Acceleration Responsive Patents (Class 123/406.51)
-
Patent number: 10508614Abstract: The present disclosure relates to a system for managing engine output that includes a machine manager module and a combustion module. In one embodiment, the combustion module includes a slow response pathway and a fast response pathway. The slow response pathway includes managing air and fuel actuators and the fast response pathway includes managing spark timing. According to one embodiment, managing spark timing comprises bringing a spark actuator to the middle of a spark timing range for bi-directional control and involves sacrificing engine efficiency for engine responsiveness. Further, the fast response pathway may be selectively enabled based upon an optimization index.Type: GrantFiled: June 5, 2013Date of Patent: December 17, 2019Assignee: Cummins IP, Inc.Inventors: David J. Stroh, Zachary Schwab, Govindarajan Kothandaraman, Robert J. Thomas, Richard S. Fox, Craig M. Calmer, Rohit Zope
-
Patent number: 9903290Abstract: There is provided a controller and a control method for an internal combustion engine capable of correcting a detection error of a crankshaft angle with high accuracy. A controller for an internal combustion engine includes an angle information detector that detects an angle interval and a time interval by a specific crank angle sensor; an angle information correction calculator that corrects the angle interval or the time interval by the correction value; an angle information calculator that calculates a crank angle speed, a crank angle acceleration, and an angular acceleration change amount based on the corrected angle interval and the corrected time interval; and a correction value change calculator that change the correction value so that the angular acceleration change amount approaches zero.Type: GrantFiled: June 22, 2016Date of Patent: February 27, 2018Assignee: Mitsubishi Electric CorporationInventors: Hideki Hagari, Kazuhiro Tokuyama
-
Patent number: 8538644Abstract: A minimum torque module selectively determines a first minimum propulsion torque based on second and third minimum propulsion torques when a torque converter clutch is in unlocked and locked states, respectively. A zero pedal torque module selectively sets a zero pedal torque equal to the first minimum propulsion torque. A pedal request module determines a pedal torque request based on an accelerator pedal position, a vehicle speed, and the zero pedal torque. A driver request module determines a driver axle torque request based on the pedal torque request. A shaping module selectively shapes the driver axle torque request into a shaped driver axle torque request. A conversion module converts the first minimum propulsion torque into a minimum axle torque. A final driver request module sets a final driver axle torque request equal to a greater of the shaped driver axle torque request and the minimum axle torque.Type: GrantFiled: April 20, 2010Date of Patent: September 17, 2013Inventors: Christopher E. Whitney, Robert C. Simon, Jr., William L. Aldrich, III, Jun Lu, Birendra P. Bhattarai, Adam J Heisel, Ning Jin
-
Publication number: 20120297631Abstract: A working apparatus has an internal combustion engine which drives at least one tool via a clutch. The clutch starts the coupling process at an initial engagement speed when the internal combustion engine is accelerated. The internal combustion engine has a piston, an ignition device and an ignition timing control device. The control device provides a first ignition timing for idling and a second ignition timing for full load operation, which is earlier than the first ignition timing. A method for operating the working apparatus provides that the ignition timing is adjusted toward “late,” with respect to the first ignition timing, when the engine speed drops in a first speed range above the idling speed and below the initial engagement speed.Type: ApplicationFiled: May 18, 2012Publication date: November 29, 2012Inventors: Niels KUNERT, Jürgen AUPPERLE, Michael GRETHER
-
Patent number: 8272367Abstract: A control system for an internal combustion engine for driving a vehicle, which controls an output torque of the engine, is provided. In this control system, a rapid change in a demand torque of the engine is detected, and a feedforward correction amount is generated during a correction period which is substantially equal to a resonance period of a powertrain of the vehicle, from a time when the rapid change in the demand torque is detected. An output torque control amount of the engine is corrected with the feedforward correction amount. A torque change amount integrated value is calculated by integrating an amount of change in the demand torque, and the feedforward correction amount is generated according to the torque change amount integrated value.Type: GrantFiled: April 30, 2008Date of Patent: September 25, 2012Assignee: Honda Motor Co., Ltd.Inventors: Mahito Shikama, Ryuji Kohno, Eisei Yamazaki, Hidekazu Hironobu
-
