Including Means Responsive To Instantaneous Change In Engine Speed Patents (Class 123/436)
  • Patent number: 9221465
    Abstract: Computer-implemented techniques include determining, at a controller of a vehicle, a wheel speed for each of two front wheels of the vehicle and two rear wheels of the vehicle. The techniques include calculating, at the controller, a difference between (i) an average of the wheel speeds for the two front wheels of the vehicle and (ii) an average of the wheel speeds for the two rear wheels of the vehicle to obtain an error. The techniques include setting, at the controller, a rough road detection bit when the error is greater than or equal to a threshold indicative of an error corresponding to rough road. The techniques include monitoring, at the controller, the rough road detection bit for a period to obtain a hysteresis band. The techniques also include determining, at the controller, whether the vehicle is traveling on rough road based on the hysteresis band.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: December 29, 2015
    Assignee: FCA US LLC
    Inventors: Arthur J. Varady, Patrick J. Kohler, Johnathan M. Swanson
  • Patent number: 9217384
    Abstract: A method is disclosed for performing an individual cylinder diagnosis with respect to pollutant emissions within a predefined operating range of an internal combustion engine, meeting at least one predefined condition. During the performing of the individual cylinder diagnosis, a forced activation, by means of which a predefined air/fuel ratio to be set is activated, is prescribed in a manner synchronous to the cylinder segment. The excitation is carried out such that each individual cylinder is subjected during subsequent working cycles to a mixture that is either richer or leaner in comparison to the predefined air/fuel ratio to be set due to the forced excitation. Depending on the forcibly activated air/fuel ratio to be set, the corresponding injection valves are actuated.
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: December 22, 2015
    Assignee: CONTINENTAL AUTOMOTIVE GMBH
    Inventor: Reza Azadeh
  • Patent number: 9175631
    Abstract: A vehicle control system includes an engine control device, an auxiliary control device adapted to control an auxiliary driven by power of an engine, a device for estimating a plurality of drive patterns for controlling the auxiliary, a fuel consumption rate relating value calculation device, and a selection device. The fuel consumption rate relating value calculation device calculates fuel consumption rate relating values of the engine required to drive the auxiliary by the engine according to the respective estimated plurality of drive patterns by use of characteristic data of the engine. The selection device selects a single drive pattern for driving the auxiliary based on the estimated plurality of drive patterns by use of the calculated fuel consumption rate relating values.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: November 3, 2015
    Assignee: DENSO CORPORATION
    Inventor: Liangchen Pan
  • Patent number: 9169793
    Abstract: A method for controlling noise including combustion noise of an internal combustion engine includes (a) setting an engine noise target value and a cylinder pressure level target value, (b) determining a first comparison value by subtracting a measured cylinder pressure level from the cylinder pressure level, (c) receiving an engine noise parameter stored in an ECU, (d) determining the engine noise using the engine noise measured at step (c), (e) determining a direct correlation coefficient, an indirect correlation coefficient, mechanical noise, and flow noise through a proportional integral controller, (f) performing correction, (g) controlling the engine based on the value decided at step (f), (h) measuring a combustion pressure after step (g), (i) converting the combustion pressure into a cylinder pressure level within a predetermined crank angle after step (g), and (j) determining direct combustion noise of the engine noise after step (h).
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: October 27, 2015
    Assignee: HYUNDAI MOTOR COMPANY
    Inventor: Insoo Jung
  • Patent number: 9158978
    Abstract: A safety system for a motor vehicle having a sensing arrangement (11) providing sensor signals related to the surrounding environment of the vehicle, at least one safety means (13, 14, 15) for an occupant of the vehicle, and a control means (22) adapted to control the safety means (13, 14, 15) depending on signals from the sensing arrangement (11). The safety system (10) has an environment classifying means (23) adapted to classify the surrounding environment of the vehicle into different predetermined categories on the basis of signals from the sensing arrangement (11), and to adjust the control means (22) depending on the vehicle environment category determined by the environment classifying means (23).
