Acceleration Or Full Load Condition Responsive Patents (Class 123/492)
  • Patent number: 10422296
    Abstract: Methods and systems for simultaneously operating port fuel injectors and direct fuel injectors of an internal combustion engine are described. In one example, a duration of a port fuel injection window is increased to improve engine performance and a direct fuel injector fuel pulse width is dynamically adjusted to improve accuracy of an amount of fuel delivered during a cylinder cycle.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: September 24, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Paul Hollar, Ethan D. Sanborn, Daniel Dusa, Xiaoying Zhang, Joseph Lyle Thomas
  • Patent number: 10156200
    Abstract: The abnormality diagnosis system comprises an air-fuel ratio control means which sets the target air-fuel ratio of exhaust gas to a first set air-fuel ratio set to a first side of a rich side or a lean side, then, when a downstream side output air-fuel ratio is at the first side, switches the target air-fuel ratio to a second set air-fuel ratio set to a second side at the opposite side from the first side. The abnormality diagnosis system calculates the time from when the target air-fuel ratio is switched to when the downstream side output air-fuel ratio starts to change toward the stoichiometric air-fuel ratio based on a differential value of the downstream side output air-fuel ratio and, when the calculated time is a predetermined time or more, judges that a dead time at the downstream side air-fuel ratio sensor is abnormal.
    Type: Grant
    Filed: July 28, 2016
    Date of Patent: December 18, 2018
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Hiroshi Miyamoto
  • Patent number: 10126718
    Abstract: A characteristic change, disturbance, and an abnormal state are accurately detected with no use of a high-accuracy simulation model. A control device for controlling a control target includes a predictive value calculator that outputs a predictive value of an output value to an input value with respect to a model of the control target, a prediction error calculator that calculates a relational value indicating a relationship between the predictive value and a measured value of output of the control target; and a change detector that compares a first relational value to a second relational value, the first relational value being the relational value in a reference state in which the control target operates normally, the second relational value being the relational value in an operating state in which the control target is operated.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: November 13, 2018
    Assignee: OMRON Corporation
    Inventors: Masaki Namie, Mikiko Manabe
  • Patent number: 10113495
    Abstract: An exhaust gas recirculation device for an internal combustion engine includes: an opening command signal output unit 52 which outputs an opening command signal in relation to an EGR control valve on the basis of an operating condition of the internal combustion engine; a variation component separation unit 54 which separates the valve opening command signal from the opening command signal output unit 52 into a basic component and a variation component generated so as to be superimposed on the basic component; a variation component determination unit 56 which determines whether the EGR control valve is in a steady state or a transient state on the basis of a magnitude of the variation component separated by the variation component separation unit 54; and an EGR control valve diagnosis device 58 that performs an abnormality diagnosis on the EGR control valve when the variation component determination unit determines that the EGR control valve is in the steady state.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: October 30, 2018
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Takaharu Hiroe, Kazunari Ide, Tomohide Yamada
  • Patent number: 10094320
    Abstract: Methods and systems are provided for reducing fueling errors resulting from pressure pulsations in a port injection fuel rail. The pressure pulsations result from pressure pulsations generated in a high pressure fuel pump delivering fuel to both the port injection fuel rail and a direct injection fuel rail. A center of a port injection fuel pulse is repositioned on a nearest fuel rail pressure sampling point in the advanced direction to improve the accuracy of the delivered fuel pulse.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: October 9, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Ethan D. Sanborn, Paul Hollar, Daniel Dusa, Joseph Lyle Thomas
  • Patent number: 9995238
    Abstract: Methods and systems for simultaneously operating port fuel injectors and direct fuel injectors of an internal combustion engine are described. In one example, different duration port fuel injection windows are provided to maximize fuel injection amount and improve accuracy of an amount of fuel injected during a cylinder cycle via port and direct fuel injectors.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: June 12, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Paul Hollar, Ethan D. Sanborn, Daniel Dusa, Xiaoying Zhang, Joseph Lyle Thomas
  • Patent number: 9908521
    Abstract: A method is provided for regulating the rotational speed in a hybrid drive of a vehicle having a first drive source, in particular an internal combustion engine, and a second drive source, in particular an electric motor. A rotational speed variable which is a function of a rotational speed of the first drive source and of a rotational speed of the second drive source is determined. The rotational speed of the first drive source or of the second drive source is regulated based on the rotational speed variable for oscillation reduction. The rotational speed variable used is preferably a mean value of the two rotational speeds. The two rotational speeds may be weighted on the basis of inertia in order to form the mean value as well.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: March 6, 2018
    Assignee: ROBERT BOSCH GMBH
    Inventor: Andreas Seel
  • Patent number: 9897032
    Abstract: There is provided a fuel injection device. Based on a current intake air pressure and a previous intake air pressure of an engine at the predetermined crank position, an intake air pressure variation of the engine at the predetermined crank position is calculated as a measured intake air pressure variation. Based on the current rotational speed and the previous rotational speed of the engine at the predetermined crank position, and a fully-closed-state intake air pressure conversion data item, the fully-closed-state intake air pressure variation of the engine at the predetermined crank position is calculated. The measured intake air pressure variation is corrected based on the fully-closed-state intake air pressure variation. Based on the corrected measured intake air pressure variation, the current rotational speed at the predetermined crank position, and the transient fuel injection quantity conversion data item, the transient fuel injection quantity at the predetermined crank position is determined.