Patent number: 8267076Abstract: The present invention performs correction appropriately according to errors in the fuel system and air system respectively and corrects both variations in the air-fuel ratio and torque. When the difference between a target air-fuel ratio and a real air-fuel ratio is equal to or below a predetermined value when feedback control based on the air-fuel ratio of an exhaust manifold 10A is in progress, the air-fuel ratio of a cylinder cyl—1 having the largest variation of angular acceleration is corrected to the rich side, for example, by increasing the amount of fuel. Angular acceleration per cylinder is then detected again and when the variation in angular acceleration among cylinders is not eliminated, it is judged that there is an error in the amount of air control of the cylinder having the largest variation and the amount of air, amount of fuel, ignition timing or the like are corrected.Type: GrantFiled: June 29, 2010Date of Patent: September 18, 2012Assignee: Hitachi Automotive Systems, Ltd.Inventors: Shinji Nakagawa, Kazuhiko Kanetoshi, Kouzou Katogi, Takanobu Ichihara, Minoru Ohsuga
-
Patent number: 8200387Abstract: In a method for controlling the operation of an internal combustion engine, a target torque to be produced is determined in several steps: In a first step a torque requested by a user is determined and modified in subsequent steps by different functions, which reproduce the influences of at least one continuously determined working and/or operating parameter of the engine on the torque that is actually produced, in such a way that at the end of the steps the target torque required during the engine operation is defined and the engine operation and the determination of the working and/or operating parameter are monitored for errors. If errors occur, diagnostic values that describe or indicate the errors are generated and used to modify, in particular limit the target torque. The diagnostic values are individually assigned to the individual steps to modify the determination or modification of the torque performed in each step.Type: GrantFiled: May 20, 2008Date of Patent: June 12, 2012Assignee: Continental Automotive GmbHInventors: Stefan Maier, Martin Prenninger
-
Patent number: 8060275Abstract: An on-board diagnostic system of a vehicle comprises disabling diagnostic operation, such as a misfire monitor, based on road roughness. In one example, the disabling of the diagnostic operation is based on brake actuation and degradation of an anti-lock braking system.Type: GrantFiled: January 19, 2007Date of Patent: November 15, 2011Assignee: Ford Global Technologies, LLCInventors: Jahan Asgari, Timothy Feldkamp, Craig Stephens, Moses Fridman, Davor Hrovat, Arthur Varady, Mitch McConnell
-
Patent number: 7937211Abstract: In a control device for an internal combustion engine including a throttle valve for adjusting the intake air amount that affects on the torque of the internal combustion engine, when a request for acceleration of the internal combustion engine is made, a torque gradient, which is a change in the torque of the internal combustion engine per unit time during the acceleration, is predicted based on an operating condition of the internal combustion engine before the acceleration, and the operation of the throttle valve is controlled based on the predicted torque gradient during the acceleration of the internal combustion engine.Type: GrantFiled: March 7, 2008Date of Patent: May 3, 2011Assignee: Toyota Jidosha Kabushiki KaishaInventor: Koji Aso
-
Patent number: 7823561Abstract: An engine ignition control apparatus includes a standard ignition map for use in retarding ignition timing when a throttle opening is within a predetermined range, and when an engine speed is within a predetermined region; and an acceleration-time advance angle correction quantity map for performing advance angle correction when the engine speed is within the predetermined region; an engine accelerometer for detecting a rate of change of the engine rotary speed; and an acceleration-time advance angle correction quantity setting unit for correcting an advance angle of the ignition timing. When the engine speed is within the predetermined range, and the rate of change of engine rotary speed is greater than or equal a predetermined rate, the acceleration-time advance angle correction quantity setting unit performs attenuation processing for deriving an advance angle correction quantity; and increases an attenuation quantity of the advance angle quantity for every ignition.Type: GrantFiled: November 12, 2008Date of Patent: November 2, 2010Assignee: Honda Motor Co., Ltd.Inventors: Yoshiya Omuro, Kenichi Machida
-
Patent number: 7748362Abstract: An engine control system includes an air control module, a spark control module, a torque control module, a transient detection module, and a launch torque module. The air control module controls a throttle valve of an engine based on a commanded predicted torque. The spark control module controls spark advance of the engine based on a commanded immediate torque. The torque control module increases the commanded predicted torque when a catalyst light-off (CLO) mode is active, and increases the commanded immediate torque when a driver actuates an accelerator input. The transient detection module generates a lean transient signal when an air per cylinder increase is detected while the CLO mode is active. The launch torque module generates a torque offset signal based on the lean transient signal. The torque control module increases the commanded immediate torque based on the torque offset signal.Type: GrantFiled: May 7, 2009Date of Patent: July 6, 2010Inventors: Christopher E. Whitney, Michael S. Emmorey, Jeffrey M. Kaiser, Robert C. Simon, Jr., Cheryl A. Williams, Jon C. Wasberg, Eric Ferch, Craig M. Sawdon
