Using Multiple Injectors Or Injections Patents (Class 123/299)
  • Patent number: 8555852
    Abstract: In a gaseous-fuelled stoichiometric compression ignition internal combustion engine, a pilot fuel is injected directly into the combustion chamber to help initiate a multi-point ignition. The engine provides performance improvements approaching those of high pressure direct injection engines but with less complexity because the gaseous fuel is introduced into the intake air subsystem at relatively low pressure and as a result of the stoichiometric combustion, the low oxygen content in the combustion products exiting the combustion chamber allows the use of a three-way catalyst instead of other after treatment arrangements normally associated with conventional compression ignition engines that require the addition of a reductant.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: October 15, 2013
    Assignee: Westport Power Inc.
    Inventors: Sandeep Munshi, Alan B. Welch, Gordon P. McTaggart-Cowan
  • Patent number: 8554449
    Abstract: A fuel injection control apparatus for controlling a fuel injection valve including an arithmetic processing section that determines whether a necessary fuel amount is injectable or not within a fuel injectable range from a first fuel injection start timing, computes a second fuel injection start timing in which the necessary fuel amount is injectable within the fuel injectable range in the case that it is not injectable, and controls the fuel injection valve at the computed second fuel injection start timing so as to start fuel injection.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: October 8, 2013
    Assignee: Keihin Corporation
    Inventors: Shinji Yokoyama, Ikuhiro Uemura, Hiroyuki Hayasaka, Akinori Takehara
  • Patent number: 8544444
    Abstract: Various systems and methods are disclosed for controlling an internal combustion engine system having an internal combustion engine, and a fuel injector which directly injects fuel into a combustion chamber of the internal combustion engine. One example method comprises, when a desired torque for the internal combustion engine system is in a first range, injecting a first stage fuel into the combustion chamber so that it ends during a middle stage of a compression stroke at the latest in a cylinder cycle; determining combustion of the first stage fuel initiated by its compression self-ignition; and injecting a second stage fuel into the combustion chamber in a period when the determined combustion of the first stage fuel continues at a timing determined so as to cause combustion of the second stage fuel with its compression self-ignition.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: October 1, 2013
    Assignee: Mazda Motor Corporation
    Inventors: Mitsuo Hitomi, Masahisa Yamakawa, Toshiaki Nishimoto, Takashi Youso, Keiji Araki
  • Patent number: 8544446
    Abstract: A system including, an internal combustion engine including a combustion chamber, a first injector to provide a first injection fluid to the combustion chamber, and a heated pressurization system to heat the first injection fluid in a pressure vessel to achieve a sufficient injection pressure. By heating the injection fluid in a pressure vessel, pressure in the vessel can be increased to a specified injection pressure.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: October 1, 2013
    Assignee: Ford Global Technologies, LLC
    Inventors: Joseph Norman Ulrey, Ross Dykstra Pursifull
  • Patent number: 8539933
    Abstract: A desired pulse width module determines a desired length of a single pulse of fuel for a combustion cycle of a cylinder of an engine. A multiple pulses module determines a number of pulses (N) for the combustion cycle, wherein N is an integer greater than 1. A fraction determination module determines N fractional values for the N pulses, respectively. An injector control module generates individual lengths for the N pulses based on the N fractional values, respectively, and based on the desired length. A fuel actuator module opens a fuel injector that injects fuel into the cylinder during the combustion cycle in N pulses having the individual lengths, respectively.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: September 24, 2013
    Inventors: Joshua D. Cowgill, J. Michael Ellenberger, Jonathan T. Shibata
  • Patent number: 8539754
    Abstract: In a method for an emission-optimized transition between a spark-ignition mode of an internal combustion engine and a self-ignition mode of the internal combustion engine, the internal combustion engine is operated in the preparation phase and chronologically before the transition of modes in a spark-ignition mode in at least one cylinder cycle with a rich mixture (?<1) and, subsequently, in the same cylinder cycle with a lean mixture (?<1). After that, the internal combustion engine is operated in the self-ignition mode. In a method for an emission-optimized transition between a self-ignition mode of an internal combustion engine and a spark-ignition mode of the internal combustion engine, in a transition phase of the operation modes and during a last cycle of the self-ignition mode and/or a first cycle of the spark-ignition mode, fuel is post-injected into at least one combustion chamber of the internal combustion engine.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: September 24, 2013
