Including Cylinder Pressure Or Temperature Responsive Means Patents (Class 123/435)
  • Patent number: 8155857
    Abstract: A method for controlling an internal combustion engine includes: providing a setpoint value of at least one combustion attribute on the basis of a setpoint value characteristics map; determining from a control variable characteristics map a value of a characteristics-map-based control variable for controlling the engine; ascertaining with the aid of a data-based model a value of a modified control variable for controlling the engine, the data-based model specifying a predicted combustion attribute as a function of a real value of the combustion attribute of the preceding combustion, and the value of the modified control variable for controlling the engine being ascertained from the predicted combustion attribute; and providing a real control variable set to a value that is a function of the value of the characteristics-map-based control variable and/or the value of the modified control variable.
    Type: Grant
    Filed: April 8, 2009
    Date of Patent: April 10, 2012
    Assignee: Robert Bosch GmbH
    Inventors: Axel Loeffler, Holger Ulmer
  • Patent number: 8150600
    Abstract: An internal combustion engine control device has a cylinder pressure sensor for sensing pressure in a combustion chamber and a fuel pressure sensor for sensing fuel pressure fluctuating in connection with fuel injection from an injector. The control device calculates a combustion characteristic of a cylinder (for example, an ignition delay or a combustion rate) based on both of a cylinder pressure sensing value and a fuel pressure sensing value. The control device corrects an EGR quantity, supercharging pressure, and injection start timing in accordance with the calculated combustion characteristic. Thus, the control device performs cooperative control of the injection start timing (an injection mode), the supercharging pressure and the EGR quantity (intake air conditions) in accordance with the combustion characteristic of the cylinder.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: April 3, 2012
    Assignee: Denso Corporation
    Inventors: Koji Ishizuka, Kenichiro Nakata
  • Patent number: 8150602
    Abstract: A system for measuring in-cylinder parameters utilizing an image charge measured in an engine cylinder by an in-cylinder pressure sensor due to chemi and or thermal ionization in Engine. The in-cylinder pressure sensor includes a sensing element, which is a metal sensor probe with a selective coating (e.g., metal, oxides of metal, native oxides, semiconductor, oxides of semiconductors, ceramics, glass, dielectric, etc., in the form of a coating on the metallic probe, tube, etc) in order to function in harsh, corrosive and/or elevated temperature environments. The output of the sensor can be connected to a signal-conditioning unit, which includes a low noise differential charge amplifier with an auto offset correction circuit to measure fast varying signals. The signal out from the conditioning unit can be acquired utilizing a high-speed microcontroller-based data acquisition system with suitable software to analyze and estimate parameters such as, for example, in cylinder pressure and knocking.
    Type: Grant
    Filed: November 8, 2007
    Date of Patent: April 3, 2012
    Assignee: Honeywell International Inc.
    Inventors: Ramsesh Anilkumar, Baburaj K. P., Palani Thanigachalam
  • Patent number: 8150603
    Abstract: A control system for an engine having a cylinder is disclosed having an engine valve movable to regulate a fluid flow of the cylinder and an actuator associated with the engine valve. The control system also has a sensor configured to generate a signal indicative of an amount of an air/fuel mixture remaining within the cylinder after completion of a first combustion event and a controller in communication with the actuator and the sensor. The controller may be configured to compare the amount with a desired amount, and to selectively regulate the actuator to adjust a timing of the engine valve associated with a subsequent combustion event based on the comparison.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: April 3, 2012
    Assignee: Caterpillar Inc.
    Inventors: Martin L. Willi, Scott B. Fiveland, David T. Montgomery, Weidong Gong
  • Patent number: 8136513
    Abstract: The invention relates to a method for operating an internal combustion engine, wherein air is inducted and then compressed. Before introduction into a combustion chamber of the internal combustion engine, the air humidity of the inducted air is determined and temperature of the compressed air introduced into the combustion chamber is altered depending on the air humidity of the inducted air.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: March 20, 2012
    Assignee: GE Jenbacher GmbH & Co OHG
    Inventors: Stefan Schiestl, Thomas Weitzer
  • Patent number: 8127598
    Abstract: A procedure for determining the proportion of components of a fuel mixture, which is boosted with a fuel pump, and a device for implementing the procedure are suggested. A measure for the power input of the fuel pump is detected, with whose aid the proportion of components of the fuel mixture is determined. By proceeding according to the invention a special sensor, which is susceptible to components of the fuel mixture can be waived.