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: October 13, 2015
    Assignee: AUTOLIV DEVELOPMENT AB
    Inventors: David Forslund, Per Cronvall, Fredrik Tjarnstrom
  • Patent number: 9127578
    Abstract: Systems and methods for monitoring crankcase ventilation system integrity are disclosed. In one example approach, a method comprises indicating a crankcase ventilation system degradation based on a lower vacuum than expected downstream of a PCV breather tube. For example, indicating a crankcase ventilation system degradation based on a lower vacuum than expected downstream of a PCV breather tube may include indicating a crankcase ventilation system degradation based on an absolute pressure sensor measurement relative to a gauge pressure sensor measurement.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: September 8, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Ross Dykstra Pursifull, John Eric Rollinger
  • Patent number: 9123049
    Abstract: Exemplary methods, systems and components enable selective control of an operational mode for a vehicle that is subject to an administrative standard. In some instances a qualified person or entity may attain a possible consequential result related to a user-selected vehicle operation mode that may involve a vehicle operation paradigm and/or a vehicle travel route and/or a vehicle travel destination. In some embodiments, implementation of the selected vehicle operation mode may modify a conformity status of the vehicle relative to the administrative standard. Various accessible records may be maintained regarding administrative compliance states and their respective benefits, as well as regarding certification of preferable consequential results available to qualified recipients based on a correlated vehicle operational mode.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: September 1, 2015
    Assignee: THE INVENTION SCIENCE FUND I, LLC
    Inventors: Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Thomas J. Nugent, Jr., Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 9109524
    Abstract: A controller for internal combustion engine includes a rotation number detecting section to detect engine rotation number and an air-fuel ratio detecting section to detect an air-fuel ratio (A/F) of air-fuel mixture and is configured to perform leaning control of the A/F. The controller further includes a rotation number difference calculating section to calculate a difference between a rotation number variation value of a worst cylinder specified as having largest rotation number variation based on the detected rotation number detected and an average value of rotation number variation values of remaining cylinders other than the worst cylinder; an estimated imbalance rate calculating section to calculate an estimated imbalance rate based on the A/F detected by the air-fuel ratio detecting section; and a lean abnormality detecting section to detect lean imbalance abnormality in a specific cylinder based on the calculated rotation number difference and the calculated estimated imbalance rate.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: August 18, 2015
    Assignees: AISAN KOGYO KABUSHIKI KAISHA, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shigemichi Ujiie, Yu Tamura, Toshitake Sasaki, Ikuo Ando, Tsukasa Abe
  • Patent number: 9102320
    Abstract: A method to control a hybrid electric vehicle includes operating a compression ignition engine based on an engine-on request, and performing an exhaust aftertreatment procedure when a fraction of an engine-on time is greater than an aftertreatment condition threshold. A vehicle has a compression ignition engine with an exhaust aftertreatment system, and a controller. The controller is configured to: (i) operate the engine based on an engine-on request, and (ii) perform an exhaust aftertreatment procedure for the vehicle when an engine-on fraction for a designated time is greater than an aftertreatment condition threshold. A computer readable medium having stored data representing instructions executable by a controller to control a vehicle includes instructions for operating the engine based on an engine-on request, and instructions for performing an exhaust aftertreatment procedure for the vehicle when an engine-on time fraction is greater than an aftertreatment condition threshold.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: August 11, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Ryan Abraham McGee, Qing Wang, Michiel J. Van Nieuwstadt
  • Patent number: 9086023
    Abstract: A method for recognizing uncontrolled combustions in an internal combustion engine which occur independently of the ignition by a spark plug. The pressure oscillations in the combustion chamber triggered by the combustion are detected and evaluated. To allow identification at any time of an uncontrolled combustion prior to ignition by the spark plug and/or prior to the normal combustion initiation for a given ignition point, the rotational speed of a crankshaft of the internal combustion engine which is influenced by the pressure oscillations, is evaluated.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: July 21, 2015
    Assignee: ROBERT BOSCH GMBH
    Inventors: Haris Hamedovic, Wolfgang Fischer, Carsten Kluth, Werner Haeming
  • Patent number: 9074547
    Abstract: A method for adapting the actual injection quantity of an injector of an internal combustion engine to the target injection quantity, an injection device for an internal combustion engine, and an internal combustion engine are provided. In the method, the crankshaft acceleration achieved by a test injection pulse is detected in the rotational speed signal of the internal combustion engine and on this basis the injected fuel quantity of the injector is determined. On the basis of the determined injected fuel quantity, the actuating data of the injector of the internal combustion engine is corrected. To this end, the injected fuel quantity of the injector is detected and corrected by a test injection pulse during the normal fired operational state of the internal combustion engine.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: July 7, 2015
    Assignee: CONTINENTAL AUTOMOTIVE GMBH
    Inventors: Hui Li, Christian Hauser, Joachim Engelmann, Armin Stolz
  • Patent number: 9074563
    Abstract: An engine system is provided. The engine system includes an intake conduit positioned upstream of an engine cylinder and also includes a PCV outlet opening into the intake conduit. The engine system further includes a condensate bypass duct in parallel fluidic communication with and vertically below the intake conduit, the condensate bypass duct including a duct inlet opening into the intake conduit and a duct outlet opening into the intake conduit.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: July 7, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Scott M. Rollins, Christopher B. Bishop
  • Patent number: 9046048
    Abstract: A method of determining fuel quality in an internal combustion engine comprises the steps of: a) sampling a signal representative of the revolution speed of said engine during a sampling window, thereby obtaining an array of samples; and b) computing a Fourier component corresponding to a predetermined index in the frequency domain and determining a fuel quality indicator therefrom. The fuel quality indicator is representative of a magnitude of the Fourier component of this predetermined index.