    Assignee: Continental Automotive GmbH
    Inventors: Erwin Bauer, Dietmar Ellmer
  • Patent number: 8538664
    Abstract: An electronic controller for a diesel engine (1) performs primary injection control in which primary injection of fuel is controlled based on an operational status of the diesel engine and additional injection control in which additional injection of the fuel is controlled for estimation of a cetane number of the fuel. The electronic controller includes a control means that, as the additional injection control, causes a plurality of fuel injections to be performed at different injection timings as the additional injection, calculates the amount of increase in torque of a crankshaft (14) due to each of the fuel injections, estimates injection timing at which misfiring starts to occur based on a trend of variation in the calculated torque increase amount as the injection timing of the fuel injections is shifted in one direction, and estimates the cetane number of the fuel based on the estimated injection timing.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: September 17, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takeshi Miyaura, Yasuyuki Terada, Atsushi Morikawa
  • Patent number: 8534261
    Abstract: A four-cycle engine (1) structured to introduce fresh air into a cylinder (1a) via an intake port (1d) opened/closed by intake valves (IN1, IN2) and suck exhaust gas back into the cylinder (1a) via an exhaust port opened/closed by exhaust valves (EX1, EX2), wherein the exhaust port has a first exhaust port (1p) and a second exhaust port (1e), and the exhaust gas is sucked in back from the first exhaust port (1p) and secondary air is sucked in from the second exhaust port (1e) to form, in the cylinder (1a), a first temperature layer (T1) at a high temperature mainly composed of the exhaust gas and a second temperature layer (T2) at a temperature lower than that of the first temperature layer (T1) mainly composed of the secondary air.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: September 17, 2013
    Assignees: Hatamura Engine Research Office Ltd., CD-ADAPCO Japan Co., Ltd.
    Inventors: Koichi Hatamura, Toshio Yamada, Atsushi Morita
  • Patent number: 8534262
    Abstract: In a diesel engine 1 with fuel injection valves 6a and 6b for injecting fuel 5a, 5b into a combustion chamber 4, respectively, the valves 6a and 6b are arranged such that they are opposed to each other horizontally and diametrically of the combustion chamber 4 in a plan view and are out of alignment in height to each other axially of a cylinder 2. With the valves 6a and 6b being positioned close to and away from the cylinder head 7, respectively, an upper surface of the piston 3 has a rising gradient extending from its side adjacent to the valve 6b toward its side adjacent to the valve 6a up to diametrically halfway of the piston 3.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: September 17, 2013
    Assignee: IHI Corporation
    Inventors: Youichi Marutani, Yasunori Ashikaga, Takayuki Yamada, Mamoru Kurashina
  • Patent number: 8534263
    Abstract: A method may include injecting gasoline into a combustion chamber of an internal combustion engine from a direct injection gasoline fuel injector during a gasoline fuel mode of the engine. The method may also include combusting the gasoline in the combustion chamber to power the engine during the gasoline fuel mode. Further, the method may include injecting gaseous fuel from a gaseous fuel injection system into the combustion chamber during a gaseous fuel mode of the engine and combusting the gaseous fuel in the combustion chamber to power the engine during the gaseous fuel mode. The method may further include cooling the direct injection gasoline fuel injector during the gaseous fuel mode by injecting gasoline into the combustion chamber.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: September 17, 2013
    Inventors: Craig D. Marriott, Uwe Dieter Grebe
  • Patent number: 8532903
    Abstract: A control system for an internal combustion engine having at least one fuel injection valve for injecting fuel in a combustion chamber of the engine. A main injection and a pilot injection are performed through the at least one fuel injection valve, the pilot injection being performed before the main injection. A demand output of the engine is temporarily reduced upon a request for reducing an output of the engine. The output of the engine is reduced when the demand output is reduced. A control of the pilot injection corresponding to a state where the demand output is not reduced is performed when the demand output is reduced.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: September 10, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventors: Hirofumi Ueda, Akira Odajima
  • Patent number: 8522746
    Abstract: Fuel management system for efficient operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder of the engine. A fuel management microprocessor system controls injection of the anti-knock agent so as to control knock and minimize that amount of the anti-knock agent that is used in a drive cycle. It is preferred that the anti-knock agent is ethanol. The use of ethanol can be further minimized by injection in a non-uniform manner within a cylinder. The ethanol injection suppresses knock so that higher compression ratio and/or engine downsizing from increased turbocharging or supercharging can be used to increase the efficiency of the engine.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: September 3, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Daniel R. Cohn, John B. Heywood, Leslie Bromberg