-
Patent number: 7747379Abstract: When engine rotation speed is increasing in a compression stroke injection mode, a control device determines that a crank angle at injection end timing of an injector deviates toward a delayed crank angle side and performs additional ignition at timing when (or immediately before or after) a crank angle at actual injection end timing of the injector of a present injection cylinder is reached. Thus, even when the crank angle at the injection end timing deviates toward the delayed crank angle side with respect to preset original ignition timing, a combustion state can be stabilized by performing the additional ignition at timing, at which a suitable stratified mixture gas is formed in a cylinder, through the execution of the additional ignition at the timing substantially the same as the actual injection end timing.Type: GrantFiled: November 4, 2008Date of Patent: June 29, 2010Assignee: DENSO CORPORATIONInventor: Masayuki Kita
-
Patent number: 7503308Abstract: A fuel injection and ignition control method including the steps of: calculating a total injection amount correction value at the restart of fuel injection by adding an injection amount correction value determined with respect to a fuel cut period and an engine operating state to an injection amount increase correction value in acceleration when an engine accelerating operation is performed in a state where fuel cut is performed and the engine is operated; determining an injection restart time ignition timing delay amount with respect to the total injection amount correction value and a throttle valve opening degree; and performing fuel injection control to increase a fuel injection amount to be higher than a fuel injection amount in normal time by the total injection amount correction value, and ignition control to delay ignition timing from ignition timing in normal operation by the injection restart time ignition timing delay amount.Type: GrantFiled: January 7, 2008Date of Patent: March 17, 2009Assignee: Kokusan Denki Co., Ltd.Inventor: Yuichi Kitagawa
-
Publication number: 20080289604Abstract: The present invention provides a method of controlling noise and harshness caused by combustion in a spark ignited engine having a combustion chamber; a fuel delivery means for delivering a fuel charge to the combustion chamber; a plurality of spark ignition means located in the combustion chamber for igniting the fuel charge and a control unit. The control unit controls operation of each ignition means in response to measured value of at least one combustion noise associated parameter, being an engine operating condition. Control may be a response to the combustion noise associated parameter breaching a threshold value. The combustion noise associated parameter may be rate of rise of combustion pressure in the combustion chamber. However, the method may be implemented in response to rate of rise of combustion pressure and one or more further parameters, such as engine speed, acceleration and/or engine load breaching threshold values.Type: ApplicationFiled: June 30, 2006Publication date: November 27, 2008Inventor: Abraham Joseph
-
Patent number: 7134412Abstract: This invention relates to a method for increasing the reproducibility of the start-up in the start-stop operation of an internal combustion engine of a motor vehicle with start optimization. The reproducibility of the start-up is increased by reducing a maximum speed gradient that can be achieved for different stop positions of the internal combustion engine to a set speed gradient.Type: GrantFiled: April 7, 2006Date of Patent: November 14, 2006Assignee: Siemens AktiengesellschaftInventors: Johannes Beer, Roland Herfurth
-
Patent number: 7055502Abstract: A single cylinder engine includes an engine body having a cylinder and a combustion chamber, an intake opening that faces the combustion chamber, and an intake passage in communication with the combustion chamber through the intake opening, a piston provided in the cylinder, an ignition plug arranged in a position within about 5% of a bore diameter of the cylinder from an axis of the cylinder, a throttle valve provided in the intake passage, a sensor that detects an opening degree of the throttle valve, and an ECU that causes the ignition plug to lag in ignition timing during two or three cycles when the throttle valve is increased in opening degree from an idling state.Type: GrantFiled: August 5, 2005Date of Patent: June 6, 2006Assignee: Yamaha Hatsudoki Kabushiki KaishaInventors: Hideaki Kawabe, Kaoru Honda
-
Patent number: 6976472Abstract: An ignition circuit for a two-stroke engine has a spark plug connected via an ignition switch to a voltage source. The ignition switch is actuated via a control circuit to close the ignition switch in dependence upon the crankshaft angle and the rpm of the engine and to trigger an ignition spark per revolution of the crankshaft. For one and the same rpm, the control circuit makes available an ignition time point for the idle case and an ignition time point for the acceleration case. To achieve rapid acceleration from idle, the control circuit monitors idle rpm to switch to an ignition time point for the acceleration case for a pregiven rpm increase. If the control circuit determines an absence of the rpm increase or drop after ignition switchover to the acceleration case, then there is a switch back to the ignition time point for the idle case.Type: GrantFiled: July 15, 2004Date of Patent: December 20, 2005Assignee: Andreas Stihl AG & Co. KGInventor: Hans Nickel
