Vapor Only Circulated Patents (Class 123/41.26)
  • Patent number: 11898520
    Abstract: A system supplies gas to a high-pressure gas-consuming apparatus and a low-pressure gas-consuming apparatus of a floating structure including a tank. The supply system includes: a first supply circuit, a second supply circuit, a return line, a first heat exchanger and a second heat exchanger. The return line includes a flow-regulating member. The supply system includes a device for managing the supply system which includes a control module to control the flow-regulating member based on the characteristics of the gas.
    Type: Grant
    Filed: March 30, 2023
    Date of Patent: February 13, 2024
    Assignee: GAZTRANSPORT ET TECHNIGAZ
    Inventors: Selma Moussaoui, Bernard Aoun, Romain Narme
  • Patent number: 7308870
    Abstract: A cooling system for an internal combustion engine in which bubbles are not transferred to the water pump, and thereby the efficiency of the water pump is maintained. The interior of a water outlet mounted on a cylinder head is divided by a partition wall to form a feeding chamber to feed the coolant introduced from the cylinder head to a first path provided with a radiator, and a receiving chamber forming a second path to receive the coolant returned from a heater core. Between the receiving chamber and the feeding chamber is a channel making one or both chambers communicate with the other. As a result, bubbles in the coolant running through the second path are introduced into the feeding chamber through the channel and removed from the radiator.
    Type: Grant
    Filed: August 15, 2005
    Date of Patent: December 18, 2007
    Assignees: Aichi Machine Industry Co., Ltd., Nissan Motor Co., Ltd.
    Inventors: Masatoshi Hada, Takayoshi Ichihara
  • Patent number: 6866092
    Abstract: Various techniques are disclosed for improving airtight two-phase heat-transfer systems employing a fluid to transfer heat from a heat source to a heat sink while circulating around a fluid circuit, the maximum temperature of the heat sink not exceeding the maximum temperature of the heat source. The properties of those improved systems include (a) maintaining, while the systems are inactive, their internal pressure at a pressure above the saturated-vapor pressure of their heat-transfer fluid; and (b) cooling their internal evaporator surfaces with liquid jets. FIG. 43 illustrates the particular case where a heat-transfer system of the invention is used to cool a piston engine (500) by rejecting, with a condenser (508), heat to the ambient air; and where the system includes a heat-transfer fluid pump (10) and means (401-407) for achieving the former property.
    Type: Grant
    Filed: August 26, 1993
    Date of Patent: March 15, 2005
    Inventor: Stephen Molivadas