  • Patent number: 8505513
    Abstract: The present invention is a fuel injection method for a direct-injection internal-combustion engine, preferably of diesel type, comprising a cylinder (10) closed by a cylinder head (16), a piston (12) comprising a bowl (18), and a fuel injector (48). The method feeds the fuel into a bowl coated with a thermal insulation coating in at least two successive injections in quick succession to achieve low-temperature combustion of the fuel mixture.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: August 13, 2013
    Assignee: IFP
    Inventor: Julian Kashdan
  • Patent number: 8489267
    Abstract: In a hybrid-electric vehicle that includes a cabin, methods and systems are provided for modifying a first curve for engine coolant temperature (ECT) warm-up trajectory. The system includes a processor configured to execute software instructions, and a memory configured to store software instructions accessible by the processor. In one embodiment, the software instructions comprise an offset lookup table that is configured to generate, based on a calculated thermal power loss across a heater core and an ambient air temperature, an offset value for modifying the first curve for ECT warm-up trajectory to produce a desired curve for ECT warm-up trajectory that is offset from the first curve. The desired curve for ECT warm up trajectory is used to adjust temperature in the cabin so that fuel consumption can be reduced.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: July 16, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Paul S. Lombardo, Allen J. Lehmen
  • Patent number: 8479705
    Abstract: In an internal combustion engine, on a cylinder head side, a tumble flow is formed that is directed from an intake vent opened on the cylinder head to an exhaust vent opened on the cylinder head. A direct injection valve injects fuel directly into a combustion space. The direct injection valve injects the fuel toward a section where a piston top surface intersects with a cylinder inner surface, at a point closer to an intake top dead center than a middle between the intake top dead center and an intake bottom dead center, and thereafter injects the fuel into the combustion space again.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: July 9, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shinichiro Nogawa, Hisao Suzuki
  • Patent number: 8483937
    Abstract: Methods and systems are provided for improving fuel usage while addressing knock by adjusting the use of spark retard and direct injection of a fluid based on engine operating conditions and the composition of the injected fluid. One or more engine parameters, such as EGR, VCT, boost, throttle position, are coordinated with the direct injection to reduce torque and EGR transients.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: July 9, 2013
    Assignee: Ford Global Technologies, LLC
    Inventors: Gopichandra Surnilla, Joseph Norman Ulrey, Thomas G. Leone
  • Patent number: 8474432
    Abstract: A method for starting an internal combustion engine having direct fuel injection into a cylinder, comprising of only for a first combustion event under selected conditions during an engine start, directly injecting fuel to the cylinder at least twice, where each of said two injections at least partially occur during a compression stroke.
    Type: Grant
    Filed: February 15, 2007
    Date of Patent: July 2, 2013
    Assignee: Ford Global Technologies, LLC
    Inventors: Eric Storhok, Zheng Xu, Jianwen Yi, Gopichandra Surnilla, Jim Hilditch
  • Patent number: 8473180
    Abstract: Combustion pressure in a diesel combustion chamber is monitored to determine a combustion parameter as a function of the monitored pressure. A cetane number of the fuel combusted is determined as a function of a predetermined correlation between the combustion parameter and the cetane number.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: June 25, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Yue-Yun Wang, Chol-Bum M. Kweon, Ibrahim Haskara, Frederic Anton Matekunas, Donald Terry French
  • Patent number: 8468999
    Abstract: A fuel injection control system of an internal combustion engine includes a required injection setting mechanism, a rapid rotational speed change detector, and an injection controller. The required injection setting mechanism calculates a required number of injections and required injection times with regard to a plurality of fuel injections, based on operating conditions of the engine. The rapid rotational speed change detector determines whether the amount of change of the engine speed is equal to or larger than a predetermined value. When it is determined that the amount of change of the engine speed is equal to or larger than the predetermined value, the injection controller controls a fuel injection valve so as to reduce or eliminate differences between the actual injection times and the required injection times. Thereby, even when the engine speed changes rapidly, deteriorations in the driveability and exhaust emissions are prevented.
