Water Bypasses Condenser Patents (Class 123/41.25)
  • Patent number: 10470337
    Abstract: A cooling device includes an immersion tank to store a coolant where an electronic component is immersed and cause the coolant to evaporate by heat from the electronic component into vapor, a condenser tube including a starting end to which the vapor is supplied and a termination end from which the condensed vapor is discharged, an isolating part arranged in a midway part of the condenser tube, a coolant tank to accommodate the termination end of the condenser tube and the isolating part inside and store the coolant discharged from the condenser tube, an air tube that has a starting end coupled to the coolant tank and a termination end coupled to the starting end of the condenser tube, a liquid tube to supply the coolant from the coolant tank to the immersion tank, and a steam tube to supply the vapor from the immersion tank to the condenser tube.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: November 5, 2019
    Assignee: FUJITSU LIMITED
    Inventor: Hiroki Uchida
  • Patent number: 10378425
    Abstract: Methods and systems are provided for a cooling system for a vehicle engine. In one example, the cooling system includes a coolant solution circulated through both an engine cooling circuit and a vehicle interior heating circuit that is fluidly coupled to the engine cooling circuit, and a reservoir containing concentrated antifreeze. The concentrated antifreeze is flowed from the reservoir to the vehicle interior heating circuit via a shutoff valve to increase a concentration of antifreeze in the coolant solution. In some embodiments, a separation unit may be used to decrease the concentration of antifreeze in the coolant solution.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: August 13, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Hans Guenter Quix, David van Bebber, Andreas Schmitt, Claudia Herudek, Klaus-Peter Heinig
  • Patent number: 7707987
    Abstract: A hydrogen G-cycle rotary vane internal combustion engine has a sodium vapor chamber transferring excess combustion heat into combustion chambers. An active water cooling system captures heat from the engine housing stator, rotor, and sliding vanes and transfers it back into the combustion cycle by premixing it with hydrogen to reduce peak combustion temperature and with an early an late stage combustion chamber injection to help transfer heat from the sodium vapor chamber, to control chamber temperature, and to increase chamber vapor pressure. A combustion chamber sealing system includes axial seals between the rotor and the stator, vane face seals, and toggling split vane seals between the outer perimeters of the sliding vanes and the stator. Sliding vanes reciprocate laterally in and out of the rotor assisted by a vane belting system. A thermal barrier coating minimizes heat transfer and thermal deformation. Solid lubricants provide high temperature lubrication and durability.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: May 4, 2010
    Assignee: Prime Mover International, LLC
    Inventor: Barry R. Guthrie
  • Patent number: 7308870
    Abstract: A cooling system for an internal combustion engine in which bubbles are not transferred to the water pump, and thereby the efficiency of the water pump is maintained. The interior of a water outlet mounted on a cylinder head is divided by a partition wall to form a feeding chamber to feed the coolant introduced from the cylinder head to a first path provided with a radiator, and a receiving chamber forming a second path to receive the coolant returned from a heater core. Between the receiving chamber and the feeding chamber is a channel making one or both chambers communicate with the other. As a result, bubbles in the coolant running through the second path are introduced into the feeding chamber through the channel and removed from the radiator.
    Type: Grant
    Filed: August 15, 2005
    Date of Patent: December 18, 2007
    Assignees: Aichi Machine Industry Co., Ltd., Nissan Motor Co., Ltd.
    Inventors: Masatoshi Hada, Takayoshi Ichihara
  • Patent number: 6866092
    Abstract: Various techniques are disclosed for improving airtight two-phase heat-transfer systems employing a fluid to transfer heat from a heat source to a heat sink while circulating around a fluid circuit, the maximum temperature of the heat sink not exceeding the maximum temperature of the heat source. The properties of those improved systems include (a) maintaining, while the systems are inactive, their internal pressure at a pressure above the saturated-vapor pressure of their heat-transfer fluid; and (b) cooling their internal evaporator surfaces with liquid jets. FIG. 43 illustrates the particular case where a heat-transfer system of the invention is used to cool a piston engine (500) by rejecting, with a condenser (508), heat to the ambient air; and where the system includes a heat-transfer fluid pump (10) and means (401-407) for achieving the former property.
    Type: Grant
    Filed: August 26, 1993
    Date of Patent: March 15, 2005
    Inventor: Stephen Molivadas