Engine Cylinder Pressure Responsive Patents (Class 123/406.41)
  • Patent number: 11692488
    Abstract: An embodiment of a torch igniter for a combustor of a gas turbine engine comprises a combustion chamber oriented about an axis, a cap defining an axially upstream end of the combustion chamber and oriented about the axis, a tip defining an axially downstream end of the combustion chamber, a structural wall coaxial with and surrounding the igniter wall, an outlet passage defined by the igniter wall within the tip, and a cooling system. The cooling system comprises an air inlet formed within the structural wall, a first flow path disposed between the structural wall and the igniter wall, and an aperture extending through the igniter wall transverse to the flow direction. The aperture directly fluidly connects the first flow path to the combustion chamber.
    Type: Grant
    Filed: November 4, 2020
    Date of Patent: July 4, 2023
    Assignee: Delavan Inc.
    Inventors: Jason Ryon, Lev Alexander Prociw
  • Patent number: 11614044
    Abstract: Multiple rotational irregularities in an internal combustion engine are determined. An uneven running value of a currently-ignited combustion chamber in a logical ignition sequence of a plurality of combustion chambers immediately after a logically-preceding ignited combustion chamber is determined. The uneven running value determined for the logically-preceding ignited combustion chamber exceeds a specified threshold value and indicates a fault in the logically-preceding ignited combustion chamber. A compensation factor is determined that. A compensated uneven running value of the currently-ignited combustion chamber from the uneven running value of the currently-ignited combustion chamber and the compensation factor is determined. The compensated uneven running value of the currently-ignited combustion chamber is compared with the specified threshold value to determine whether the currently-ignited combustion chamber has a fault.
    Type: Grant
    Filed: November 20, 2019
    Date of Patent: March 28, 2023
    Assignee: Bayerische Motoren Werke Aktiengesellschaft
    Inventor: Sebastian Grasreiner
  • Patent number: 11525404
    Abstract: An embodiment of a torch igniter for a combustor of a gas turbine engine comprises a combustion chamber oriented about an axis, a cap defining an axially upstream end of the combustion chamber and oriented about the axis, a tip defining an axially downstream end of the combustion chamber, a structural wall coaxial with and surrounding the igniter wall, an outlet passage defined by the igniter wall within the tip, and a cooling system. The cooling system comprises an air inlet formed within the structural wall, a first flow path disposed between the structural wall and the igniter wall, and an aperture extending through the igniter wall transverse to the flow direction. The aperture directly fluidly connects the first flow path to the combustion chamber.
    Type: Grant
    Filed: November 4, 2020
    Date of Patent: December 13, 2022
    Assignee: Delavan Inc.
    Inventors: Jason Ryon, Lev Alexander Prociw
  • Patent number: 10001071
    Abstract: A control system and a control method for an internal combustion engine, which are capable of accurately calculating an in-cylinder gas amount and an EGR ratio by a relatively simple method even in a case where an in-cylinder gas temperature is changed by execution of internal EGR, and properly controlling the engine using the EGR ratio thus calculated. An in-cylinder gas amount Gact actually filled in the cylinder is calculated by correcting an ideal in-cylinder gas amount Gth, which is an amount of gases filled in a cylinder in an ideal state in which it is assumed that no exhaust gases of the engine are recirculated into the cylinder, using an ideal in-cylinder gas temperature Tcylth according to an in-cylinder gas temperature Tcyl, and an EGR ratio REGRT is calculated using the in-cylinder gas amount Gact and an intake air amount Gaircyl.