    Type: Grant
    Filed: January 8, 2009
    Date of Patent: June 25, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Takayuki Demura
  • Publication number: 20130146021
    Abstract: A toroidal combustion chamber shape with side injectors is being developed for an opposed-piston engine. Favorable combustion characteristics of such configuration are transferred to a conventional engine, i.e., one with a combustion chamber delimited by a piston, a cylinder wall, and a cylinder head. At least one injector is disposed in the cylinder head at the periphery. The fuel is injected substantially along the plane of interface between the cylinder head and the cylinder block. The intake system is configured to provide a swirling flow in the combustion chamber. The fuel is injected in an angle that is displaced from the central axis of the cylinder and directed along the swirl. In some embodiments, a substantially torus-shaped volume is formed between the piston and the cylinder head when the piston is at top center. The injector or injectors spray fuel into the toroidally-shaped volume substantially tangent to the torus.
    Type: Application
    Filed: December 7, 2012
    Publication date: June 13, 2013
    Applicant: ECOMOTORS, INC.
    Inventor: EcoMotors, Inc.
  • Patent number: 8459576
    Abstract: A dual fuel common rail fuel injector includes a first and second control valve assembly and a first and second check needle. The dual fuel injector is capable of selectively injecting two different fuels such as diesel and liquid natural gas. The first and second control valve assemblies operate using a single fuel, such as diesel, as the control medium. The dual fuel common rail injector further includes a hydraulic lock assembly.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: June 11, 2013
    Assignee: Caterpillar Inc.
    Inventors: Hoisan Kim, Mark Sommars, Xiangdong Ding
  • Publication number: 20130133615
    Abstract: An internal-combustion engine includes a cylinder, a piston, a spark plug, and a fuel injection valve. The piston includes a top surface and a cavity provided in the top surface. The cavity includes a bottom surface, a vertical wall, a first sidewall, and a second sidewall. The fuel injection valve includes a plurality of injection ports from which a plurality of fuel mists are to be obliquely injected toward the top surface of the piston in respectively different directions at a predetermined crank angle in a compression stroke. The cavity extends from a position close to a center of the piston toward the fuel injection valve when viewed from above the top surface of the piston. The first and second sidewalls extend toward the fuel injection valve when viewed from above the top surface of the piston.
    Type: Application
    Filed: November 20, 2012
    Publication date: May 30, 2013
    Applicant: HONDA MOTOR CO., LTD.
    Inventor: Honda Motor CO., LTD.
  • Patent number: 8452520
    Abstract: A control system for an engine includes a parameter determination module and a period determination module. The parameter determination module determines a first fuel injection parameter based on a rate of change of a quantity of fuel injected during a period, and determines a second fuel injection parameter based on an initial quantity of fuel injected during the period. The period determination module determines a desired fuel injection period based on a desired fuel injection quantity, the first and second fuel injection parameters, and at least one of mass air flow (MAF) rate, intake air temperature (IAT), fuel injector pressure (FIP), engine coolant temperature (ECT), and exhaust gas air/fuel (A/F) ratio.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: May 28, 2013
    Inventors: Vijay Ramappan, Jun-Mo Kang, Peter Kafarnik, Jonathan T. Shibata
  • Patent number: 8448625
    Abstract: A method of pilot injection control which avoids a change in the number of pilot injections in a transient response of an engine to improve driving and handling feeling. When pilot injection is performed, it is determined whether fuel injection amount Q immediately before the pilot injection is more than a maximum value Qmax and, if so, number of pilot injections is fixed to a predetermined value. When fuel injection amount Q is determined to be not more than the maximum value Qmax, it is determined whether fuel injection amount Q is lower than a minimum value Qmin, and, if so, the number-fixed control of the pilot injections is released and map control is started where the pilot injection number is determined based on a map.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: May 28, 2013
    Assignee: Bosch Corporation
    Inventors: Osamu Mori, Kazuhiko Hoshino
  • Patent number: 8443780
    Abstract: A fuel system includes a plurality of fuel injectors each defining a nozzle supply passage, a nozzle outlet and a low pressure space. The fuel system includes a plurality of mechanically actuated pressure intensifiers each including a tappet and being positioned partially within one of the fuel injectors, and a common rail fluidly connecting with each of the fuel injectors. Each of the fuel injectors further includes an injection pressure control mechanism having an injection pressure control valve. Each injection pressure control valve blocks the corresponding pressure intensifier from the common rail and fluidly connects the pressure intensifier with the low pressure space at a first position, and fluidly connects the pressure intensifier with the common rail and blocks the pressure intensifier from the low pressure space at a second position.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: May 21, 2013
    Assignee: Caterpillar Inc.