    Type: Grant
    Filed: November 17, 2008
    Date of Patent: March 6, 2012
    Assignee: Robert Bosch GmbH
    Inventor: Dimitrios Stavrianos
  • Patent number: 8131450
    Abstract: A method of sensing the air/fuel ratio in a combustion chamber of an internal combustion engine that may be easily implemented by a respective low-cost device includes a pressure sensor and a learning machine that generates a sensing signal representing the air/fuel ratio by processing the waveform of the pressure in at least one cylinder of the engine. In practice, the learning machine extracts characteristic parameters of the waveform of the pressure and as a function of a certain number of them generates the sensing signal.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: March 6, 2012
    Assignee: STMicroelectronics S.R.L.
    Inventors: Nicola Cesario, Paolo Amato, Maurizio Di Meglio, Francesco Pirozzi, Giovanni Moselli, Ferdinando Taglialatela-Scafati, Francesco Carpentieri
  • Patent number: 8118010
    Abstract: An engine control system for a homogenous charge compression ignition (HCCI) engine includes a fuel injector temperature determination module and a fuel injector control module. The fuel injector temperature determination module determines a temperature of a tip of a fuel injector based on a first temperature model when the HCCI engine is operating in an HCCI combustion mode, and determines the temperature of the tip of the fuel injector based on a second temperature model when the HCCI engine is operating in a spark ignition (SI) combustion mode. The fuel injector control module controls a fuel injector pulse width based on the determined temperature and a predetermined temperature threshold, wherein the fuel injector pulse width increases when the determined temperature is greater than the predetermined temperature threshold.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: February 21, 2012
    Inventors: Jonathan T. Shibata, Vijay Ramappan, Andrew P Bagnasco
  • Patent number: 8121774
    Abstract: An exhaust gas recirculation (EGR) system for an engine and a method of operating that system is disclosed. The system has a conduit arrangement for conducting exhaust gas from an exhaust side of the engine to an intake side of the engine, a valve arrangement configured for controlling the amount of exhaust gas to be recirculated and a conduit arrangement for providing intake air to the intake side of the engine. A sensor arrangement is provided and is configured to sense at least one parameter indicative of the humidity of the recirculated exhaust gas and the intake air at the intake side of the engine. A control arrangement is configured to receive a signal from the first sensor arrangement and further is configured to control the valve arrangement in response to a determination by the control arrangement that the first parameter is outside a desired range for low-NOx emission during a subsequent combustion period.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: February 21, 2012
    Assignee: Caterpillar Inc.
    Inventors: Mary Lou Kesse, Cory A. Brown, Adwait V. Joshi
  • Patent number: 8109250
    Abstract: A glow plug includes: a tubular body (2) having at one of its ends a plug head as well as a fixing zone including elements (12, 13) for being fixed in a bore, an arm (4) mounted on the body (2) of the plug at the end opposite to the plug head, and a pressure sensor (8) sealingly insulated from the corresponding cylinder. The arm (4) is fixed to an elastically deformable tubular zone (17) designed to project inside the cylinder. The pressure sensor (8) is mounted between the arm (4) and a support component (18) fixed inside the tubular body (2).
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: February 7, 2012
    Assignees: Continental Automotive France, Federal-Mogul Ignition Srl
    Inventors: Alain Ramond, Sandro Goretti
  • Patent number: 8108131
    Abstract: The method comprises operating an engine and collecting a real-time accelerometer signal from an accelerometer sensor. The real-time accelerometer signal is digitized and filtered to isolate data in a frequency range associated with combustion to produce a filtered signal data set. The filtered signal data set is integrated to produce an integrated signal data set, and misfire is detected by comparing the integrated signal data set with a predetermined reference data set associated with the same operating point. The apparatus is a control system for an engine that comprises an accelerometer sensor mounted to the engine; a look-up table in which is stored predetermined reference data sets, in association with predetermined operating conditions; and an electronic controller programmed to carry out the foregoing method.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: January 31, 2012
    Assignee: Westport Power Inc.