-
Patent number: 6770009Abstract: A method and system for controlling engine speed during a vehicle launch (from a rest condition to a moving condition), such vehicle having the engine is coupled to an automatic shifting manual transmission. The method comprises determining a spark timing offset based on one or more of engine speed, a time rate of engine speed, relative air charge, engine coolant temperature, accelerator pedal position, and a time rate of change of accelerator pedal position. A new spark timing is determined as the base spark timing minus the spark timing offset. By adjusting spark timing based primarily on a time rate of change of engine speed, engine speed fluctuations arising during a clutch engagement associated with vehicle launch are largely attenuated.Type: GrantFiled: December 16, 2002Date of Patent: August 3, 2004Assignee: Ford Global Technologies, LLCInventors: Edward Badillo, Ace K. Kue
-
Publication number: 20040112336Abstract: A method and system for controlling engine speed during a vehicle launch (from a rest condition to a moving condition), such vehicle having the engine is coupled to an automatic shifting manual transmission. The method comprises determining a spark timing offset based on one or more of engine speed, a time rate of engine speed, relative air charge, engine coolant temperature, accelerator pedal position, and a time rate of change of accelerator pedal position. A new spark timing is determined as the base spark timing minus the spark timing offset. By adjusting spark timing based primarily on a time rate of change of engine speed, engine speed fluctuations arising during a clutch engagement associated with vehicle launch are largely attenuated.Type: ApplicationFiled: December 16, 2002Publication date: June 17, 2004Applicant: FORD GLOBAL TECHNOLOGIES, INC.Inventors: Edward Badillo, Ace K. Kue
-
Patent number: 6745119Abstract: An ignition timing control system and method, and an engine control unit for an internal combustion engine, which are capable of setting optimum timing for execution of retardation of ignition timing when a vehicle on which the engine is installed is accelerated, thereby effectively reducing longitudinal vibrations of the vehicle, and maintaining acceleration performance. An acceleration demand-detecting module detects a demand of acceleration of the engine. A rotational speed-detecting module detects a rotational speed of the engine. A rotational variation amount-calculating module calculates a variation amount of the rotational speed of the engine. A rotational variation amount differential value-calculating module calculates a differential value of the variation amount of the rotational speed of the engine. A retard amount-calculating module calculates a retard amount for retarding the ignition timing.Type: GrantFiled: August 15, 2002Date of Patent: June 1, 2004Assignee: Honda Giken Kogyo Kabushiki KaishaInventors: Tetsuya Ohno, Hiroshi Yatani, Tatsuya Shiraki, Yoshihiro Katagiri
-
Patent number: 6688286Abstract: A knock control apparatus for engine has a knock sensor for detecting vibrations of the engine. The knock control apparatus determines an occurrence of knock by using at least one of a statistical process, a waveform process and a FFT process. The knock control apparatus desirably uses at least two of the above-described process for improving the accuracy of knock determination. The knock control apparatus learns a corrective value during a stable condition of the engine. The learned value is used for determining an ignition timing when the engine is in a transitional condition. Therefore, it is possible to detect a knock accurately, and reduce a knock when the engine is in the transitional condition.Type: GrantFiled: May 29, 2002Date of Patent: February 10, 2004Assignee: Denso CorporationInventors: Naoki Kokubo, Hirohiko Yamada, Hideki Yukumoto, Hideyuki Maeji
-
Publication number: 20030045993Abstract: There is provided an ignition timing control system and method and an engine control unit for an internal combustion engine, which are capable of setting optimum timing for execution of retardation of ignition timing when a vehicle on which the engines is installed is accelerated, thereby effectively reducing longitudinal vibrations of the vehicle, which might be caused by torque fluctuations, and maintaining acceleration performance. An acceleration demand-detecting module detects a demand of acceleration of the engine. A rotational speed-detecting module detects a rotational speed of the engine. A rotational variation amount-calculating module calculates a variation amount of the rotational speed of the engine, based on the detected rotational speed of the engine. A rotational variation amount differential value-calculating module calculates a differential value of the variation amount of the rotational speed of the engine, based on the calculated variation amount of the rotational speed of the engine.Type: ApplicationFiled: August 15, 2002Publication date: March 6, 2003Applicant: HONDA GIKEN KOGYO KABUSHIKI KAISHAInventors: Tetsuya Ohno, Hiroshi Yatani, Tatsuya Shiraki, Yoshihiro Katagiri