    Type: Grant
    Filed: October 10, 2012
    Date of Patent: June 2, 2015
    Assignee: DELPHI INTERNATIONAL OPERATIONS LUXEMBOURG, S.A.R.L.
    Inventors: Gerard Wladyslaw Malaczynski, Robert J.A. Van Der Poel
  • Patent number: 8997711
    Abstract: Fuel management system for efficient operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder of the engine. A fuel management microprocessor system controls injection of the anti-knock agent so as to control knock and minimize that amount of the anti-knock agent that is used in a drive cycle. It is preferred that the anti-knock agent is ethanol. The use of ethanol can be further minimized by injection in a non-uniform manner within a cylinder. The ethanol injection suppresses knock so that higher compression ratio and/or engine downsizing from increased turbocharging or supercharging can be used to increase the efficiency or the engine.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: April 7, 2015
    Assignee: Massachusetts Institute of Technology
    Inventors: Daniel R. Cohn, Leslie Bromberg, John B. Heywood
  • Patent number: 8977471
    Abstract: A multicylinder engine is provided with a fuel injector for each cylinder. An ECU defines a fuel injection condition of the fuel injector based on an engine driving condition and executes a fuel injection control for each cylinder based on the defined fuel injection condition. The ECU computes an engine speed with respect to each cylinder. While the engine is running, the fuel injection condition is operated in an operation cylinder. A fuel property is determined based on the engine speed of the operation cylinder and an engine speed of a non-operation cylinder.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: March 10, 2015
    Assignee: Denso Corporation
    Inventors: Kazuhiro Higuchi, Koji Ishizuka
  • Patent number: 8972150
    Abstract: An engine control system for an auto-stop/start vehicle includes a mode control module and an actuator control module. The mode control module selectively initiates an engine startup event when an engine startup command is generated. The actuator control module cranks an engine during the engine startup event, provides fuel to a first cylinder of the engine while the engine is being cranked, and selectively disables fuel to a second cylinder of the engine while the engine is being cranked. The second cylinder is after the first cylinder in a firing order.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: March 3, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Qi Ma, Robert Douglas Shafto
  • Patent number: 8960153
    Abstract: A method for controlling engine vacuum production is disclosed. In one example, one or more air sources to an engine intake manifold are closed so as to increase an amount of air drawn from another air source. The method may increase a rate of vacuum supplied to a vacuum actuated device so as to improve operation of the vacuum actuated device.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: February 24, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Ralph Wayne Cunningham, Ross Dykstra Pursifull
  • Patent number: 8949003
    Abstract: Provided is a control apparatus for an internal combustion engine, which can favorably suppress an occurrence of abnormal combustion regardless of its operational conditions. An occurrence probability of abnormal combustion of the internal combustion engine (10) is obtained on the basis of a fuel dilution index. An expected value I of the number of occurrences of abnormal combustion per a predetermined time period is calculated on the basis of the occurrence probability of abnormal combustion. The upper limit value of a torque generated by the internal combustion engine (10) is limited low so that the expected value I does not exceed a predetermined tolerable value.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: February 3, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Yoshihiro Okada
  • Patent number: 8914219
    Abstract: In a method for operating an internal combustion engine for adjusting a desired fuel/air mixture, wherein the rotary speed is determined by an operating curve based on a fuel/air mixture composition, wherein the operating curve has ascending and descending branches and a maximum, wherein a lambda value is smaller than 1 on the descending branch, it is first determined by statistic evaluation whether the operating point is on the ascending or descending branch. In a second method step, when the operating point is not on a desired branch of the operating curve desired as a starting point for a third method step, at least one operating parameter is changed until the operating point is positioned on the desired branch. In a third method step, the maximum of the operating curve is determined. Based on the determined maximum, the desired operating point of the internal combustion engine is then adjusted.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: December 16, 2014
    Assignee: Andreas Stihl AG & Co. KG
    Inventors: Andreas Neubauer, Jörg Präger
  • Patent number: 8903628
    Abstract: A diagnostic method for a multicylinder internal combustion engine is provided. The method comprises determining that malfunction pertaining to the air-fuel ratio has occurred when degree of the rotational fluctuation is equal to or more than a first determination value; determining that malfunction pertaining to the air-fuel ratio has not occurred when the degree of the rotational fluctuation is equal to or less than a second determination value that is smaller than the first determination value; and changing mode of engine control when the degree of the rotational fluctuation is smaller than the first determination value and greater than the second determination value. After the changing, the determining that malfunction pertaining to the air-fuel ratio has occurred is repeated.