    Inventors: Jian Huang, Duran Cheung, David Mumford
  • Patent number: 8103425
    Abstract: A method of controlling an HCCI engine-based power system may include receiving performance information relating to a desired operating state for the HCCI engine-based power system, evaluating operational information associated with a current operating state of the HCCI engine-based power system, and determining one or more control parameter values based on the performance information and the operational information. The method may further include predicting a response of the HCCI engine-based power system based on the one or more control parameter values and determining whether the response satisfies one or more desired performance characteristics associated with the HCCI engine-based power system. If the response satisfies the one or more desired performance characteristics, control of at least one component of the HCCI engine-based power system may be enabled based on the one or more control parameter values.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: January 24, 2012
    Assignee: Perkins Engines Company Limited
    Inventors: Cathy Y. Choi, Stephen A. Faulkner, Mary Lou Kesse
  • Patent number: 8103393
    Abstract: A computer-implemented function monitors and displays exhaust gas temperatures (EGT) in a plurality of cylinders in an engine. The invention provides an easy way to read exhaust gas temperature on a specific cylinder, and to provide a means for leaning the engine while in a climb. Efficient leaning in a climb reduces fuel consumption and reduces the chance of harmful conditions that can lead to engine failure.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: January 24, 2012
    Assignee: Vertical Power, Inc.
    Inventors: Marc Ausman, Kevin DeVries
  • Patent number: 8099230
    Abstract: A method for controlling an amount of fuel reforming in an internal combustion engine configured to selectively operate in a homogeneous charge compression-ignition combustion mode with an exhaust recompression strategy includes monitoring in-cylinder pressures during a current combustion cycle, utilizing the monitored in-cylinder pressures to project reforming required in a next combustion cycle, and controlling the next combustion cycle based on the projected reforming required in the next combustion cycle.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: January 17, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Nicole Wermuth, Tang-Wei Kuo, Paul M. Najt
  • Patent number: 8095297
    Abstract: Methods and systems are provided for addressing cylinder-to-cylinder imbalances in the incidence of pre-ignition and/or knock. Engine cylinders are fueled based on each cylinder's pre-ignition count to balance the incidence of pre-ignition in each cylinder. The fueling is adjusted to maintain engine exhaust at stoichiometry.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: January 10, 2012
    Assignee: Ford Global Technologies, LLC
    Inventors: Chris Paul Glugla, Robert Sarow Baskins
  • Patent number: 8090521
    Abstract: Methods and systems are provided for operating an engine including a first and a second bank of cylinders. One example method comprises, adjusting engine injection timing based on a first temperature of a first intake of the first bank and a second temperature of a second intake of the second bank.
    Type: Grant
    Filed: December 7, 2009
    Date of Patent: January 3, 2012
    Assignee: General Electric Company
    Inventors: Ryan John Goes, Shawn Gallagher, Eric Dillen, Rajani Boddu
  • Publication number: 20110315114
    Abstract: A control system for an engine includes a density determination module and a mass air flow (MAF) determination module. The density determination module determines a density of air in an induction system of the engine based on a temperature of the air, a pressure of the air, and a relative humidity of the air. The MAF determination module, based on the determined density of the air, a velocity of the air, and a cross-sectional area of the induction system, determines a MAF through the induction system.
    Type: Application
    Filed: October 7, 2010
    Publication date: December 29, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Bryant G. Hammond, Layne K. Wiggins, Jan Andrzej Gatowski
  • Publication number: 20110315115
    Abstract: A method for operating an internal combustion engine is described. At least one composition of a gas mixture is determined in at least one combustion chamber of the internal combustion engine. At least one combustion chamber pressure is detected in the interior of the combustion chamber and at least one local combustion chamber temperature is detected in the interior of the combustion chamber. The composition is inferred from the combustion chamber pressure and the combustion chamber temperature.
    Type: Application
    Filed: June 21, 2011
    Publication date: December 29, 2011
    Applicant: Robert Bosch GmbH
    Inventors: Gottfried Flik, Christian Fuchs
  • Patent number: 8086390
    Abstract: An engine control system comprises a base air per cylinder (APC) module, a catalyst temperature adjustment module, an ambient temperature adjustment module, and an APC adjustment module. The base APC module determines a base APC to reduce first engine pumping losses during a first deceleration fuel cutoff (DFCO) event relative to second engine pumping losses during a second DFCO event. The catalyst temperature adjustment module determines a catalyst temperature adjustment based on a catalyst temperature during the first DFCO event. The ambient temperature adjustment module determines an ambient temperature adjustment based on an ambient air temperature during the first DFCO event. The APC adjustment module selectively adjusts the base APC based on the catalyst temperature adjustment and the ambient temperature adjustment and controls at least one of the engine airflow actuators based on the adjusted base APC during the first DFCO event.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: December 27, 2011
    Inventors: Christopher E. Whitney, Poh Fong Chin, William L. Aldrich, III, Anthony H. Heap, Jeffrey M. Kaiser, Jun Lu
  • Publication number: 20110303190
    Abstract: An object of the present invention is to provide an abnormality detection device for an in-cylinder pressure sensor and an abnormality detection method for an in-cylinder pressure sensor that is able to detect preload loss abnormality of an in-cylinder pressure sensor. An in-cylinder pressure sensor 5 has a strain gauge element 20 to which preload was given. Under an operating state of an internal-combustion engine, it is judged whether Pim/Pex that is a ratio of intake pressure Pim to exhaust gas pressure Pex is 1. Reset of temperature drift is performed when Pim/Pex is 1. If an output voltage V (Pim) which serves as a base of calculation of Pim after the reset of a temperature drift is equal to a circuit limit value Vmin, existence of preload loss abnormality is determined.