    Type: Grant
    Filed: April 9, 2015
    Date of Patent: June 19, 2018
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Akihiro Katsuura, Masaki Ueno, Yosuke Kosaka
  • Patent number: 9976534
    Abstract: A control device includes an electronic control unit. The electronic control unit is configured to calculate an ignitionability index value and a combustion timing index value. The electronic control unit is configured to store relevant information defining a relationship between the ignitionability index value and the combustion timing index value, and a torque fluctuation limit value. The electronic control unit is configured to calculate a distance between a current operating point, which is specified by the ignitionability index value and the combustion timing index value, and a point on the torque fluctuation limit line. The electronic control unit is configured to retard ignition timing when the distance is larger than a threshold value, and enrich an air-fuel ratio and retard the ignition timing when the distance is equal to or smaller than the threshold value.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: May 22, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Akio Furuishi, Yusuke Suzuki
  • Patent number: 9903287
    Abstract: A control apparatus for an internal combustion engine is configured to: calculate measured data for MFB in synchrony with crank angle based on in-cylinder pressure detected by an in-cylinder pressure sensor; execute SA-CA10 feedback control and CA50 feedback control based on a measured CA10 and a measured CA50 that are calculated based on the measured data; execute engine control based on a degree of correlation between the MFB measured data and the reference data that corresponds thereto; and generate reference data for a combustion period by linear interpolation and linear extrapolation based on a target CA50 and a specified CA10.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: February 27, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Eiki Kitagawa
  • Patent number: 9080546
    Abstract: A method is provided for equalizing the cylinders of a multi-cylinder internal combustion engine. The internal combustion engine is configured as a reciprocating engine having direct injection and spark ignition. A fuel mass is injected in a cylinder-specific manner, and a cylinder-specific air mass and a cylinder-specific ignition time are each adjustable. An injection amount is equalized, then a charge is equalized and then a mean combustion pressure is equalized.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: July 14, 2015
    Assignee: IAV GMBH INGENIEURGESELLSCHAFT AUTO UND VERKEHR
    Inventors: Wolfram Gottschalk, Olaf Magnor, Matthias Schultalbers, Christian Steinbrecher
  • Patent number: 8826886
    Abstract: An ignition timing setting apparatus includes a pulse generator for generating crank pulses corresponding to crank angles, a crank angular speed variation calculating section for calculating a crank angular speed variation based on an interval of the crank pulses, an engine load estimating section for estimating an indicated mean effective pressure from the crank angular speed variation, and an ignition timing determining section having an ignition timing control map for determining an ignition timing advance quantity in accordance with the estimated indicated mean effective pressure and an engine temperature or an engine speed. Such ignition timing setting apparatus sets appropriate ignition timings for avoiding a knocking occurrence load range based on an accurate estimated engine load.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: September 9, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Kenji Nishida, Tetsuya Kaneko, Tomiyuki Sasaki, Shinichi Wagatsuma, Naoki Sakamoto
  • Patent number: 8752526
    Abstract: The invention relates to a method for reducing uncontrolled combustions in an internal combustion engine, which occur independently of the ignition by a spark plug, wherein uncontrolled combustions are detected in the internal combustion engine (1). In order to reduce the damaging effects of the uncontrolled combustions to the internal combustion engine, the incipient uncontrolled combustion (B) is reduced after said incipient uncontrolled combustion (B) has been detected.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: June 17, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Oliver Miersch-Wiemers, Uwe Mueller
  • Patent number: 8688357
    Abstract: The present invention relates to a control device for a spark-ignition internal combustion engine provided with a cylinder pressure sensor and aims to facilitate optimal control of a combustion state even in a situation where an operating condition is variable. A predetermined combustion-related parameter whose value is uniquely determined by behavior of a change in cylinder pressure relative to a crank angle is used as a control value. Ignition timing is calculated based on the control value in accordance with a calculation rule determined according to a current or target operating condition of the internal combustion engine. The control value resulting from calculation based on a target value of a predetermined physical quantity relating to torque of the internal combustion engine in accordance with a predetermined calculation rule is used as a base value and is corrected by feeding back an output value of the cylinder pressure sensor.
    Type: Grant
    Filed: January 15, 2009
    Date of Patent: April 1, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Naoto Kato, Shinichi Soejima, Kiyonori Takahashi
  • Patent number: 8651088
    Abstract: In an internal combustion engine having an in-cylinder pressure sensor provided on each cylinder, an in-cylinder pressure detection value is corrected into an absolute pressure using an absolute pressure correction value Pr by calculating the absolute pressure correction value Pr (=(P2V2??P1V1?)/(V1??V2?)) from in-cylinder pressure detection values P1 and P2, in-cylinder volumes V1 and V2, and a specific heat ratio K at predetermined crank angles ?1 and ?2 during the adiabatic compression stroke from IVC to the ignition timing. When the adiabatic compression stroke (ignition timing?IVC) is shorter than a predetermined crank angle period CAth, the ignition timing is delayed. When the adiabatic compression stroke is longer than or equal to CAth, IVC is advanced. Preferably, a torque variation is suppressed by controlling the ignition timing of each cylinder before IVC is advanced.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: February 18, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Shigeyuki Urano
  • Patent number: 8561592
    Abstract: A method and a control module that includes a filter coefficient determination module that generates filter coefficients based upon an engine operating conditions. The control module includes a filter module that filters the in-cylinder pressure signal with a filter having the filter coefficients to form a filtered pressure signal and an engine control module that controls the engine using the filtered pressure signal.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: October 22, 2013