    Type: Grant
    Filed: January 6, 2012
    Date of Patent: December 2, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Seiji Hino
  • Publication number: 20140338636
    Abstract: A control apparatus for an internal combustion engine having a throttle valve disposed in an intake passage of the engine is provided. A wide-open intake air amount, which is an intake air amount corresponding to a state where the throttle valve is fully opened, is calculated, and a theoretical intake air amount, which is an intake air amount corresponding to a state where no exhaust gas of the engine is recirculated to a combustion chamber of the engine, is calculated according to the wide-open intake air amount and the intake pressure. An air-fuel ratio correction amount and a learning value thereof are calculated according to the detected air-fuel ratio, and a reference intake air amount is calculated using the intake pressure, the engine rotational speed, the air-fuel ratio correction amount, and the learning value.
    Type: Application
    Filed: October 19, 2012
    Publication date: November 20, 2014
    Inventors: Seiichiro Irie, Hisashi Ito, Hideharu Takamiya, Hirotaka Komatsu, Yasuhiro Motohashi
  • Patent number: 8843295
    Abstract: A combustion control system for a vehicle comprises a position determination module and an ethanol determination module. The position determination module determines a crankshaft angle where a predetermined percentage of a fuel was combusted within a cylinder of an engine during an engine cycle based on one of pressure within the cylinder measured by a cylinder pressure sensor during the engine cycle and torque on a crankshaft measured by a torque sensor during the engine cycle. The ethanol determination module determines an ethanol content of the fuel based on the crankshaft angle.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: September 23, 2014
    Inventors: Halim G. Santoso, Audley F. Brown
  • Publication number: 20140251240
    Abstract: An engine cooling system and method for operating the engine cooling system is disclosed. In one example, engine oil is sprayed on to a piston via piston cooling jets. The approach judges whether or not to operate the piston cooling jets based on a benefit assessment.
    Type: Application
    Filed: March 7, 2013
    Publication date: September 11, 2014
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: David Karl Bidner, Joseph Norman Ulrey, Yihua (Eva) Barber
  • Patent number: 8826888
    Abstract: The present disclosure is a method and apparatus for reducing engine emissions utilizing multiple types of fuels. Apparatus for reducing engine emissions may include a controller which may control delivery of a first fuel to be combined with a second fuel at a combustion chamber of an engine. Controller may be configured to provide a proper amount of the first fuel at the correct point in an engine cycle based upon a current engine performance data.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: September 9, 2014
    Assignee: Cleanflex Power Systems, LLC
    Inventors: Kevin F. Kenney, Ronald A. Preston, Robert Dickey
  • Patent number: 8818611
    Abstract: A starting system for an internal combustion engine includes a starter motor and a battery. A method for evaluating the starting system includes detecting a fault associated with the starter motor when a minimum starting system voltage during a cranking event is greater than a threshold minimum starting system voltage determined in relation to an engine acceleration parameter, and detecting a fault associated with the battery when the engine acceleration parameter is less than a minimum threshold for the engine acceleration parameter.