    Type: Application
    Filed: November 13, 2009
    Publication date: December 15, 2011
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Hiromichi Yasuda
  • Patent number: 8073613
    Abstract: Methods and systems are provided for mitigating engine pre-ignition based on a feed-forward likelihood of pre-ignition and feedback from a pre-ignition event. In response to an indication of pre-ignition, a cylinder may be enriched while an engine load is limited. The enrichment may be followed by an enleanment to restore exhaust catalyst feed-gas oxygen levels. The mitigating steps may be adjusted based on engine operating conditions, a pre-ignition count, as well as the nature of the pre-ignition.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: December 6, 2011
    Assignee: Ford Global Technologies, LLC
    Inventors: John Eric Rollinger, Robert Roy Jentz, Robert Sarow Baskins, Chris Paul Glugla, Karen Willard
  • Patent number: 8068971
    Abstract: The invention concerns a procedure for determining the composition of a fuel mixture from a first fuel and a second fuel or for determining the quality of a fuel for operating a combustion engine with at least one cylinder pressure sensor in at least one cylinder of the combustion engine for determining the pressure history during a combustion process and a cylinder pressure based motor regulation for regulating the load and the combustion situation of the combustion engine. It is thereby provided that the determination of the composition of the fuel mixture or the quality of the fuel takes place with the aid of regulator information of the cylinder-pressure-based motor regulation. The procedure enables the continuing determination of the composition of the fuel mixture and the quality of the fuel at cylinder-pressure-based motor regulations without additional components as for example an ethanol sensor.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: November 29, 2011
    Assignee: Robert Bosch GmbH
    Inventors: Haris Hamedovic, Axel Loeffler, Wolfgang Fischer, Roland Karrelmeyer, Gerald Graf
  • Patent number: 8068972
    Abstract: The invention is an abnormal combustion detection method for spark-ignition internal-combustion engines. For each engine cycle, a parameter characterizing a distribution of N combustion indicator values, CA10 for example, acquired over N cycles preceding the cycle in progress, is determined while ignoring extreme values. A threshold is defined from this parameter for the combustion indicator. The start of an abnormal combustion is then detected by comparing the combustion indicator with this threshold and the course of the abnormal combustion detected in the combustion chamber is controlled.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: November 29, 2011
    Assignee: IFP
    Inventors: Dominique Auclair, Laurent Duval, Alexandre Pagot, Benoist Thirouard, Jean-Marc Zaccardi
  • Patent number: 8060293
    Abstract: Systems and methods for controlling an internal combustion engine include adjusting fuel delivered to a cylinder during a transient event by an amount indexed by number of combustion events after detecting the transient event. A base fueling parameter may be adjusted by an adaptive correction value indexed by combustion events after the transient event is detected, with the adaptive value determined using air/fuel ratio difference of previous combustion events during similar transient operating conditions associated with the same combustion event index number. Ionization sensor signal characteristics may be used to determine actual air/fuel ratios used to determine the air/fuel ratio difference and corresponding adaptive correction values. The adaptive values may be modified in response to a vehicle refueling event based on an amount of added fuel relative to existing fuel in the vehicle fuel tank.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: November 15, 2011
    Assignee: Ford Global Technologies LLC
    Inventors: Daniel Lawrence Meyer, Christopher Paul Glugla, Mrdjan J. Jankovic, Davorin D. Hrovat
  • Patent number: 8055432
    Abstract: A HCCI engine with a model reference adaptive feedback control system maintains stable HCCI combustion during speed/load transitions by: (1) estimating the maximum rate of pressure rise (MRPR), for each cycle, from an extra-cylinder sensor metric, such as a crankshaft dynamics or knock sensor metric, via statistical vector-to-vector correlation; (2) periodically self-tuning the vector-to-vector correlation; (3) applying knowledge base models to guide cycle-to-cycle adjustments of fuel quantity and other engine parameters, to maintain a target MRPR value.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: November 8, 2011
    Assignee: The United States of America as represented by the Administrator of the U.S. Environmental Protection Agency
    Inventors: Ruonan Sun, Xiaoguo Tang
  • Patent number: 8051836
    Abstract: An internal combustion engine (1) is provided with an in-cylinder pressure sensor (15) for detecting an in-cylinder pressure in a combustion chamber (3) and an ECU (20). The ECU 20 calculates a heat release quantity parameter showing a combustion state based upon a detected in-cylinder pressure, calculates a combustion delay based upon the detected in-cylinder pressure, and determines fuel property based upon a comparison between a calculated heat release quantity parameter and the calculated combustion delay; and a heat release quantity parameter and a combustion delay corresponding to reference fuel.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: November 8, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Hidenori Moriya
  • Publication number: 20110265764
    Abstract: A method for improving starting of an engine that may be operated with fuels having varying alcohol concentrations is presented. In one embodiment, the method adjusts a compression ratio of an engine in response to a number of combustion events after an engine stop and a concentration of alcohol in a fuel supplied to the engine. The method may make engine starting more repeatable at lower engine temperatures.