    Inventors: Kenneth J. Buslepp, Douglas R. Verner
  • Patent number: 8516993
    Abstract: A method of controlling the combustion of a spark-ignition engine having application to gasoline engines is disclosed. An engine control system controls actuators so that the values of physical parameters linked with the combustion of a mixture of gas and fuel in a combustion chamber are equal to their setpoint values, to optimize the combustion. A setpoint value is determined for an ignition crank angle of the fuel mixture which is then corrected before the physical parameters reach their setpoint values. A correction to be applied to this ignition angle setpoint value is calculated so that the crank angle CAy is equal to its setpoint value. Finally, the engine control system controls the ignition of the mixture in the combustion chamber when the crank angle is equal to the corrected setpoint value to optimize combustion.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: August 27, 2013
    Assignee: IFP
    Inventors: Mathieu Hillion, Jonathan Chauvin
  • Patent number: 8406979
    Abstract: A method for operating an internal combustion engine, especially an internal combustion engine that is operable, at least in a part-load range, in an operating mode with auto-ignition, in which, at an abrupt change in load and/or at a changeover between an operating mode with auto-ignition and an operating mode without auto-ignition, a parameter of the combustion process correlating with the combustion noise is adapted stepwise over a plurality of combustion cycles from a first parameter value before the abrupt change in load or the changeover to a second parameter value after the abrupt change in load or the changeover, by influencing a combustion position of the combustion process.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: March 26, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Axel Loeffler, Wolfgang Fischer, Roland Karrelmeyer, Gerald Graf
  • Patent number: 8374772
    Abstract: A method is provided for controlling an internal combustion engine. The method includes, but is not limited to the step of measuring in-cylinder pressure of an expansion phase of a combustion cycle of a cylinder of the internal combustion engine and measuring in-cylinder pressure of a compression phase of the combustion cycle of the cylinder of the internal combustion engine. A difference between a polytrophic expansion phase constant of the cylinder of the internal combustion engine and a polytrophic compression phase constant of the cylinder of the internal combustion engine is then determined using the measured expansion phase pressure and the measured compression phase pressure. A misfiring of the cylinder is later detected using the determined difference.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: February 12, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Cristian Taibi, Alessandro Catanese, Luca Fossati
  • Patent number: 8297256
    Abstract: An ignition control system for a spark ignition internal combustion engine has: over-advancing means for over-advancing an ignition time for a cylinder of the internal combustion engine beyond an MBT; obtaining means for obtaining an adhering fuel amount that is the amount of fuel that adheres to the inner face of the cylinder of the internal combustion engine; and controlling means for controlling the over-advancing means to execute the ignition time over-advancement when the adhering fuel amount obtained by the obtaining means is equal to or larger than a predetermined amount.
    Type: Grant
    Filed: November 27, 2007
    Date of Patent: October 30, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shogo Suda, Nobuhiko Koga, Nao Murase
  • Patent number: 8161944
    Abstract: A control device of an internal combustion engine that can accurately estimate an NOx concentration in exhaust gas by using a cylinder internal pressure as basic data. A cylinder internal pressure sensor provided to the internal combustion engine detects a cylinder internal pressure P?. An internal energy correlation value (?V·dP?/d?·??) having correlation with internal energy consumed in the cylinder is calculated based on the cylinder internal pressure P? and an in-cylinder volume V? (? represents a crank angle). The internal energy correlation value is standardized by a load ratio KL, then corrected by a function f(kl) as for a load factor KL so as to calculate an NOx concentration estimated value [NOx]={(?V·dP?/d?·??)/KL}×f(kl).
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: April 24, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hidenori Moriya, Ryo Tadokoro
  • Patent number: 8150602
    Abstract: A system for measuring in-cylinder parameters utilizing an image charge measured in an engine cylinder by an in-cylinder pressure sensor due to chemi and or thermal ionization in Engine. The in-cylinder pressure sensor includes a sensing element, which is a metal sensor probe with a selective coating (e.g., metal, oxides of metal, native oxides, semiconductor, oxides of semiconductors, ceramics, glass, dielectric, etc., in the form of a coating on the metallic probe, tube, etc) in order to function in harsh, corrosive and/or elevated temperature environments. The output of the sensor can be connected to a signal-conditioning unit, which includes a low noise differential charge amplifier with an auto offset correction circuit to measure fast varying signals. The signal out from the conditioning unit can be acquired utilizing a high-speed microcontroller-based data acquisition system with suitable software to analyze and estimate parameters such as, for example, in cylinder pressure and knocking.
    Type: Grant
    Filed: November 8, 2007
    Date of Patent: April 3, 2012
    Assignee: Honeywell International Inc.
    Inventors: Ramsesh Anilkumar, Baburaj K. P., Palani Thanigachalam
  • Patent number: 8042517
    Abstract: A fuel property detector for an internal combustion engine determines a cetane number with high accuracy even when a high-cetane fuel is used. The fuel property detector includes a cylinder pressure detection device; ignition delay time calculating device for calculating ignition delay time in accordance with the cylinder pressure; a high-cetane fuel judgment device for judging based on the ignition delay time whether the cetane number of an employed fuel is high; an ignition delay time extension device that increases the ignition delay time by correcting a control parameter for the internal combustion engine; an ignition delay time recalculation device for recalculating the ignition delay time based on cylinder pressure after the ignition delay time is increased by the ignition delay time extension device; and a cetane number calculation device for calculating the cetane number of the employed fuel based on the recalculated ignition delay time.