    Inventors: Dana Coldren, Alan Stockner
  • Patent number: 8443783
    Abstract: The invention relates to an internal combustion engine that can be operated with different types of liquid fuel, which includes a device that can determine the current type of liquid fuel used. The invention further relates to a method for operating such an internal combustion engine. According to the invention, at least two different paths are provided, by which the liquid fuel can reach the combustion chamber of the internal combustion engine. The internal combustion engine comprises a control and regulation device, controlling or regulating the use of the different paths as a function of the type of the liquid fuel that was determined.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: May 21, 2013
    Assignee: Robert Bosch GmbH
    Inventor: Oliver Miersch-Wiemers
  • Publication number: 20130118448
    Abstract: A dual fuel system includes a plurality of fuel injectors that each have a non-injection configuration, a liquid fuel injection configuration, a gaseous fuel injection configuration and a combined fuel injection configuration. Each of the fuel injectors includes a liquid control valve member with a guide segment that defines a portion of a leak path from the a liquid fuel inlet to a drain outlet, and a gas control valve member with a guide segment that defines a second leak path from the liquid fuel inlet to the drain outlet. Each injector body includes a tip component that defines both a liquid nozzle outlet set and a gas nozzle outlet set. A dual solenoid actuator has a first armature coupled to the liquid control valve member, a second armature coupled to the gas control valve member, and a shared stator.
    Type: Application
    Filed: November 11, 2011
    Publication date: May 16, 2013
    Applicant: CATERPILLAR INC.
    Inventors: Hoisan Kim, Mark F. Sommars, Xiangdong Ding, Dana Coldren
  • Patent number: 8439015
    Abstract: A fuel injection apparatus including a plurality of throttle bodies, a fuel supply pipe to supply fuel to upstream and downstream side injectors; connecting pipes to connect the fuel supply pipe to the upstream side injectors and the downstream side injectors; upstream side branch passages to supply fuel branched from the fuel supply pipe to the respective upstream side injectors; downstream side branch passages to supply fuel branched from the fuel supply pipe to the respective downstream side injectors; a nip angle of the upstream side injectors is larger than a nip angle of the downstream side branch passages against the intake flow direction of the intake passage; and the nip angle of the downstream side branch passages is larger than a nip angle of the downstream side injectors against the intake flow direction of the intake passage.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: May 14, 2013
    Assignee: Mikuni Corporation
    Inventors: Takahiko Kimura, Atsushi Osanai
  • Patent number: 8442744
    Abstract: To partially supplant the use of fossil fuels in diesel engines, oxygen-containing fuels, such as biodiesels, are proposed as blending agents in diesel fuel. Engine calibration coefficients to control EGR rate, timings and quantities of fuel injection pulses, turbocharger boost, etc, can be determined to compensate for the lower energy content of such oxygenate blends compared to diesel fuels. According to an embodiment of the disclosure, the fuel quantity of each of multiple injection pulses is increased proportionally to compensate for the impact of oxygenates. An adjustment in the fuel injection quantity is performed in response to a new tank of fuel and the adjustment is applied for that tank of fuel. A fuel compensation factor (FCF) can be determined based on the actual amount of fuel injected compared to the expected amount of diesel fuel at the present operating condition.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: May 14, 2013
    Assignee: Ford Global Technologies, LLC
    Inventors: Eric Kurtz, Douglas Glen Kuhel, Jianwen James Wi, Christian Winge Viglid
  • Patent number: 8437944
    Abstract: A learning value for correcting a basic injection pulse such that an actual air-fuel ratio approximates to a target air-fuel ratio is calculated individually for each injection time number, which is decided according to an operation state of an engine. Thus, even if the number of occurrence(s) of invalid injection time changes with the injection time number and the invalid injection time changes with time, the appropriate learning value can be calculated for each injection time number. If injection from an injector is performed according to an injection pulse corrected with the learning value, the change of the invalid injection time can be absorbed and accuracy of a fuel injection quantity can be improved.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: May 7, 2013
    Assignee: Denso Corporation
    Inventor: Yasuo Hirata
  • Patent number: 8437945
    Abstract: A method for adjusting fuel injection timing in an internal combustion engine including a cylinder and configured to operate multiple fuel injections in the cylinder per combustion cycle includes monitoring in-cylinder pressure through a first combustion cycle, determining actual combustion phasing metrics based upon the in-cylinder pressure, monitoring a baseline fuel injection timing comprising a first injection timing and a second injection timing, providing expected combustion phasing metrics based upon the baseline fuel injection timing, comparing the actual combustion phasing metrics to the expected combustion phasing metrics, and adjusting the baseline fuel injection timing in a second combustion cycle based upon the comparing.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: May 7, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Ibrahim Haskara, Yue-Yun Wang, Chol-Bum M. Kweon, Frederic Anton Matekunas, Oguz H. Dagci
  • Patent number: 8434450
