition of an engine to set the engine system to an AI mode when the engine is in an SI mode 1) within first operating condition limits, and 2) when a rate of change of a first operating condition is within rate of change limits, maintain the engine system in the SI mode when the engine is outside of first operating condition limits or when the rate of change of the first operating condition is not within rate of change limits, set the engine system to the SI mode when the engine is in the AI mode outside second operating condition limits, and maintain the engine system in the AI mode when the engine is within second operating condition limits, wherein the second operating condition limits are different from the first operating condition limits.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: February 4, 2020
    Assignees: Robert Bosch LLC, Robert Bosch GmbH
    Inventors: Nikhil Ravi, Joel Oudart, Shyam Jade, Jason Schwanke, Li Jiang
  • Patent number: 10550792
    Abstract: A fuel injection control device for an engine includes an ECU. The ECU is configured to: change a port injection ratio in accordance with an operation state of the engine; execute correction of the total fuel injection amount by reflecting a correction amount in a basic fuel injection amount depending on the operation state when the port injection ratio is changed; and when the ECU changes the port injection ratio and calculates a second correction amount that is the correction amount having one of the positive and negative values during the execution of the correction based on a first correction amount that is the correction amount having the other one of the positive and negative values, limit reflection of the first correction amount in the basic injection amount.
    Type: Grant
    Filed: October 19, 2018
    Date of Patent: February 4, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masaya Kubo, Kazuya Ohshima, Yoshikazu Yamamoto, Yuichiroh Yamanaka
  • Patent number: 10508613
    Abstract: A direct injection engine includes a fuel injection valve configured to inject fuel into a cylinder, a water injection valve configured to inject water into the cylinder, and a valve variable mechanism configured to change an operation timing of each of an intake valve and an exhaust valve. During an operation in a low load range, a negative overlap period when both of the intake valve and the exhaust valve are closed across an exhaust top dead center is formed by the valve variable mechanism, and fuel is injected from the fuel injection valve and water is injected from the water injection valve respectively during the negative overlap period. This causes a steam reforming reaction such that at least a part of injected fuel and injected water turns to hydrogen and carbon monoxide within the cylinder during the negative overlap period.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: December 17, 2019
    Assignee: MAZDA MOTOR CORPORATION
    Inventors: Kazuaki Narahara, Masahiko Fujimoto, Yoshihisa Nou
  • Patent number: 10487768
    Abstract: Methods and systems are provided for controlling fuel injections by a fuel injector in a cylinder of an internal combustion engine. First and second fuel injections are applied in each cycle of a piston in the cylinder. First and second electronic control signals are applied to the fuel injector to generate first and second fuel injections by the fuel injector during a first cycle of the piston. A hydraulic fusion state of the generated first and second fuel injections is determined. A parameter of the applied first and second electronic control signals is adjusted in response to determining the hydraulic fusion state and applied to the fuel injector to generate first and second fuel injections by the fuel injector during a second cycle of the piston subsequent to the first cycle.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: November 26, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Gennaro Merlino, Angelo Cancellieri, Umberto Ferrara, Francesco Concetto Pesce, Alessandro Forina
  • Patent number: 10465617
    Abstract: A dual-fuel internal combustion engine including a regulating device for regulating the internal combustion engine, at least one piston-cylinder unit, at least one fuel injector for a gaseous fuel, which is assigned to this piston-cylinder unit, at least one gas supply device for gaseous fuel, which is assigned to this piston-cylinder unit, whereby the regulating device has a pilot operating mode in which the liquid fuel is introduced as a pilot fuel, whereby the regulating device in pilot operating mode has a transient mode in which, in an expansion phase of the piston-cylinder unit, the piston-cylinder unit is supplied with liquid fuel by the fuel injector.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: November 5, 2019
    Assignee: GE Global Sourcing LLC
    Inventors: Dino Imhof, Georg Tinschmann
  • Patent number: 10458327
    Abstract: In an opposed-piston engine, two or more fuel injectors are mounted to a cylinder for direct side injection into the cylinder. The injectors are controlled so as to inject either a single fuel pulse or a plurality of fuel pulses per cycle of engine operation in order to initiate combustion during varying engine speeds and operating conditions.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: October 29, 2019
    Assignee: ACHATES POWER, INC.
    Inventors: Clark A. Klyza, Fabien G. Redon
  • Patent number: 10436170
    Abstract: An internal combustion engine control device controls an in-cylinder direct injection type spark ignition internal combustion engine including a fuel injection valve for injecting fuel into a cylinder and an ignition plug for igniting an air-fuel mixture in the cylinder and configured to inject the fuel in an expansion stroke and ignite the fuel after injection in the expansion stroke under a specific operating condition. The internal combustion engine control device shortens an interval between a fuel injection timing in the expansion stroke and an ignition timing as the ignition timing is retarded.
    Type: Grant
    Filed: June 3, 2015
    Date of Patent: October 8, 2019
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Daisuke Tanaka, Ryo Uchida
  • Patent number: 10428755
    Abstract: An ECU calculates peak-current arrival time (time elapsed before a detected current arrives at a target peak current), and calculates predetermined-current arrival difference time (time elapsed before the detected current becomes lower than a predetermined current after exceeding the predetermined current). The ECU uses a beforehand stored relationship between the predetermined-current arrival difference time and defined peak-current arrival time to calculate the defined peak-current arrival time corresponding to the latest predetermined-current arrival difference time. The ECU uses such defined peak-current arrival time to compare the latest peak-current arrival time with the defined peak-current arrival time (for example, calculates a difference between the peak-current arrival time and the defined peak-current arrival time), and thus determines a shift in detected current of a current detection circuit.
    Type: Grant
    Filed: September 28, 2015
    Date of Patent: October 1, 2019
    Assignee: DENSO CORPORATION
    Inventor: Keisuke Yanoto