    Type: Grant
    Filed: August 6, 2008
    Date of Patent: October 25, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Toshiya Nakajima
  • Patent number: 8046156
    Abstract: This control apparatus estimates a full combustion correspondence period CP, which is the period from an ignition timing SA to a combustion completion time CAe, and controls a VVT advancement amount (burnt gas quantity, overlap period, intake valve open timing) such that the estimated full combustion correspondence period CP coincides with a constant target full combustion correspondence period CPtgt. The full combustion correspondence period CP substantially maintains a one-to-one relation with the VVT advancement amount at which HC, CO2, etc. start to increase, even when the ignition timing SA changes. Thus, even when the ignition timing changes, the burnt gas quantity (overlap period) can be properly controlled. As a result, without increasing the discharge quantities of HC and CO, the discharge quantity of NOX can be reduced. In addition, pumping loss can be reduced, whereby fuel consumption can be improved.
    Type: Grant
    Filed: February 19, 2008
    Date of Patent: October 25, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hidenori Moriya, Ryo Tadokoro
  • Patent number: 7909018
    Abstract: A control for determining a firing timing of an engine is provided. An in-cylinder pressure is detected at a predetermined time interval. An in-cylinder pressure for every predetermined crank angle is calculated based on the detected in-cylinder pressure. A motoring pressure in a case where combustion is not performed in the engine is estimated. It is detected that a pressure difference between the calculated in-cylinder pressure and the motoring pressure has exceeded a determination value. A time point is identified, as a firing timing, at which the pressure difference has exceeded a determination value with a finer resolution than the resolution of the predetermined crank angle interval through an interpolation calculation.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: March 22, 2011
    Assignee: Honda Motor Co., Ltd.
    Inventors: Tetsuya Ishiguro, Shusuke Akazaki, Yuji Yamamoto
  • Patent number: 7870846
    Abstract: A method for determining a point in time of a start of combustion in a cylinder of an internal combustion engine includes: providing a base compression pressure model which gives a curve of a compression pressure in the cylinder as a function of the operating point; adjusting the base compression pressure model using measured cylinder pressures of at least one operating state of the internal combustion engine at points in time at which no combustion is taking place in the cylinder, in order to obtain an adjusted compression pressure model; and determining a point in time of a start of combustion with the aid of a pressure curve determined by the adjusted compression pressure model.
    Type: Grant
    Filed: May 1, 2009
    Date of Patent: January 18, 2011
    Assignee: Robert Bosch GmbH
    Inventors: Erik Weissenborn, Thomas Bossmeyer
  • Patent number: 7861690
    Abstract: The internal combustion engine has a valve driving mechanism (VM) capable of changing the valve-opening characteristic of at least one of an intake valve (Vi) and an exhaust valve (Ve), an in-cylinder pressure sensor for detecting the in-cylinder pressure in a combustion chamber and ECU. ECU calculates the variation amount of the in-cylinder pressure caused by the valve-overlap of the intake valve (Vi) and the exhaust valve (Ve), and based on this variation amount of the in-cylinder pressure and the in-cylinder pressure detected at a predetermined timing in the compression stroke, calculates an amount of air sucked in the combustion chamber, as well as, based on this calculated intake air amount, determines the ignition timing. The amount of air sucked in the combustion chamber is accurately and costlessly calculated, and the ignition timing is optimally determined by using the calculated air amount.
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: January 4, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hidenori Moriya, Masahiro Wanibe, Hiromichi Yasuda, Ryusuke Ogino, Ryo Tadokoro
  • Patent number: 7853393
    Abstract: In an internal combustion engine with several cylinders, at least one cylinder is configured as a reference cylinder to which an active cylinder pressure sensor is allocated. A passive cylinder pressure sensor is allocated to each of the remaining cylinders. At least one actuating member is assigned to the cylinders. A crankshaft angle sensor is provided. During the quasi-stationary operating mode, the cylinder segment durations are equated, by an actuating member engaging in at least one actuating signal allocated to the respective cylinder. Furthermore, during the quasi-stationary operating mode, the measuring signal of the active sensor is allocated to the respective measuring signals of the passive sensors. As a result, the signal processing of the measuring signals of the passive sensors is adjusted depending on the respective measuring signals of the passive sensors captured during the quasi-stationary operating mode and on the allocated measuring signal of the active sensor.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: December 14, 2010
    Assignee: Continental Automotive GmbH
    Inventors: Thomas Kettl, Hong Zhang
  • Patent number: 7712450
    Abstract: In an ignition timing control apparatus for an engine, a KCS learning value learned when the engine is in a given operating state is used in an ignition timing control executed when the engine is in the other operating state. An estimated knocking occurrence ignition timing is set based on a most retarded ignition timing using the KCS learning value. A final ignition timing is set by changing a KCS feedback correction value based on whether knocking occurs when ignition is performed at the estimated knocking occurrence ignition timing. When a point indicating the engine operating state moves into a region where it is difficult to set the estimated knocking occurrence ignition timing, the KCS feedback correction value is changed to retard the final ignition timing, and the final ignition timing is set using the KCS learning value and the changed KCS feedback correction value.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: May 11, 2010
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kenichiro Sato, Tomohiro Fujita, Akito Onishi, Mitsuhiro Nada
  • Patent number: 7703441
    Abstract: A method for determining one or more cylinder pressure features for setting the combustion position in an internal combustion engine includes ascertaining a curve of a cylinder pressure or a curve of a cylinder pressure gradient with respect to a crankshaft angle, filtering the curve of the cylinder pressure or the curve of the cylinder pressure gradient using a filter, in order to eliminate a component of a pressure fluctuation brought about by the piston movement in the combustion chamber, and determining at least one cylinder pressure feature from the filtered curve.