    Type: Application
    Filed: February 14, 2011
    Publication date: November 3, 2011
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: David Bruce Reiche, Jianwen James Yi, Steven Wooldridge, Foo Chern Ting, Thomas A. McCarthy
  • Patent number: 8046156
    Abstract: This control apparatus estimates a full combustion correspondence period CP, which is the period from an ignition timing SA to a combustion completion time CAe, and controls a VVT advancement amount (burnt gas quantity, overlap period, intake valve open timing) such that the estimated full combustion correspondence period CP coincides with a constant target full combustion correspondence period CPtgt. The full combustion correspondence period CP substantially maintains a one-to-one relation with the VVT advancement amount at which HC, CO2, etc. start to increase, even when the ignition timing SA changes. Thus, even when the ignition timing changes, the burnt gas quantity (overlap period) can be properly controlled. As a result, without increasing the discharge quantities of HC and CO, the discharge quantity of NOX can be reduced. In addition, pumping loss can be reduced, whereby fuel consumption can be improved.
    Type: Grant
    Filed: February 19, 2008
    Date of Patent: October 25, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hidenori Moriya, Ryo Tadokoro
  • Patent number: 8041499
    Abstract: In order to compensate for pressure drop across a fuel injector, pressure in a combustion chamber of an internal combustion engine into which fuel is injected is estimated based on manifold pressure at a timing for intake valve closure and volumes of the combustion chamber at a timing for intake valve closure and at least one other timing.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: October 18, 2011
    Assignee: Denso Corporation
    Inventors: Miles Howard, Michaela Walford
  • Patent number: 8041511
    Abstract: Described herein is a method for optimizing a plurality of calibration maps for an algorithm of estimation of a control quantity of an internal combustion engine, each of the maps comprising a plurality of calibration values of said control quantity estimated by said algorithm. The optimization method comprises measuring the control quantity, estimating the control quantity, and individually optimizing each calibration map based on the measured control quantity and the estimated control quantity.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: October 18, 2011
    Assignee: Fiat Group Automobiles S.p.A.
    Inventors: Alessandro Riegel, Dario Sacco, Fabio Garofalo
  • Publication number: 20110247584
    Abstract: Fuel is injected into and through the exhaust port and into the cylinder of the piston engine during the time when the flow is reversed from the normally expected flow. The engine is able to operate with some or all of its fuel injected backwards of conventional expectations. In another embodiment the fuel is injected with solid stream injector sprays directed against exhaust valves and ports and deflected into the piston cylinder against the flow of normally aspirated or supercharged engines. This invention can apply to gasoline or diesel cycles and four and two stroke type cycles of engine.