-
Publication number: 20020179053Abstract: A knock control apparatus for engine has a knock sensor for detecting vibrations of the engine. The knock control apparatus determines an occurrence of knock by using at least one of a statistical process, a waveform process and a FFT process. The knock control apparatus desirably uses at least two of the above-described process for improving the accuracy of knock determination. The knock control apparatus learns a corrective value during a stable condition of the engine. The learned value is used for determining an ignition timing when the engine is in a transitional condition. Therefore, it is possible to detect a knock accurately, and reduce a knock when the engine is in the transitional condition.Type: ApplicationFiled: May 29, 2002Publication date: December 5, 2002Inventors: Naoki Kokubo, Hirohiko Yamada, Hideki Yukumoto, Hideyuki Maeji
-
Patent number: 6418907Abstract: A method and an arrangement for operating a drive unit of a vehicle are suggested. A desired value is preset and an actual value corresponding to the desired value is determined. The desired value is filtered in at least one operating situation. At the start of filtering, the filter is initialized with the determined actual value.Type: GrantFiled: January 20, 2000Date of Patent: July 16, 2002Assignee: Robert Bosch GmbHInventors: Eberhard Frech, Martin Froehlich, Lothar Gamer, Joerg Kerner, Alois Moser, Lutz Reuschenbach, Werner Hess
-
Patent number: 6244243Abstract: A control device for controlling a direct injection engine provided with an injector for injecting fuel directly into a combustion chamber in a cylinder thereof and a throttle valve is switchable between a stratified charge combustion mode and a uniform charge combustion mode. The control device predicts switching to the uniform charge combustion mode based on a change in the target load Piobj during engine acceleration in the stratified charge combustion mode, and corrects the target load Piobj so that the opening of the throttle valve approaches the opening suited for the uniform charge combustion mode prior to the switching to the uniform charge combustion mode when such combustion mode switching has been predicted. This control device prevents torque shock due to the combustion mode switching during engine acceleration without causing a deterioration in fuel economy or in vehicle acceleration performance.Type: GrantFiled: January 11, 2000Date of Patent: June 12, 2001Assignee: Mazda Motor CorporationInventors: Kiyotaka Mamiya, Michihiro Imada, Masayuki Tetsuno
-
Patent number: 6234147Abstract: An ignition timing control device for an internal combustion engine is capable of preventing shock of an engine upon rapid acceleration by suitably controlling the ignition timing of the engine. When the width of the opening of a throttle valve is kept within a specific width for a first specific time or more in a state where the opening of the throttle valve is smaller than a specific low opening and immediately after, the opening of the throttle valve is increased from the specific low opening to more than a specific high opening for a second specific time or less, it is decided that the internal combustion engine is in a rapid acceleration state. Ignition timing of the engine is therefore retarded.Type: GrantFiled: June 25, 1999Date of Patent: May 22, 2001Assignee: Honda Giken Kogyo Kabushiki KaishaInventors: Yoshiaki Hirakata, Masahiko Abe, Yasuo Iwata
-
Patent number: 6223721Abstract: A method and arrangement for controlling a drive unit of a vehicle are suggested. A desired torque value or a desired power value is formed on the basis of the driver command which serves to control the drive unit. A maximum permissible torque or a maximum permissible power is determined and the desired value is limited to the maximum permissible value when the desired value exceeds the maximum permissible value.Type: GrantFiled: May 10, 1999Date of Patent: May 1, 2001Assignee: Robert Bosch GmbHInventors: Torsten Bauer, Martin Streib
-
Patent number: 6223723Abstract: An engine control system quantifies engine acceleration advances ignition timing in accordance with the quantified engine acceleration. The control system includes a controller that receives signals indicative of engine speed and crankshaft angle and periodically determines whether the engine acceleration falls into one of four quantified ranges of acceleration: a rapid acceleration range, a moderate acceleration range, a gradual acceleration range; and a range of de minimis acceleration (i.e., substantially no acceleration). The controller then adjusts ignition timing according to engine speed and to the particular acceleration range. In doing so, the controller determines a desired ignition timing by referencing ignition timing maps stored in the memory of the control system. Each map corresponds to one of the acceleration ranges.Type: GrantFiled: April 26, 1999Date of Patent: May 1, 2001Assignee: Yamaha Hatsudoki Kabushiki KaishaInventor: Kazumasa Ito