    Type: Grant
    Filed: August 15, 2011
    Date of Patent: August 26, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Kwang-Keun Shin, Mutasim A. Salman
  • Patent number: 8812216
    Abstract: In a method and the corresponding apparatus for operating an internal combustion engine with a plurality of cylinders (Z1 to Z4) which are assigned in each case one injection valve (18) for metering in fuel, a control apparatus (25) is provided with in each case one output stage (25a) for actuating the injection valves (18) of the plurality of cylinders. Here, first of all work injection operations (P0 to P4) are determined for a cylinder (CYL_i) with the duration and positioning in relation to the crankshaft rotary angle. Following this, late injection operations (P5), which are required in certain operating modes, for the preceding cylinder (CYL_i?1) in the ignition sequence are arranged in a setpoint crankshaft angular range (SB) in such a way that no temporal overlaps occur between individual work and late injection operations.
    Type: Grant
    Filed: June 14, 2010
    Date of Patent: August 19, 2014
    Assignee: Continental Automotive GmbH
    Inventors: Martin Brandt, Joachim Engelmann, Jürgen Fritsch, Manfred Gaul, Hui Li, Gonzalo Medina-Sanchez
  • Patent number: 8805608
    Abstract: In a crawler construction machine including an engine and a fuel adjustment dial that adjusts a speed of the engine according to operation loads of the working equipment, the fuel adjustment dial is a rotary notchless dial that is continuously variably adjustable. The crawler construction machine includes: an adjustment position detector that detects a rotation adjustment position of the fuel adjustment dial; an engine controller that is connected to the adjustment position detector and controls the speed of the engine based on an adjustment position of the fuel adjustment dial; and a display device that is connected to the engine controller and displays on a screen a percentage value of the adjustment position of the fuel adjustment dial in which the maximum rotation position of the fuel adjustment dial is defined as 100%.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: August 12, 2014
    Assignee: Komatsu Ltd.
    Inventors: Hayato Matsumoto, Hiroshi Sawada, Kazuyoshi Morimoto
  • Patent number: 8793058
    Abstract: A control device for an internal combustion engine provided by the present invention is a control device which can satisfy both a requirement relating to exhaust gas performance of the internal combustion engine and a requirement relating to operation performance by properly regulating a change speed of a required air-fuel ratio, in the internal combustion engine which uses torque and an air-fuel ratio as control variables. The control device receives the requirement relating to the exhaust gas performance of the internal combustion engine, and calculates an air-fuel ratio which satisfies the requirement as a required air-fuel ratio. When a predetermined reduction condition is not satisfied, an original required air-fuel ratio is directly determined as a final required air-fuel ratio.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: July 29, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shuntaro Okazaki, Satoshi Yoshizaki, Masashi Shibayama, Kaoru Shokatsu, Hajime Kawakami
  • Patent number: 8788182
    Abstract: A system for a vehicle includes a trigger module, a fuel control module, and a cylinder control module. The trigger module generates a trigger when an engine speed is greater than a first predetermined speed. The first predetermined speed is greater than zero. The fuel control module cuts off fuel to cylinders of the engine in response to the generation of the trigger. The cylinder control module selectively disables opening of intake and exhaust valves of the cylinders in response to the generation of the trigger after the fuel is cut off.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: July 22, 2014
    Inventor: Mike M. McDonald
  • Patent number: 8775049
    Abstract: A method for evaluating the state of a fuel-air mixture and/or the combustion in a combustion chamber of an internal combustion engine, with sample signals of flame light signals being stored in a database, and with flame light signals of the combustion in the combustion chamber being detected and compared with the stored sample signals, and with an evaluation of the state being output in the case of coincidence between the measured and stored signal patterns. In order to enable the monitoring of the combustion in the simplest possible way the sample signals in the database are stored with the assigned emission values and an evaluation of the state of the combustion is performed with respect to the obtained emissions in the case of coincidence between the measured and stored signal patterns for the combustion chamber of the respective cylinder.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: July 8, 2014
    Assignee: AVL List GmbH
    Inventors: Ernst Winklhofer, Heribert Fuchs, Alois Hirsch, Harald Philipp
  • Patent number: 8762031
    Abstract: There is obtained an internal combustion engine control apparatus that can accurately determine the state of coupling between an internal combustion engine and a driving device so as to appropriately control the internal combustion engine. An internal combustion engine control apparatus according to the present invention includes a reference value learning function that learns a real calculation value, as the reference learning value for a transmission gear, when there are satisfied a first condition that the vehicle speed detected by a vehicle speed sensor, the real rotation speed detected by a rotation sensor, and the throttle opening degree detected by a throttle opening degree sensor are in predetermined ranges and a second condition that the real calculation value indicating the ratio of the vehicle speed detected by the vehicle speed sensor to the real rotation speed detected by the rotation sensor is in a predetermined state.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: June 24, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventor: Shuichi Wada
  • Patent number: 8733330
    Abstract: A hybrid vehicle propulsion system and method of operation have been provided. As one example, the system comprises an internal combustion engine including at least a combustion chamber configured to propel the vehicle via at least a drive wheel, a motor configured to propel the vehicle via at least a drive wheel, an energy storage device configured to store energy that is usable by the motor to propel the vehicle, a fuel system configured to deliver gasoline and alcohol to the combustion chamber in varying relative amounts, a control system configured to operate the motor to propel the vehicle and to vary the relative amounts of the gasoline and alcohol provided to the combustion chamber in response to an output of the motor.