    Type: Grant
    Filed: November 5, 2015
    Date of Patent: February 20, 2018
    Assignee: SUZUKI MOTOR CORPORATION
    Inventors: Kenta Sugimoto, Kazuyoshi Shimatani
  • Patent number: 9874164
    Abstract: An apparatus for controlling an air system of a diesel engine in a steady state. The air system comprises a waste gas recycling system and a turbocharging system.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: January 23, 2018
    Assignee: WEICHAI POWER CO., LTD.
    Inventors: Guangdi Hu, Dehui Tong
  • Patent number: 9835094
    Abstract: Controlling an exhaust gas temperature of an engine. An electronic control unit receives a parameter setpoint command, monitors parameters of an engine using a plurality of sensors, receives measured engine states based on the monitored engine parameters from the plurality of sensors, generates measured engine state estimates and controlled engine state estimates using an engine observer model, determines an observer error based on a difference between the measured engine states and the measured engine state estimates, generates model corrections based on the observer error, generates a desired exhaust throttle valve position using an inverse engine model based on the parameter setpoint command, the controlled engine state estimates, and the model corrections, and adjusts a position of the exhaust throttle valve based on the desired exhaust throttle position.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: December 5, 2017
    Assignee: DEERE & COMPANY
    Inventors: John L. Lahti, Dustin W. Ridenour, Michael J. Maney, Michael J. Pipho
  • Patent number: 9759152
    Abstract: A fuel injection control apparatus of a four cycle engine having three cylinders comprises: a crank angle detection device for detecting the crank angle of the four cycle engine; a first computation device for computing the quantity of fuel, which is injected in a predetermined stroke of a four stroke cycle, at a first computation timing; a second computation device for computing the quantity of fuel, which is injected one stroke before the predetermined stroke, at a second computation timing 240 degrees ahead of the crank angle of the first computation timing; and a third computation device for computing the quantity of fuel, which is injected two strokes before the predetermined stroke, at a third computation timing 240 degrees ahead of the crank angle of the second computation timing. The fuel injection control apparatus is adapted to decrease interruptions by computations for fuel injection control in the three cylinder engine, and reduce control load.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: September 12, 2017
    Assignee: MITSUBISHI JIDOSHA KOGYO KABUSHIKI KAISHA
    Inventor: Atsushi Takeda
  • Patent number: 9718470
    Abstract: A driver assistance system for a motor vehicle has a controller within a speed and/or distance regulator, which controller is used for the regulation of the acceleration of the motor vehicle according to a setpoint acceleration. The driver assistance system also includes an input coupling unit for coupling an additional acceleration that can be predefined by the driver of the motor vehicle into the system.