    Abstract: A compression-ignition internal combustion engine includes a plurality of combustion chambers operating in a four-stroke combustion cycle and is configured to operate at a geometric compression ratio greater than 10:1. A method for operating a the engine includes forming a fuel/air charge by injecting fuel into each combustion chamber during a compression stroke, wherein the injection is completed prior to any combustion within the combustion chamber. The method further includes operating the engine to manage temperature of the fuel/air charge in the combustion chamber below an auto-ignition point of the fuel/air charge, and providing a spark discharge in the combustion chamber subsequent to injecting the fuel and in advance of the fuel/air charge achieving an auto-ignition temperature.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: May 7, 2013
    Assignee: GM Global Technology Operations LLC
    Inventor: Russell P. Durrett
  • Patent number: 8433501
    Abstract: In an internal combustion engine provided with a fuel injection valve for injecting fuel into an intake air flow path for each cylinder, there is performed a plurality of fuel injections during one cycle for each cylinder, one injection thereof being performed in synchronization with a period during which an intake valve is being opened and reverse flow of in-cylinder gas into the intake air flow path occurs. In accordance with a measurement quantity that changes as the temperatures of the surface, at the intake air flow path, of the intake valve and the inner wall face of the intake air flow path change, there is set the proportion of the amount of fuel injected in synchronization with the period during which reverse flow occurs to the total amount of fuel injected in one cycle for each cylinder.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: April 30, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventor: Tetsuya Honda
  • Patent number: 8433497
    Abstract: When performing a learning control of a fuel injection quantity, a fuel injection control apparatus adds a pilot fuel injection during the working state of a diesel engine when a learning data item (as a fuel injection amount correction value) is calculated per cylinder and fuel pressure. The apparatus compares, based on a combustion stroke of a target cylinder, a work load obtained during an ordinary fuel injection with a work load obtained during the pilot fuel injection. The apparatus calculates a learning data item for the target cylinder in order to correct an actual fuel injection quantity in the target cylinder with the learning data item so that the actual fuel injection quantity approaches a target fuel injection quantity.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: April 30, 2013
    Assignee: Denso Corporation
    Inventor: Syota Okada
  • Patent number: 8433500
    Abstract: A control system for a homogeneous charge compression ignition (HCCI) engine includes a timing adjustment module and a combustion control module. The timing adjustment module, per combustion event, advances timings of N fuel injections and retards timings of M fuel injections and spark during a transition from HCCI combustion to mixed-mode combustion. The combustion control module subsequently retards the timings of the N fuel injections and advances the timings of the M fuel injections and the spark to desired timings, respectively, wherein the N fuel injections and the M fuel injections occur sequentially during each combustion event of the HCCI engine, and wherein N and M are integers greater than or equal to zero.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: April 30, 2013
    Inventors: Vijay Ramappan, Jun-Mo Kang, Hanho Yun
  • Patent number: 8428850
    Abstract: In one embodiment, a total fuel injection amount is calculated from a torque required by an engine. A division ratio of a pre-injection amount that achieves both suppression of ignition delay of fuel from a main injection and suppression of a peak value of a heat production ratio of combustion from the main injection is calculated. Upper and lower limit guards are given to the obtained divided amount, and the divided injection amount is calculated. The injection amount of the main injection is obtained by subtracting the divided injection amount from the total fuel injection amount.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: April 23, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Mitsuhiro Nada, Akio Matsunaga, Yasuyuki Terada, Makio Tsuchiyama
  • Patent number: 8418674
    Abstract: A control device of a diesel engine, including an acceleration detector including an acceleration sensor, the acceleration sensor being attached to an engine body that defines a combustion chamber, the acceleration detector configured to output a vibration acceleration, an integrator configured to integrate values corresponding to amplitudes of the vibration acceleration from a predetermined integration start timing that is at least before an ignition timing, a comparison unit configured to compare an integration value of the integrator with a predetermined ignition timing judgment level, and a real ignition timing judgment unit configured to judge a real ignition timing on the basis of a reach timing, at which the integration value has reached the ignition timing judgment level.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: April 16, 2013
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Kousuke Yasuhara, Yasutaka Ishibashi, Naoki Nagashima
  • Patent number: 8417437
    Abstract: When it is determined that an engine operating condition is in a high-engine load HCCI range (A2) where an engine load is higher than a specified load X1 within a HCCI range A where a compression self combustion is performed, an after-TDC injection F2s is executed at a point T1 when an internal pressure of a combustion chamber drops below a specified pressure Y after the top dead center of an exhaust stroke during a minus valve overlap period NVO during which intake and exhaust valves are both closed. Then, a main injection F2m as a main injection is executed. Accordingly, any improper detonation or deterioration of NOx emission which may be caused by the compression self-ignition combustion in the range where the engine load is relatively high can be prevented.