    Type: Application
    Filed: October 13, 2010
    Publication date: October 13, 2011
    Inventor: Francis Xavier Gentile
  • Patent number: 8032294
    Abstract: The procedure and device of the present disclosure enable an accurate determination of the composition of the fuel mixture at a self-igniting combustion engine on the basis of present sensor signals. The procedure and device of the present disclosure furthermore enable the detection and compensation of a combustion that is unstable due to the composition of the fuel mixture.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: October 4, 2011
    Assignee: Robert Bosch GmbH
    Inventors: Axel Loeffler, Wolfgang Fischer, Roland Karrelmeyer, Gerald Graf, Daniel Scherrer
  • Patent number: 8028679
    Abstract: A control system for an engine having a first cylinder and a second cylinder is disclosed having a first engine valve movable to regulate a fluid flow of the first cylinder and a first actuator associated with the first engine valve. The control system also has a second engine valve movable to regulate a fluid flow of the second cylinder and a sensor configured to generate a signal indicative of a pressure within the first cylinder. The control system also has a controller that is in communication with the first actuator and the sensor. The controller is configured to compare the pressure within the first cylinder with a desired pressure and selectively regulate the first actuator to adjust a timing of the first engine valve independently of the timing of the second engine valve based on the comparison.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: October 4, 2011
    Assignee: Caterpillar Inc.
    Inventors: Martin L. Willi, Scott B. Fiveland, David T. Montgomery, Weidong Gong
  • Patent number: 8032293
    Abstract: In a method for controlling an internal combustion engine, in particular a diesel internal combustion engine, at least one variable is formed on a cylinder-specific basis, which variable characterizes a respective profile of a combustion in an associated combustion chamber, and the control of cylinder-specific fuel injection parameters is influenced as a function of said at least one variable which characterizes the combustion profile.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: October 4, 2011
    Assignee: Daimler A.G.
    Inventors: Simon Binder, Yüriy Bogachik, Alfred Frommelt, Kristina Hellstroem, Frank Kirschbaum, Michael Klier, Lorenzo Matassini, Michael Mladek, Heiko Moeckel-Lherbier, Gerhard Muenkel, Rudiger Pfaff, Karsten Scheible, Martin Schnabel, Jürgen Schorr, Bernd Windisch, Matthias Wolf
  • Patent number: 8019527
    Abstract: In a method for operating an internal combustion engine including inlet valves with variably adjustable opening curves, during part-load operation, the closing time of the inlet valves and the fuel injection time are controlled as a function of the cylinder internal temperature so as to maintain the cylinder internal temperature relatively low in a controllable manner for reducing NOx emissions.
    Type: Grant
    Filed: September 17, 2007
    Date of Patent: September 13, 2011
    Assignee: Daimler AG
    Inventors: Wolfram Schmid, Siegfried Sumser
  • Patent number: 8019528
    Abstract: A system for controlling combustion phasing in an internal combustion engine is provided that includes, but is not limited to a first sensor positioned within a first variable volume combustion chamber and a vibration sensor positioned outside of the first and second variable volume combustion chambers. A first signal from the first sensor is used to control the combustion process in the first variable volume combustion chamber and a combination of the first signal from the first sensor and the second signal from the vibration sensor is used to control the combustion process in the at least one second variable volume combustion chamber.
    Type: Grant
    Filed: January 12, 2009
    Date of Patent: September 13, 2011
    Assignee: GM Global Technology Operations LLC
    Inventor: Alessandro Catanese
  • Patent number: 8005608
    Abstract: A fuel injection control apparatus for an internal combustion engine includes a fuel injection portion that performs each of first fuel injection for performing stratified-charge combustion, and second fuel injection for performing homogeneous-charge combustion; and an injection distribution ratio control portion that controls an injection distribution ratio. The injection distribution ratio control portion controls the injection distribution ratio to a target injection distribution ratio set based on a predetermined engine condition after start of the engine. An initial injection distribution ratio is set based on an engine condition at a time of start of the engine, and a change in the injection distribution ratio is controlled by referring to the engine condition after the start of the engine, when the injection distribution ratio is changed from the initial injection distribution ratio to the target injection distribution ratio.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: August 23, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Koji Morita
  • Patent number: 8001951
    Abstract: In order to control an internal combustion engine according to the invention, a polytropic exponent is determined in accordance with at least two measured values of the pressure in the combustion chamber of the cylinder, said measured values being detected after closing the gas discharge valve and before successively opening the gas intake valve. An exhaust gas mass which is located in the cylinder after closing the gas discharge valve and before successively opening the gas intake valve is determined according to the polytropic exponent at an estimated value of the pressure after closing the gas discharge valve and before successively opening the gas intake valve as well as at a certain temperature of the exhaust gas located in the cylinder after closing the gas discharge valve and before successively opening the gas intake valve. An actuation signal for controlling an actuating member of the internal combustion engine is generated in accordance with the determined exhaust gas mass.