    Type: Grant
    Filed: February 4, 2008
    Date of Patent: August 1, 2017
    Assignee: Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Karl Naab, Christoph Mayser
  • Patent number: 9677495
    Abstract: A fuel control system includes a target rail pressure module. The target rail pressure module determines a target fuel rail pressure of a fuel rail of a direct injection engine. An offset module determines an offset value based on an engine speed of the direct injection engine and at least one of an engine load and an air per cylinder. A modifier module determines a modifier value based on a temperature of the direct injection engine. A rail pressure control module adjusts a current fuel rail pressure of the fuel rail based on the target fuel rail pressure, the offset value and the modifier value.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: June 13, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Jonathan T. Shibata, Joshua D. Cowgill, Daniel Sabathil, David P. Sczomak
  • Patent number: 9670863
    Abstract: An apparatus and a method control an internal-combustion engine with a fuel injection valve for injecting fuel into an inlet port. In fuel injection control, injection field pressure at injection start timing is estimated from engine rotation speed and injection starting timing of the fuel injection valve. Since flow rate of the fuel injection valve fluctuates when a fuel accumulating space between a valve body and injection holes of the fuel injection valve changes by injection field pressure, a correction value to correct flow rate fluctuations is calculated based on injection field pressure at injection start timing. Fuel injection by the fuel injection valve is controlled by setting the result of adding the correction value to an injection pulse width calculated from intake air flow, engine rotation speed, etc., to final injection pulse width. Air-fuel ratio error is thereby reduced even when injection field pressure at injection timing changes.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: June 6, 2017
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventor: Yoshitatsu Nakamura
  • Patent number: 9624866
    Abstract: A method of estimating an injection pressure for an internal combustion engine of an automotive system is disclosed that is well-suited for use with a digital pressure sensor, which periodically acquires injection pressure signals. An updated injection pressure value is calculated starting from an injection pressure signal and compensated with a pressure-correcting parameter, based on an elapsed time from the injection pressure signal acquisition, an actual engine speed and an actual fuel injection quantity.
    Type: Grant
    Filed: August 13, 2014
    Date of Patent: April 18, 2017
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Ivan Pelizzoni, Luca Lauritano
  • Patent number: 9617930
    Abstract: The method can control a powertrain in order to maintain the charge temperature at a desired value regardless of exhaust manifold pressure or altitude. The method includes the following steps: (a) receiving a torque request; (b) determining a desired air charge based, a least in part, on the torque request; (c) determining an actual air charge based, at least in part, on input signals from a manifold absolute pressure (MAP) sensor and a mass airflow (MAF) sensor; (d) adjusting an intake valve timing of the intake valve such that the actual air charge is equal to a desired air charge, and (e) adjusting throttle position and actuator positions of boosting devices such that the actual intake manifold pressure is equal to the desired intake manifold pressure.
    Type: Grant
    Filed: April 18, 2014
    Date of Patent: April 11, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Jun-Mo Kang, Orgun A. Guralp, Hanho Yun, Sai S. V. Rajagopalan, Chen-Fang Chang, Paul M. Najt
  • Patent number: 9617935
    Abstract: An engine ignition control method and system for controlling ignition timing that computes a predicted crankshaft angular velocity based on prior computed and verified crankshaft angular velocity and acceleration and determines a capture window of the next crankshaft position sensor pickup signal for the verification of the predicted crankshaft angular velocity. The ignition control system also utilizes both crankshaft position pickup signals and the intake manifold air pressure measurements for determining the stroke of the combustion cycle in turn providing more accurately timed signals for the fuel injection and ignition systems. During engine starts, the engine ignition control system performs a series of continuous spark-triggering, determines if each spark-triggering being at the correct or incorrect point in the combustion cycle by detecting if there is any engine acceleration and adjusts the generation of the signal for the next spark-triggering accordingly.
    Type: Grant
    Filed: October 18, 2016
    Date of Patent: April 11, 2017
    Assignee: Startec Ltd.
    Inventors: Wai Cheung Ting, Chun Wang, Shi Jun Lei, TianDe Mo
  • Patent number: 9587568
    Abstract: A method of controlling fuel injection in a dual fuel engine system includes determining, with a first controller, a diesel injection pulse indicative of a first amount of diesel fuel to be injected into a combustion chamber of the engine and a first timing at which the first amount of diesel fuel is to be injected. The method also includes determining, with a second controller, a combined injection pulse based on the diesel injection pulse. The method further includes injecting the second amount of diesel fuel and the third amount of natural gas into the combustion chamber in accordance with the combined injection pulse. In such a method, injection in accordance with the combined injection pulse results in a combustion event characterized by a second combustion characteristic substantially equal to a first combustion characteristic associated with the diesel injection pulse.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: March 7, 2017
    Assignee: ECODUAL, INC.