    Type: Grant
    Filed: May 5, 2010
    Date of Patent: April 9, 2013
    Assignee: Mazda Motor Corporation
    Inventors: Hiroyuki Yamashita, Masatoshi Seto, Yusuke Kawai
  • Publication number: 20130081592
    Abstract: Embodiments of the invention are directed toward a fuel injection system for a variable temperature and pressure direct injection engine, comprising: a high-pressure fuel pump capable of providing fuel at a pressure between 100 bar and 800 bar; a fuel heater for heating the fuel from 50° C. to 500° C.; and a common fuel rail operatively connected to at least one direct injector for injecting heated fuel into a cylinder of the engine.
    Type: Application
    Filed: September 30, 2011
    Publication date: April 4, 2013
    Inventors: Chris De Boer, Kishwar Hossain, Shreeram Shetty, Philip Zoldak
  • Patent number: 8408180
    Abstract: Disclosed is a control apparatus for a turbocharged diesel engine. The control apparatus comprises an engine start controller (10) operable, when an engine restart condition associated with a demand for vehicle start is satisfied, to execute a split-injection control to perform a main injection for injecting fuel at a timing around a top dead center of a compression stroke, and a post injection for injecting fuel in an expansion stroke following the main injection, during the engine restart control, and, when an engine restart condition nonassociated with the demand for vehicle start is satisfied, to execute the engine restart control to perform only the main injection without executing the split-injection control. This makes it possible to optimize the engine restart control to be execute in response to satisfaction of the engine restart condition, depending on the presence or absence of the demand for vehicle start.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: April 2, 2013
    Assignee: Mazda Motor Corporation
    Inventors: Masahiro Nagoshi, Masayuki Tetsuno, Masaharu Marumoto
  • Patent number: 8402939
    Abstract: The invention relates to a method and a device for optimizing combustion of diesel fuels with different cetane numbers in a diesel internal combustion engine. It is provided that cylinder pressures are measured in at least one cylinder of the internal combustion engine during the combustion period, that at least one part of the measured cylinder pressures is evaluated in order to derive a characteristic value for the diesel fuel that is fed into the cylinder of the internal combustion engine, and that the characteristic value is used to change parameters that determine the combustion in the cylinders of the internal combustion engine.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: March 26, 2013
    Assignee: Audi AG
    Inventors: Thomas Reuss, Axel Macher
  • Patent number: 8397701
    Abstract: A fuel system and a method of operation of the fuel system are described in the context of a multi-fuel internal combustion engine. In one example, the method includes varying a proportion of fuel supplied by a fuel pump to an engine and a fuel separator. The method may be particularly useful for a dual fuel engine.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: March 19, 2013
    Assignee: Ford Global Technologies, LLC
    Inventors: Donald J. Lewis, Thomas G. Leone
  • Patent number: 8397692
    Abstract: In a method relating to an engine with n cylinders, fuel is injected in a predetermined order into the cylinders in a manner which is synchronized with the position of the pistons of the engine. The method includes the following steps after start-up: injection into m cylinders in a predetermined order of injection; measurement of engine speed and/or acceleration; continuation of injection in a predetermined order of injection if engine speed and/or acceleration exceed(s) a predetermined threshold; continuation of injection with a delay in the event of the contrary. The method can be used with respect to the start-up of a direct injection engine.