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: May 27, 2014
    Assignee: Ford Global Technologies, LLC
    Inventor: Michael Andri
  • Patent number: 8725390
    Abstract: Systems and methods for optimizing fuel injection in an internal combustion engine adjust start of fuel injection by calculating whether one of advancing or retarding start of fuel injection will provide a shortest path from a source angle to a destination angle. Based on the source angle and a given injection pulse width and angle increment, it is determined whether fuel injection will overlap with a specified engine event if start of fuel injection is moved in a direction of the shortest path. A control circuit increments start fuel injection in the direction of the shortest path if it is determined that fuel injection will not overlap with the specified engine event, or increments start fuel injection in a direction opposite that of the shortest path if it is determined that fuel injection will overlap with the specified engine event.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: May 13, 2014
    Assignee: Brunswick Corporation
    Inventors: Matthew W. Snyder, Thomas S. Kirchhoff, David G. Camp
  • Patent number: 8720417
    Abstract: An internal combustion engine can use ammonia and a non-ammonia fuel which is easier to burn than ammonia as fuel. The non-ammonia fuel is directly injected into a combustion chamber by a non-ammonia fuel injector, and the injected non-ammonia fuel is ignited, whereby combustion of the air-fuel mixture in the combustion chamber is commenced. In the control system of the internal combustion engine, the injection timing of the non-ammonia fuel is advanced at a time when a ratio of ammonia in all fuel fed to the internal combustion engine is high in comparison with the time when the ratio is low. Therefore, a control system of an internal combustion engine capable of using ammonia and a non-ammonia fuel (gasoline, light oil, hydrogen, etc.) which is easier to burn than ammonia, which suitably feeds fuel and controls combustion in order to suitably burn an air-fuel mixture in a combustion chamber is provided.
    Type: Grant
    Filed: May 1, 2013
    Date of Patent: May 13, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kazuki Iwatani, Yasushi Ito, Shiro Tanno
  • Patent number: 8695567
    Abstract: A method for operating an internal combustion engine includes monitoring signal output from a high-resolution torque sensor configured to monitor engine torque during ongoing operation, monitoring states of engine operating and control parameters associated with engine input parameters, and estimating a mass air charge for each cylinder event corresponding to the signal output from the high-resolution torque sensor and the states of engine operating and control parameters associated with the engine input parameters.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: April 15, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Hossein Javaherian, Alan W. Brown, Michael P. Nolan
  • Patent number: 8695568
    Abstract: An inter-cylinder air-fuel ratio imbalance abnormality determination device includes a catalyst provided in an exhaust passage of a multi-cylinder internal combustion engine; a pre-catalyst sensor; a post-catalyst sensor; an air-fuel ratio control unit that performs main air-fuel ratio control based on an output of the pre-catalyst sensor and auxiliary air-fuel ratio control based on an output of the post-catalyst sensor; a control amount calculation unit that calculates a control amount in the auxiliary air-fuel ratio control based on the output of the post-catalyst sensor; a revolution speed variation detection unit that detects a revolution speed variation of the engine; an abnormality determination unit that performs imbalance abnormality determination for determining whether an inter-cylinder air-fuel ratio imbalance abnormality has occurred based on a detected value of the revolution speed variation; and a guard range reduction unit that reduces a guard range of the control amount during the imbalance a
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: April 15, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Yuya Yoshikawa
  • Patent number: 8700247
    Abstract: A hybrid powertrain includes an engine, an electric machine, and a transmission. A method to control the powertrain includes monitoring operation of the powertrain, determining whether conditions necessary for growl to occur excluding motor torque and engine torque are present, and if the conditions are present controlling the powertrain based upon avoiding a powertrain operating region wherein the growl is enabled.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: April 15, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Jeremy Wise, Chihang Lin, Anthony H. Heap