    Inventor: Pushkar Makarand Joshi
  • Patent number: 9534554
    Abstract: A fuel injection amount calculation method calculates a fuel injection amount to an internal combustion engine of a vehicle. The method can include calculating a relative intake pressure which is a difference between an intake pressure peak of intake air upon intake starting of a cylinder of the internal combustion engine and an intake pressure bottom of the intake air upon intake ending. The method can also include calculating the fuel injection amount based on the relative intake pressure.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: January 3, 2017
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Satoru Okoshi, Kenichi Machida, Takahiro Kitamura
  • Patent number: 9469536
    Abstract: This is a system for generating hydrogen on-board the vehicle from compressed natural gas (CNG) in select ratios to create hydrogen-enriched CNG (HCNG) fuel for use in internal combustion engines. The on-board generation of hydrogen is comprised of a reforming system of CNG fuel with direct contact with exhaust gases. The reforming system controls for production of HCNG fuel mixtures is based on specific engine operating conditions. The vehicle's engine controls and operating parameters are modified for combustion of selective ratios of HCNG fuel mixtures throughout engine operating cycle. The reforming system controls and engine controls modifications are also used to minimize combustion emissions and optimize engine performance.
    Type: Grant
    Filed: September 4, 2014
    Date of Patent: October 18, 2016
    Assignee: H2VTech LLC
    Inventors: Nick K. Edalati, Daniel K. Collison
  • Patent number: 9422875
    Abstract: The invention relates to a method of controlling an internal-combustion engine (1) equipped with an exhaust gas recirculation circuit and with variable timing means, having a first actuator (8) and of a second actuator (9). The method comprises acquiring a torque setpoint for the engine Tqsp determining a position setpoint for the first actuator (8) VVTint and a position setpoint for the second actuator (9) VVTexh by using a burnt gas flow model (MEGB) that relates the position setpoints of the actuators to the engine torque setpoint Tqsp . The burnt gas flow model (MEGB) comprises a cylinder filling model (MR), the burnt gas fraction in the cylinder is controlled by applying position setpoints VVTint and VVTexh to the variable timing means (8 and 9).
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: August 23, 2016
    Assignee: IFP ENERGIES NOUVELLES
    Inventors: Thomas Leroy, Jonathan Chauvin
  • Patent number: 9400742
    Abstract: A storage control device of an outboard motor writing operation history information of the outboard motor to a nonvolatile memory by using an electric power generated by driving of an internal combustion engine, the storage control device includes a stop instruction detecting unit detecting a stop instruction of the driving of the internal combustion engine by a boat operator, a writing unit writing the operation history information to the nonvolatile memory in accordance with the stop instruction detected by the stop instruction detecting unit, a write judgment unit judging whether or not the operation history information is written to the nonvolatile memory by the writing unit, and a stop processing unit stopping the driving of the internal combustion engine after it is judged that the operation history information is written to the nonvolatile memory by the write judgment unit.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: July 26, 2016
    Assignee: SUZUKI MOTOR CORPORATION
    Inventor: Tomohiko Miyaki
  • Patent number: 9376974
    Abstract: A method and system for controlling fuel injection for vehicles controls fuel injection amount according to change in kinetic energy of the vehicle or performs fuel cut control so as to improve fuel economy. The method may include setting a first energy line corresponding to energy loss due to running resistance when deceleration, setting a second energy line corresponding to energy loss due to engine friction, determining whether kinetic energy of the vehicle is above the first energy line after a predetermined time has elapsed, and injecting fuel by an amount generating energy corresponding to a sum of engine friction energy and braking energy in a case that the kinetic energy of the vehicle is above the first energy line.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: June 28, 2016
    Assignee: HYUNDAI MOTOR COMPANY
    Inventor: Taek Soo Kim
  • Patent number: 9347384
    Abstract: A control device for an internal combustion engine is provided with: a variable valve driving mechanism capable of changing a working angle of an intake valve while keeping a maximum magnitude of lift and opening timing constant; a reduction catalyst which absorbs nitrogen oxide in exhaust during lean combustion and reduces the nitrogen oxide absorbed during rich combustion; and a control unit changing, according to a load on the internal combustion engine, an amount of advance of closing of the intake valve at the time of switching to rich combustion.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: May 24, 2016