    Type: Grant
    Filed: October 21, 2008
    Date of Patent: April 27, 2010
    Assignee: Robert Bosch GmbH
    Inventors: Jean-Pierre Hathout, Axel Loeffler, Wolfgang Fischer
  • Publication number: 20100071659
    Abstract: This control apparatus estimates a full combustion correspondence period CP, which is the period from an ignition timing SA to a combustion completion time CAe, and controls a VVT advancement amount (burnt gas quantity, overlap period, intake valve open timing) such that the estimated full combustion correspondence period CP coincides with a constant target full combustion correspondence period CPtgt. The full combustion correspondence period CP substantially maintains a one-to-one relation with the VVT advancement amount at which HC, CO2, etc. start to increase, even when the ignition timing SA changes. Thus, even when the ignition timing changes, the burnt gas quantity (overlap period) can be properly controlled. As a result, without increasing the discharge quantities of HC and CO, the discharge quantity of NOX can be reduced. In addition, pumping loss can be reduced, whereby fuel consumption can be improved.
    Type: Application
    Filed: February 19, 2008
    Publication date: March 25, 2010
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hidenori Moriya, Ryo Tadokoro
  • Patent number: 7673618
    Abstract: A control system for an internal combustion engine, which is capable of estimating a property of fuel accurately even when the engine is in an operating condition other than idling. An in-cylinder pressure sensor detects an amount of change in pressure in a cylinder #1 of the engine as a pressure change amount. An ECU calculates an amount of heat released in the cylinder #1 as a heat release amount, according to the pressure change amount. A vehicle speed sensor, a crank angle sensor, and an accelerator pedal opening sensor detect load on the engine. The ECU estimates a cetane number of fuel based on the calculated heat release amount and the detected load on the engine.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: March 9, 2010
    Assignee: Honda Motor Co., Ltd.
    Inventors: Mamoru Hasegawa, Satoshi Yamaguchi, Hideki Sakamoto, Naoto Kitayama, Tatsuo Yamanaka
  • Patent number: 7669583
    Abstract: An internal combustion engine control apparatus includes an in-cylinder pressure sensor for detecting in-cylinder pressure. A combustion start time and combustion end time, which are parameters serving as control indexes for an internal combustion engine, are determined in accordance with ignition timing. Information about a heat release amount is acquired in accordance with the in-cylinder pressures that are measured at two points by the in-cylinder pressure sensor. The in-cylinder pressure is estimated in accordance with a relationship among the heat release amount information, control index parameters, and in-cylinder pressure.
    Type: Grant
    Filed: July 26, 2006
    Date of Patent: March 2, 2010
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Hidenori Moriya
  • Publication number: 20100043749
    Abstract: An ignition control system for a spark ignition internal combustion engine has: over-advancing means for over-advancing an ignition time for a cylinder of the internal combustion engine beyond an MBT; obtaining means for obtaining an adhering fuel amount that is the amount of fuel that adheres to the inner face of the cylinder of the internal combustion engine; and controlling means for controlling the over-advancing means to execute the ignition time over-advancement when the adhering fuel amount obtained by the obtaining means is equal to or larger than a predetermined amount.
    Type: Application
    Filed: November 27, 2007
    Publication date: February 25, 2010
    Applicant: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shogo Suda, Nobuhiko Koga, Nao Murase
  • Publication number: 20100012089
    Abstract: A fuel property detector for an internal combustion engine determines a cetane number with high accuracy even when a high-cetane fuel is used. The fuel property detector includes a cylinder pressure detection device; ignition delay time calculating device for calculating ignition delay time in accordance with the cylinder pressure; a high-cetane fuel judgment device for judging based on the ignition delay time whether the cetane number of an employed fuel is high; an ignition delay time extension device that increases the ignition delay time by correcting a control parameter for the internal combustion engine; an ignition delay time recalculation device for recalculating the ignition delay time based on cylinder pressure after the ignition delay time is increased by the ignition delay time extension device; and a cetane number calculation device for calculating the cetane number of the employed fuel based on the recalculated ignition delay time.