  • Patent number: 8689768
    Abstract: The present invention relates to a fuel injection control apparatus for controlling fuel injection and a method therefor in an engine having first and second intake passages provided with first and second fuel injection valves, respectively. Fuel injection modes using the two injection valves include an alternative injection mode in which the first and second fuel injection valves are alternately operated every predetermined number of cycles and a combined injection mode in which both the first and second fuel injection valves are used for each cycle. Then, the combined injection mode is selected in a full load range. In a partial load range, the alternative injection mode is selected in a cold state and the combined injection mode is selected after warm-up. Accordingly, it is possible to reduce an equilibrium amount of adhering fuel to an inner wall of an intake passage.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: April 8, 2014
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventor: Masayuki Saruwatari
  • Patent number: 8667952
    Abstract: This disclosure provides a control device for a diesel engine. When the engine is within a particular operating range with a low engine speed and a partial engine load and in a low temperature state where a cylinder temperature at a compression stroke end is lower than a predetermined temperature, a forced induction system sets a forcibly inducting level higher than a predetermined level that is higher than that in a high temperature state where the cylinder temperature is above the predetermined temperature. At least within the particular operating range, an injection control module performs a main injection where a fuel injection starts at or before a top dead center of the compression stroke to cause main combustion mainly including diffusion combustion and performs a pre-stage injection where the fuel injection is performed at least once prior to the main injection to cause pre-stage combustion before the main combustion starts.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: March 11, 2014
    Assignee: Mazda Motor Corporation
    Inventors: Kim Sangkyu, Daisuke Shimo, Kyotaro Nishimoto, Yoshie Kakuda
  • Patent number: 8660774
    Abstract: An engine governor calculates the amount of fuel supplied to an engine based on the difference in speed between the target engine speed (Nset) and actual engine speed (Nact). The amount of fuel supplied to the engine is adjusted based on the calculation results. When the difference in speed between the target engine speed (Nset) and low idle engine speed (Nlow) is equal to or less than a first predetermined speed, the difference in speed between the actual engine speed (Nact) and target engine speed (Nset) is equal to or greater than a second predetermined speed, and the calculation results are equal to or less than the minimum value of the actual engine speed (Nact), the P gain is set at a value equal to or greater than the normal value, and in cases where the I component is a negative value, the I component is set to zero.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: February 25, 2014
    Assignee: Yanmar Co., Ltd.
    Inventors: Taichi Togashi, Hideo Shiomi
  • Publication number: 20140034014
    Abstract: Various systems and method for controlling exhaust gas recirculation (EGR) in an internal combustion engine are provided. In one embodiment, a method includes injecting fuel to a subset of cylinders that includes less than all cylinders of a first cylinder group to obtain a target EGR rate. The first cylinder group provides exhaust gas through an exhaust gas recirculation (EGR) passage structure fluidly coupled between the first cylinder group and an intake passage structure. The method further includes injecting fuel to at least one cylinder of a second cylinder group. The second cylinder group provides substantially no exhaust gas through the EGR passage structure.
    Type: Application
    Filed: July 31, 2012
    Publication date: February 6, 2014
    Inventors: Neil Xavier Blythe, Shawn Michael Gallagher, James Robert Mischler, Luke Henry
  • Patent number: 8639431
    Abstract: Systems and methods for identifying alcohol content of a fuel in an engine. In one example approach, a method comprises adjusting fuel injection to the engine based on fuel alcohol content identified from crankshaft acceleration. For example, the crankshaft acceleration may be generated by modulating an air/fuel ratio in a selected cylinder across a range of air/fuel ratios while keeping the engine at stoichiometry.