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Noriyuki Takada, Shinobu Ishiyama, Takashi Ogawa
  • Patent number: 9309815
    Abstract: A control device for an internal combustion engine is provided with: a variable valve driving mechanism capable of changing a working angle of an intake valve while keeping a maximum magnitude of lift and opening timing constant; a reduction catalyst which absorbs nitrogen oxide in exhaust during lean combustion and reduces the nitrogen oxide absorbed during rich combustion; and a control unit changing, according to a load on the internal combustion engine, an amount of advance of closing of the intake valve at the time of switching to rich combustion.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: April 12, 2016
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Noriyuki Takada, Shinobu Ishiyama, Takashi Ogawa
  • Patent number: 9291113
    Abstract: A method for operating an internal combustion engine. The internal combustion engine has at least one cylinder, to which are connected an intake manifold having an air mass sensor, an exhaust pipe having a ?-sensor and an exhaust gas recirculation line having an exhaust gas recirculation valve. The air mass sensor generates an air mass sensor signal. The ?-sensor generates a ?-sensor signal. The exhaust gas recirculation valve is adjusted by a control signal. A setpoint injection quantity is formed and the control signal of the exhaust gas recirculation valve is formed as a function of the air mass sensor signal. An air mass replacement signal for the air mass sensor signal is formed as a function of the ?-sensor signal and the setpoint injection quantity. In the case of a faulty air mass sensor signal, the control signal is formed as a function of the air mass replacement signal.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: March 22, 2016
    Assignee: ROBERT BOSCH GMBH
    Inventors: Andreas Michalske, Thomas Kirstaetter
  • Patent number: 9255513
    Abstract: Embodiments for controlling exhaust air-fuel ratio are provided. In one example, an engine method comprises adjusting upstream exhaust air-fuel ratio to maintain a first emission control device at or below a threshold temperature, and when the upstream exhaust air-fuel ratio is below a threshold, injecting air into an exhaust passage between the first emission control device and a second emission control device to maintain downstream exhaust at a different, higher air-fuel ratio. In this way, excess emissions may be converted while maintaining the emission control devices below a maximum temperature.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: February 9, 2016
    Assignee: Ford Global Technologies, LLC
    Inventors: Gopichandra Surnilla, Giovanni Cavataio
  • Patent number: 9127614
    Abstract: A control system for an internal combustion engine, which is capable of directly and properly calculating the most fuel-efficient torque according to operating conditions of the engine without setting or learning in advance operating lines indicative of the most fuel-efficient torques, thereby making it possible to reduce costs and enhance fuel economy. In the control system, when the engine is operated at a predetermined reference rotational speed, a plurality of fuel consumption ratio parameters associated with a plurality of estimated torques are calculated based on a provisional intake air amount-estimated torque relationship which is the relationship between provisional intake air amounts and estimated torques to be obtained when the provisional intake air amounts of intake air are supplied. Further, an estimated torque associated with a minimum value of the fuel consumption ratio parameters is calculated as the most fuel-efficient torque at the reference rotational speed.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: September 8, 2015
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Masaki Ueno, Masaya Agata
  • Patent number: 9031766
    Abstract: A method for controlling the operation of an engine of a vehicle is disclosed in which a torque request signal supplied to control the supply of torque from the engine is adaptively modified based upon a desired maximum acceleration limit for the currently engaged gear and variations in the sum of forces resisting motion of the vehicle.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: May 12, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Stephen DeLaSalle, Owen Fraser Wood, Peter Douglas Devonport, Chris John Kaven, Richard Andrew Powell
  • Patent number: 9026340
    Abstract: An air-fuel ratio control system of an internal combustion engine comprises a fuel amount determiner for determining a fuel command value. The fuel amount determiner has a feedback control mode in which the fuel amount determiner determines a running state reference coefficient corresponding to a running state detected by a running state detector based on a first correspondence stored in the memory, determines a running state compensation coefficient corresponding to the running state detected by the running state detector based on a second correspondence stored in the memory, determines a feedback compensation coefficient used to cause an air-fuel ratio to reach a value closer to a theoretical air-fuel ratio based on an output of the air-fuel ratio sensor, and determines the fuel command value using a formula including the determined running state reference coefficient, the determined running state compensation coefficient, and the determined feedback compensation coefficient.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: May 5, 2015