    Type: Application
    Filed: August 6, 2008
    Publication date: January 21, 2010
    Applicant: Toyota Jidosha Kabushiki Kaisha
    Inventor: Toshiya Nakajima
  • Publication number: 20090293842
    Abstract: An ignition timing control system for an internal combustion engine, which is capable of properly carrying out ignition timing control over a wide control range, thereby making it possible to improve fuel economy, and is capable of suppressing combustion fluctuation, thereby making it possible to improve drivability. Ignition timing is calculated, when the engine is determined to be in an intense combustion mode, such that a largest in-cylinder pressure angle at which in-cylinder pressure becomes largest converges to a target angle, whereas when the engine is determined to be in a weak combustion mode, the same is calculated by feedback, based on the target angle and combustion state parameters indicative of a combustion state in the cylinder.
    Type: Application
    Filed: May 4, 2009
    Publication date: December 3, 2009
    Inventors: Shusuke Akazaki, Takafumi Komori
  • Patent number: 7571707
    Abstract: A method of operating an engine having a plurality of cylinders, the method comprising of transitioning the engine from a first mode to a second mode, and temporarily adjusting an amount of torque produced by a cylinder of the engine for at least one cycle responsive to a difference in an amount of torque produced by a previous firing cylinder and a subsequent firing cylinder.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: August 11, 2009
    Assignee: Ford Global Technologies, LLC
    Inventors: Alex O'Connor Gibson, John Ottavio Michelini
  • Patent number: 7438049
    Abstract: The start of the combustion (CRK) of a mixture in a combustion chamber of an internal combustion engine is determined in accordance with a pressure (pc) that is measured in the combustion chamber.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: October 21, 2008
    Assignee: Siemens Aktiengesellschaft
    Inventors: Gianluca Caretta, Rainer Hirn, Antonio Lentini
  • Patent number: 7406931
    Abstract: An internal combustion engine is provided with a plurality of valves, including a main driving valve and a driven valve, each of which can be lifted in response to an instruction from a control apparatus, and a lift sensor which detects a lift amount of the main driving valve. The control apparatus controls the lift of the driven and main driving valves based on an output of the lift sensor. The engine may also include a proximity sensor which detects whether the position of the driven valve is within a predetermined range, and a crank angle sensor. The control apparatus monitors the output of the proximity sensor to determine whether the driven valve is out of synchronization with respect to the crank angle, and performs an initial driving control that initializes the positions of the driven and main driving valves corresponding to the driven valve when loss of synchronization is detected.
    Type: Grant
    Filed: May 22, 2006
    Date of Patent: August 5, 2008
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Kiyoharu Nakamura
  • Patent number: 7347185
    Abstract: An internal combustion engine (1) generates power by burning a mixture of fuel and air in a combustion chamber (3). The internal combustion engine (1) is provided with a crank angle sensor (14), an in-cylinder pressure sensor (15) detecting an in-cylinder pressure at the time when a crank angle detected by the crank angle sensor (14) reaches a predetermined angle, and an ECU (20). The ECU (20) calculates a combustion rate at predetermined timing based upon a control parameter which is a product of an in-cylinder pressure detected by the in-cylinder pressure sensor (15) and a value obtained by exponentiating an in-cylinder volume at the timing of detecting the in-cylinder pressure with a predetermined index, and corrects ignition timing by each ignition plug (7) so that the calculated combustion rate is equal to a target value.
    Type: Grant
    Filed: July 8, 2004
    Date of Patent: March 25, 2008
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hidenori Moriya, Kohei Miwa
  • Patent number: 7320308
    Abstract: A method/system for measuring cylinder pressures of an internal combustion engine includes a crank angle sensor utilized to generate pressure readings at known angular intervals. Additional time-based pressure measurements are taken in selected angular windows between a pair of the angle-based pressure readings. Because the angle-based pressure measurements and the time-based pressure measurements occur at known times, the pressure as a function of the crank angle for the time-based pressure measurements can be determined. The cylinder pressure measurements can be utilized to calculate combustion parameters used for closed-loop engine control of fuel supply or other engine inputs.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: January 22, 2008
    Assignee: Delphi Technologies, Inc.
    Inventors: Clinton W. Erickson, James E. Walters, Karl A. Schten
  • Publication number: 20070277780
    Abstract: An ignition timing control apparatus and method for an internal combustion engine, and an engine control unit are provided for more rapidly and effectively restraining knocking as the entire internal combustion engine, and extending the lifetime of the internal combustion engine. The ignition timing control apparatus comprising an ECU. The ECU determines a basic ignition timing on a cylinder-by-cylinder basis, calculates a knock intensity on a cylinder-by-cylinder bases based on a detected signal of a cylinder inner pressure sensor, and updates a correction coefficient learning value for a corresponding cylinder when the knock intensity is larger than a predetermined first determination value and is smaller than a predetermined second determination value larger than the predetermined first determination value, and updates the knock intensities for all the cylinders when the one knock intensity parameter is equal to or larger than the predetermined second determination value.