    Type: Grant
    Filed: March 19, 2013
    Date of Patent: January 28, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Robert Roy Jentz, John Eric Rollinger, Brandon M. Dawson, Michael Igor Kluzner
  • Patent number: 8616182
    Abstract: A direct-injection internal combustion engine is fluidly coupled to a passive SCR system including a three-way catalytic converter upstream to an ammonia-selective catalytic reduction catalyst. Transition from an HCCI combustion mode to an SI combustion mode includes determining a preferred air/fuel ratio to achieve a minimum fuel consumption and maintain combustion stability at an acceptable level for a predetermined engine operating point during the SI combustion mode. A fuel injection timing, an engine spark timing and an engine valve lift are substantially immediately controlled from respective HCCI combustion mode settings to respective SI combustion mode settings. A transition to the preferred air/fuel ratio is coordinated with a transition of an engine valve phase from a respective HCCI combustion mode setting to a respective SI combustion mode phase setting.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: December 31, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Nicole Wermuth, Paul M. Najt, Kushal Narayanaswamy, Hanho Yun
  • Patent number: 8596245
    Abstract: Increase in combustion noise and deterioration of exhaust gas performance caused by inter-cylinder correction are prevented, and decrease in temperature rise performance of a diesel particulate removal device caused by inter-cylinder correction is prevented.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: December 3, 2013
    Assignee: Isuzu Motors Limited
    Inventors: Yusuke Hiratani, Futoshi Nakano
  • Patent number: 8600649
    Abstract: The invention relates to a method for starting an internal combustion engine associated with means for adapting, during an engine start operation, an amount of fuel injected based on an estimation of the volatility (PVR) of the fuel based on the comparison between a gradient of the engine speed measured upon a preceding start operation and a reference gradient (110) corresponding to a predetermined fuel, characterized by the step (111) of correcting the reference gradient based on a change (?CMF) in the engine friction torque.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: December 3, 2013
    Assignee: Peugeot Citroen Automobiles SA
    Inventor: Frédéric Gourves
  • Patent number: 8573184
    Abstract: An engine control apparatus having a unit for calculating the mean value of the angular acceleration with respect to each cylinder; a unit for calculating the variance of the angular acceleration with respect to each cylinder; a unit for estimating the torque and the air/fuel ratio with respect to each cylinder on the basis of the mean value and the variance; and a unit for controlling at least one of the intake air amount, the fuel injection amount and the ignition timing with respect to each cylinder on the basis of the estimated torque and air/fuel ratio.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: November 5, 2013
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Shinji Nakagawa, Kazuhiko Kanetoshi, Takanobu Ichihara, Minoru Ohsuga
  • Patent number: 8555843
    Abstract: The present invention provides an engine start system in a vehicle. The engine start system includes an engine and a charge system. The vehicle also includes an engine speed sensor for measuring a speed of the engine. The charge system is coupled to the engine and includes a charge pump. The vehicle further includes a control unit and a temperature sensor for sensing a temperature of fluid in the charge system. The temperature sensor is electrically coupled to the control unit. A bypass system is fluidly coupled to the charge system and includes a valve and a solenoid. The solenoid is electrically coupled to the control unit such that the control unit energizes the solenoid to control the valve in response to the speed measured by the speed sensor and the temperature sensed by the temperature sensor.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: October 15, 2013
    Assignee: Deere & Company
    Inventors: Heidi K. Klousia, Christopher R. Benson
  • Publication number: 20130247871
    Abstract: A stop control system for an engine including a crankshaft is provided with a motor and a control device. The motor is connected to the crankshaft of the engine, and the control device is configured to stop the crankshaft in a compression stroke of the engine by temporarily driving the motor to thereby assist rotation of the crankshaft that is still being forwardly rotated after starting stop control operation of the engine under predetermined engine stop conditions.
    Type: Application
    Filed: March 19, 2013
    Publication date: September 26, 2013
    Applicant: SUZUKI MOTOR CORPORATION
    Inventor: Hiroshi TERUYA
  • Patent number: 8522746
    Abstract: Fuel management system for efficient operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder of the engine. A fuel management microprocessor system controls injection of the anti-knock agent so as to control knock and minimize that amount of the anti-knock agent that is used in a drive cycle. It is preferred that the anti-knock agent is ethanol. The use of ethanol can be further minimized by injection in a non-uniform manner within a cylinder. The ethanol injection suppresses knock so that higher compression ratio and/or engine downsizing from increased turbocharging or supercharging can be used to increase the efficiency of the engine.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: September 3, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Daniel R. Cohn, John B. Heywood, Leslie Bromberg
  • Publication number: 20130213355
    Abstract: Systems and methods for identifying alcohol content of a fuel in an engine. In one example approach, a method comprises adjusting fuel injection to the engine based on fuel alcohol content identified from crankshaft acceleration. For example, the crankshaft acceleration may be generated by modulating an air/fuel ratio in a selected cylinder across a range of air/fuel ratios while keeping the engine at stoichiometry.
    Type: Application
    Filed: March 19, 2013
    Publication date: August 22, 2013
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Robert Roy Jentz, John Eric Rollinger, Brandon M. Dawson, Michael Igor Kluzner