    Type: Grant
    Filed: July 20, 2005
    Date of Patent: August 23, 2011
    Assignee: Continental Automotive GmbH
    Inventors: Dietmar Ellmer, Rüdiger Herweg, Thorsten Lauer, Michael Mladek, Mayk Stelter
  • Publication number: 20110180038
    Abstract: An engine is designed to allow a compression self-ignition combustion under an air-fuel ratio leaner than a stoichiometric air-fuel ratio to be performed at least in a partial-load range of the engine. Under a condition that an engine speed varies at a same load in an engine operating region of the compression self-ignition combustion, a compression end temperature Tx, which is an in-cylinder temperature just before an air-fuel mixture self-ignites, is controlled to be raised higher in a higher engine speed side than in a lower engine speed side. As one example of control for the compression end temperature Tx, an internal EGR amount is controlled to be increased larger in the higher engine speed side than in the lower engine speed side, to raise a compression initial temperature T0 which is an in-cylinder temperature at a start timing of a compression stroke.
    Type: Application
    Filed: January 24, 2011
    Publication date: July 28, 2011
    Applicant: MAZDA MOTOR CORPORATION
    Inventors: Masahisa YAMAKAWA, Kouhei IWAI, Shuji OBA
  • Patent number: 7980221
    Abstract: An engine control system includes a spark bound module that determines a bounded spark value based on a desired spark value, a torque bound module that determines a bounded torque value based on the bounded spark value and a desired torque value, and an inverse torque calculation module that determines a desired engine air value based on the bounded torque value and the square of the bounded spark value. The engine air value may be one of a desired air-per-cylinder value and a desired manifold air pressure value. The bounded spark value and the bounded torque value are determined based on one or more of a plurality of engine actuator positions. Related methods for determining the bounded spark value, the bounded torque value, and the engine air value are also provided.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: July 19, 2011
    Inventors: Andrew W. Baur, Jeffrey M. Kaiser, Michael Livshiz, Christopher E. Whitney, Sharon L. Storch, Bahram Younessi, Klaus Pochner
  • Patent number: 7971573
    Abstract: The invention relates to supplying pilot fuel to the cylinders of a combustion engine. The invention comprises cylinder-specific pressure sensors (1) that are installed in the cylinders of the combustion engine, as well as a control unit (2). The control unit determines each cylinder's crankshaft angle at maximum pressure and the cylinders' average crankshaft angle at maximum pressure, and verifies whether the average crankshaft angle at maximum pressure is within a certain range of crankshaft angle variation. If the average crankshaft angle at maximum pressure is outside the range of variation, the duration of total pilot fuel injection into the engine is controlled. Furthermore, the differences between each cylinder's crankshaft angle at maximum pressure and the average crankshaft angle at maximum pressure are determined.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: July 5, 2011
    Assignee: Wärtsilä Finland Oy
    Inventors: Kaj Portin, Jenny Hellén
  • Patent number: 7974762
    Abstract: A method for automatic, heat release computation in a piston engine, comprises the steps of: measuring a cylinder pressure as a function of crank angle (see FIGURE), based on said measurement; calculating a first polytropic exponent for a compression stroke (in M), based on said measurement, calculating a second polytropic exponent for an expansion stroke (in M?); for a crank angle interval between the compression stroke and the expansion stroke, performing an interpolation of the first and second polytropic exponents and performing a net heat release computation based on said interpolated polytropic exponent.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: July 5, 2011
    Assignee: Volvo Powertrain AB
    Inventor: Per Tunestal
  • Patent number: 7966810
    Abstract: It is suppressed that nanoparticles generated in an internal combustion engine are discharged into the atmosphere. In a cylinder or an exhaust system of the internal combustion engine, microparticles having a particle diameter larger than that of the nanoparticles are generated, and the nanoparticles generated in the internal combustion engine are adsorbed by the microparticles, thereby increasing the diameter of the nanoparticles. The microparticles can be generated in the cylinder as the soot, for example. Additionally, by providing a carbon microparticle generation device in the exhaust system, the microparticles can be generated, too. By making the nanoparticles adsorbed by the microparticles and increasing the diameter of the nanoparticles, discharging of the nanoparticles can be suppressed.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: June 28, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroshi Ito, Kotaro Hayashi, Tetsuya Yamashita, Shinichi Takeshima
  • Patent number: 7966992
    Abstract: A system and method for operating a multiple cylinder internal combustion engine having at least one actuator for controlling charge dilution of at least one cylinder and at least one spark plug per cylinder include attempting to improve combustion quality by modifying ignition energy of the at least one spark plug before modifying charge dilution of the cylinder, and modifying both ignition energy and charge dilution substantially simultaneously to establish combustion if an ionization sense signal associated with the cylinder indicates a misfire.