    Type: Application
    Filed: May 31, 2007
    Publication date: December 6, 2007
    Inventors: Shusuke Akazaki, Mitsuo Hashizume, Takahide Mizuno, Yuji Yamamoto
  • Patent number: 7275514
    Abstract: The present invention relates to methods for robust controlled auto-ignition and spark ignited combustion controls in gasoline direct-injection engines, including transients, using either exhaust re-breathing or a combination of exhaust re-compression and re-breathing valve strategy. These methods are capable of enabling engine operation with either lean of stoichiometric or stoichiometric air/fuel ratio for oxides of nitrogen (NOx) control, with varying exhaust gas recirculation (EGR) rates and throttle valve positions for knock control, and with a combination of homogeneous charge compression ignition (HCCI) and spark ignition (SI) combustion modes to optimize fuel economy over a wide range of engine operating conditions.
    Type: Grant
    Filed: March 22, 2006
    Date of Patent: October 2, 2007
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Tang-Wei Kuo, Zongxuan Sun, James A. Eng, Barry L. Brown, Paul M. Najt, Jun-Mo Kang, Chen-Fang Chang, Man-Feng Chang
  • Patent number: 7267103
    Abstract: An ignition timing control system for internal combustion engines, which is capable of preventing occurrence of variation in engine speed and vibrations which can be caused due to variation in combustion state between the cylinders, to thereby improve drivability. The ECU 2 of the ignition timing control system 1 calculates a statistically processed value Pmi_ls#i according to the in-cylinder pressure Pcyl#i, and calculates an averaging target value Piav_cmd by weighted averaging of a minimum value Pmi_ls_min1 and a second minimum value Pmi_ls_min2 within a predetermined range of the statistically processed value.
    Type: Grant
    Filed: November 8, 2005
    Date of Patent: September 11, 2007
    Assignee: Honda Motor Co., Ltd.
    Inventors: Yuji Yasui, Koichiro Shinozaki, Masahiro Sato
  • Patent number: 7212909
    Abstract: An internal combustion engine (1) causes an air/fuel mixture in a cylinder to combust due to ignition by a spark plug (14). The engine controller (50) calculates a temperature and pressure in the cylinder on the basis of the operating state of the engine (1) (531), calculates a limit ignition timing at which knock is not generated, on the basis of the temperature and pressure in the cylinder (54), and controls an ignition timing of the spark plug (14) to the limit ignition timing at which knock is not generated (55). Therefore, suitable control of the ignition timing is achieved, by means of a small number of adaptation steps.
    Type: Grant
    Filed: February 15, 2005
    Date of Patent: May 1, 2007
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Takahiro Yoshino, Yuji Sasaki, Hatsuo Nagaishi
  • Patent number: 7185632
    Abstract: An internal combustion engine (20) has a cylinder (1) wherein a piston (2) is mounted. The piston (2) drives a crankshaft (10) which is rotatably journalled in a crankcase (11). The piston (2) delimits a combustion chamber wherein an air/fuel mixture is compressed and is ignited by an ignition device (19). The ignition time point (Z) is determined in a first operating state of the engine (20) in accordance with a first characteristic line (22) and in a second operating state of the engine (20) in accordance with a second characteristic line (23). A switching element switches over between the first characteristic line (22) and the second characteristic line (23) in dependence upon an engine characteristic variable. A method for operating the engine (20) provides that an engine characteristic variable is determined during operation of the engine (20) and that a switchover between the ignition characteristic lines (22) and (23) takes place for a pregiven change of the characteristic variable.
    Type: Grant
    Filed: July 11, 2005
    Date of Patent: March 6, 2007
    Assignee: Andreas Stihl AG & Co. KG
    Inventor: Konrad Knaus
  • Patent number: 7121260
    Abstract: An ignition timing control apparatus for an engine includes a controller that sets an ignition timing considering a change of a temperature or a pressure in a combustion chamber at a time when an opening/closing characteristic of an intake valve is changed, the opening/closing characteristic including a valve opening timing and a valve closing timing at least one of which is changed by a variable valve mechanism for the engine.
    Type: Grant
    Filed: September 20, 2005
    Date of Patent: October 17, 2006
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yuji Miyanoo, Kiyoo Hirose, Noboru Takagi, Keizo Hiraku
  • Patent number: 7073485
    Abstract: An engine management system for an internal combustion engine, which has at least one cylinder pressure sensor and at least one engine actuator, includes a data processor arranged to receive and process cylinder pressure data from the cylinder pressure sensor and the actuator controller arranged to control the actuator to optimize engine performance based on the processed data, in which the cylinder pressure data is obtained during a performance optimized engine cycle or cycles. The processor processes the data to construct a cylinder pressure variation function for the engine cycle or cycles and derive control data therefrom for the actuator controller.