    Type: Grant
    Filed: April 1, 2004
    Date of Patent: March 19, 2013
    Assignee: Continental Automotive France
    Inventors: Laure Carbonne, Alain Gonzalez, Roger Rouphael, Robertus Vingerhoeds
  • Patent number: 8393312
    Abstract: A system for starting an engine is described. In one example, the engine is supplied two fuels via two injectors. The method may improve engine starting and reduce engine emissions.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: March 12, 2013
    Assignee: Ford Global Technologies, LLC
    Inventors: Donald J. Lewis, Allan J. Lippa, John D. Russell
  • Patent number: 8387587
    Abstract: When a direct injection type internal combustion engine is in an operating state, a fuel is split and jetted into a cylinder of the internal combustion engine and split injections are performed in a manner to make a ratio of a piston travel and an injection pulse width of split injection constant in a cycle whereby a rich mixture is not locally generated and a mixture in a cylinder of the internal combustion engine is put in a condition near stoichiometry. Also, when the internal combustion engine is in cold condition, a fuel is split and jetted and split injections are performed so that the ratio of the piston travel and the injection pulse width of split injections monotonously increases in a cycle.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: March 5, 2013
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Kenichiroh Ogata, Yoshihiro Sukegawa, Kengo Kumano
  • Publication number: 20130046452
    Abstract: A method for a multi-fuel vehicle includes: determining a first target amount of fuel to be injected for a combustion event of a combustion chamber of an engine; determining first and second fractions for the combustion event based on at least one of engine speed, engine load, and engine temperature; determining a second target amount of liquid fuel for the combustion event based on the first target amount and the first fraction; determining a third target amount of gaseous fuel for the combustion event based on the first target amount and the second fraction; selectively injecting a liquid fuel directly into the combustion chamber for the combustion event based on the second target amount and using a first fuel injector; and selectively injecting a gaseous fuel into a port of the combustion chamber for the combustion event based on the third target amount and using a second fuel injector.
    Type: Application
    Filed: December 13, 2011
    Publication date: February 21, 2013
    Applicant: GM Global Technology Operations LLC
    Inventors: Ben W. Moscherosch, Craig D. Marriott, Joshua Cowgill
  • Publication number: 20130036999
    Abstract: A combustion chamber for an internal combustion engine is disclosed in which the piston has a large squish region at a peripheral location on the piston top and a depression in the center of the piston top. A side injector sprays fuel into the depression in the piston top through a channel defined in the squish region. In some embodiments, two injectors are provided that are diametrically opposed to each other. In some embodiments, the engine is an opposed-piston engine in which each piston has the squish regions and depressions in the piston top.
    Type: Application
    Filed: August 1, 2012
    Publication date: February 14, 2013
    Applicant: ECOMOTORS INTERNATIONAL, INC.
    Inventors: Robert Levy, Diana Brehob
  • Patent number: 8364384
    Abstract: Various systems and methods are described for controlling fuel injection of a dual fuel engine which includes first and second fuel rails and first and second fuel pumps. In one example, while pumping is suspended in the second fuel rail, the first fuel is injected to all but one cylinder of the engine and the second fuel is injected to the one cylinder in a predetermined sequence. As such, the fuel injector injecting to the one cylinder is isolated and its performance may be assessed without significantly affecting engine performance.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: January 29, 2013
    Assignee: Ford Global Technologies, LLC
    Inventor: Ross Dykstra Pursifull
  • Patent number: 8364380
    Abstract: A method and system for controlling an engine includes a desired fuel mass determination module that determines fuel mass for injection into a cylinder. The system also includes a split determination module that splits the fuel mass into split fuel masses and a pulsewidth determination module that converts the split fuel masses into injection pulsewidths outside of an injector operation exclusion zone.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: January 29, 2013
    Inventors: Allen B. Rayl, Andrew P. Bagnasco
  • Patent number: RE44082
    Abstract: A solitary fuel injector for a diesel engine that is capable of injecting fuel for a homogeneous charge compression ignition injection event, a conventional injection event. The solitary fuel injector also has a mixed mode that includes a homogeneous charge compression ignition injection and a conventional injection in a single compression stroke for the engine.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: March 19, 2013
    Assignee: Caterpillar Inc.
    Inventors: Scott F. Shafer, Clifford E. Cotton, III, Ye Tian, Richard H. Holtman, Joseph Angelino, Robert E. Dieffenbach