    Type: Grant
    Filed: February 15, 2009
    Date of Patent: June 28, 2011
    Assignee: Ford Global Technologies, LLC
    Inventors: Chris Paul Glugla, Michael Damian Czekala, Garlan J Huberts, Daniel Lawrence Meyer
  • Publication number: 20110144895
    Abstract: The invention relates to a method for adjusting a combustion parameter Pi of a combustion engine during a cold start, characterized in that the value of the parameter Pi is established (104) by interpolating between two predetermined values PiREF1 and PiREF2 as a function of the value ? of engine speed and of a temperature of an engine coolant, the values PiREF1 and PiREF2 being optimal in order to reduce pollutant emissions when the engine is running on reference fuel of respectively high volatility and low volatility.
    Type: Application
    Filed: July 23, 2009
    Publication date: June 16, 2011
    Applicant: PEUGEOT CITROEN AUTOMOBILES SA
    Inventors: Jean-Marc Gehin, Phillippe Joly
  • Patent number: 7962273
    Abstract: In an engine control for an internal combustion engine (1) and in a method, a pressure signal (pA) reproducing the pressure (pA) in one of the combustion chambers (2A) is supplied to an evaluation unit (5) by a pressure signal sensor (4). The evaluation unit (5) uses the pressure signal (pA) to determine the pressure (pB, pC, pD) in at least one other combustion chamber (2B, 2C, 2D).
    Type: Grant
    Filed: February 19, 2007
    Date of Patent: June 14, 2011
    Assignee: Continental Automotive GmbH
    Inventor: Gianluca Caretta
  • Patent number: 7962272
    Abstract: A method of sensing the air/fuel ratio in a combustion chamber of an internal combustion engine that may be easily implemented by a respective low-cost device includes a pressure sensor and a learning machine that generates a sensing signal representing the air/fuel ratio by processing the waveform of the pressure in at least one cylinder of the engine. In practice, the learning machine extracts characteristic parameters of the waveform of the pressure and as a function of a certain number of them generates the sensing signal.
    Type: Grant
    Filed: September 2, 2008
    Date of Patent: June 14, 2011
    Assignee: STMicroelectronics S.R.L.
    Inventors: Nicola Cesario, Paolo Amato, Maurizio Di Meglio, Francesco Pirozzi, Giovanni Moselli, Ferdinando Taglialatela-Scafati, Francesco Carpentieri
  • Patent number: 7962275
    Abstract: A control device for an internal combustion engine includes a fuel injection device that injects a fuel in accordance with a required injection amount that is required for combustion in a combustion chamber that is performed to produce an output of the internal combustion engine, and a fuel property specific determination device that specifically determines a fuel property of the fuel injected. The control device further includes a control device that performs an output correction process of controlling at least a portion of the internal combustion engine so as to correct the produced output based on a difference in the specifically determined fuel property. According to the control device and a control method thereof, driveability is secured even in the case where a blended fuel is used during a high load region of the internal combustion engine.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: June 14, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroyuki Hokuto, Shigeki Miyashita
  • Publication number: 20110132318
    Abstract: A control system and method for operating an engine includes a threshold determination module that determines a plurality of combustion mode thresholds based on the engine speed and engine temperature. The control module also includes a transition module that compares the engine load and the plurality of combustion mode thresholds and changes a combustion mode of the engine in response to comparing the engine load and the plurality of combustion mode thresholds.
    Type: Application
    Filed: December 9, 2009
    Publication date: June 9, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATION, INC.
    Inventors: Allen B. Rayl, Vijay Ramappan, Peter Kafarnik, Jun-Mo Kang, Hanho Yun
  • Publication number: 20110132284
    Abstract: A method for operating an engine with a fuel reformer is presented. In one embodiment a first fuel is reformed into a gaseous fuel comprising H, CO, and CH4. The engine is operated by injecting the gaseous fuel and a second fuel to a cylinder of the engine in response to an available amount of gaseous fuel, engine speed and engine load. Further, an engine actuator may be adjusted to vary cylinder charge in response to the available amount of gaseous fuel.
    Type: Application
    Filed: April 8, 2010
    Publication date: June 9, 2011
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Thomas G. Leone, Michael H. Shelby, James Michael Kerns