    Type: Grant
    Filed: May 21, 2002
    Date of Patent: July 11, 2006
    Assignee: Ricardo UK Limited
    Inventors: Anthony J. Truscott, Andrew D. Noble, Ashu Akoachere, Christopher J. Evans, Philippe J. F. Moulin, Daniel J. Bowker
  • Patent number: 7020554
    Abstract: A method of regulating or controlling a cyclically operating internal combustion engine using a computation model by which the cycle or portions of the cycle of the internal combustion engine is, or are, divided into individual parts and the operating condition within each cycle part is determined using measured values, stored and/or applied data in order to obtain actuating variables for operating the internal combustion engine. The time limits of the cycle parts are at least partially calculated as a function of at least one variable engine operating parameter. The operating status of an internal combustion engine can thus be determined readily and quickly while still with sufficient accuracy so as to obtain actuating variables suited for regulating or controlling the internal combustion engine using electronic control units available for series operation.
    Type: Grant
    Filed: December 2, 2003
    Date of Patent: March 28, 2006
    Assignee: AVL List GmbH
    Inventors: Christian Roduner, Ingmar Schoegl
  • Patent number: 7003391
    Abstract: In an internal combustion engine (10), exhaust gas leaves a combustion chamber (14) via at least one outlet valve (36) which is opened by an actuator after termination of a working stroke. A pressure value is determined, which characterizes the pressure of the gas in the combustion chamber during the working stroke. An actual value of the valve lift of the outlet valve (36) is determined, together with actual operating parameters of the internal combustion engine (10) which affect this opening stroke, and based on the determined actual valve lift of the outlet valve (36) and actual operating parameters of the internal combustion engine (10), an actual gas pressure in the combustion chamber (14) at the time of the opening of the outlet valve is calculated at least approximately.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: February 21, 2006
    Assignee: Robert Bosch GmbH
    Inventor: Juergen Schiemann
  • Patent number: 6964257
    Abstract: A method and device for controlling an internal combustion engine. A first variable is predefined on the basis of a signal of a combustion chamber pressure sensor or a structure-borne noise sensor. This first variable characterizes the combustion process in the combustion chamber of at least one cylinder of the engine. A second variable is read from a characteristics map; a manipulated variable for influencing the combustion process is predefinable from this second variable. The characteristics map and/or the second variable read from the characteristics map are adapted as a function of at least one feature which is determined on the basis of the first variable.
    Type: Grant
    Filed: December 21, 2004
    Date of Patent: November 15, 2005
    Assignee: Robert Bosch GmbH
    Inventors: Jens Damitz, Ruediger Fehrmann, Matthias Schueler, Michael Kessler, Mohamed Youssef, Tobias Kress
  • Patent number: 6948478
    Abstract: A device for controlling an internal combustion engine, comprising a variable valve mechanism for varying opening areas (valve lift) or the working angles (valve-opening periods) of at least either the intake valves or the exhaust valves, wherein a pressure in the cylinder is calculated based on the opening area or the working angle of at least either the intake valve or the exhaust valve varied by the variable valve mechanism, and the internal combustion engine is controlled based on the pressure in the cylinder. Upon calculating the pressure in the cylinder based on the opening areas or the working angles of the intake and exhaust valves, it is possible to more suitably control the internal combustion engine based not only upon the peak combustion pressure in the cylinder like when a combustion pressure sensor is used but also upon a pressure in the cylinder at a moment other than the peak combustion pressure.
    Type: Grant
    Filed: December 12, 2001
    Date of Patent: September 27, 2005
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Naohide Fuwa, Masanobu Kanamaru, Masaaki Konishi, Akinori Osanai, Satoru Watanabe, Masato Ehara
  • Patent number: 6945230
    Abstract: A method eliminates detonation in an internal combustion engine (10) by identifying conditions that identify the imminence thereof. The method centers about the pressure inside the cylinder (16) of the internal combustion engine (10). The method tracks the pressure and when small rapid changes or fluctuations (38) in the pressure occur, the ignition timing is advanced for that particular cylinder (16). An alternative method utilizes a model of pressure based on an array of inputs and how the pressure should act based thereon. The method may also be used to maximize performance of the output of each cylinder (16) by retarding the ignition timing until the small fluctuations (38) appear. The ignition timing could immediately be advanced to prevent a detonation thus identifying a maximized output performance without reaching a detonation condition.
    Type: Grant
    Filed: January 16, 2001
    Date of Patent: September 20, 2005
    Assignee: TCI Automotive, LLC
    Inventors: Lance M. Ward, John D. Meaney
  • Patent number: 6931836
    Abstract: In a method for reducing NOx in the exhaust gas of an externally ignited, explosion-type internal combustion engine that is operated at a lean fuel/air ratio of ?>1 and has a motor control device for controlling ?, the ? value is slidingly controlled as a function of an average mass temperature in the combustion chamber of the externally ignited, explosion-type internal combustion engine, wherein for a low average mass temperature ? is decreased and for a high average mass temperature ? is increased such that the internal combustion engine is operated in any operational state close to the misfiring limit, and thereby, with the most minimal NOx emission possible.
    Type: Grant
    Filed: May 19, 2003
    Date of Patent: August 23, 2005
    Assignee: MAN Nutzfahrzeuge AG
    Inventor: Ralf Steinert