    Assignee: Kawasaki Jukogyo Kabushiki Kaisha
    Inventors: Shinichi Kuratani, Tsuyoshi Takeuchi, Kozo Suzuki, Takashi Abe, Yoshinobu Mori, Daisuke Yanase
  • Patent number: 8997725
    Abstract: The present disclosure is directed to various embodiments of systems and methods for reducing the production of harmful emissions in combustion engines. One method includes correlating combustion chamber temperature to acceleration of a power train component, such as a crankshaft. Once the relationship between acceleration/deceleration of the component and combustion temperature are known, an engine control module can be configured to adjust combustion parameters to reduce combustion temperature when acceleration data indicates peak combustion temperature is approaching a harmful level, such as a level conducive to the formation of undesirable oxides of nitrogen. Various embodiments of the methods and systems disclosed herein can employ injectors with integrated igniters providing efficient injection, ignition, and complete combustion of various types of fuels.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: April 7, 2015
    Assignee: McAllister Technologies, LLC
    Inventor: Roy Edward McAlister
  • Patent number: 8954259
    Abstract: An electronic control unit executes torque suppression control for reducing engine torque at the time of strong accelerator operation on the basis of an execution condition that a period of time elapsed from when an ignition switch is turned on is shorter than a prescribed period of time. By so doing, the torque suppression control is executed only when the elapsed period of time is short, a vehicle is still running in a parking lot and it is less likely that a driver performs accelerator operation with the intention to suddenly accelerate the vehicle; whereas, when the elapsed period of time is longer than a certain period of time and the vehicle is presumably running on an ordinary road, the torque suppression control is not executed, and acceleration of the vehicle along with the driver's intention is allowed.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: February 10, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Kenji Kimura
  • Patent number: 8818662
    Abstract: This invention relates to a drive train (1) of a mobile vehicle with an internal combustion engine (2) and a load device (3) driven by the internal combustion engine (2). The internal combustion engine (2) is controlled by an electronic engine control unit (4) and the load device (3) is controlled by an electronic control unit (5). A low idle speed (nuL) for the operation of the internal combustion engine at no load is stored in the engine control unit (4). The electronic control unit (5) detects a pause in the operation of the load device (3) and transmits a speed setpoint (nStandby) for standby operation of the internal combustion engine to the engine control unit (4) to operate the internal combustion engine (2) at idle during a pause in operation at the speed setpoint (nStandby), which is below the low idle speed (nuL) for standby operation.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: August 26, 2014
    Assignee: Linde Material Handling GmbH
    Inventors: Bernward Welschof, Alfred Langen
  • Patent number: 8798893
    Abstract: A fuel injection control for an internal combustion engine includes: estimating a convergence temperature of the exhaust gas catalytic converter; calculating an OTP boost value using the estimated convergence temperature; and estimating the convergence temperature on the assumption that the temperature decrement quantity of the exhaust gas catalytic converter which is caused by the power boosting is zero when both of the OTP boosting execution condition and the power boosting execution condition are met.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: August 5, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masahiro Kachi, Yasuyuki Takama
  • Patent number: 8775056
    Abstract: When an engine driving condition has been changed from an idling condition to a vehicle running condition, a controller measures an idling period. When the idling period is longer than a determination time period immediately after the vehicle is started, a penetrating-force-decrease control is performed. Therefore, even when a piston temperature is relatively low and particulate matters are easily generated, it can be restricted that fuel adheres to the piston top-surface by performing the penetrating-force-decrease control. Further, in the penetrating-force-decrease control, since the fuel is injected at optimum injection timing, it can be avoided that emission and fuel economy are deteriorated.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: July 8, 2014
    Assignee: Denso Corporation
    Inventors: Hiroaki Fujii, Shingo Nakata
  • Publication number: 20140158093
    Abstract: Fuel efficiency of small carbureted engines can be improved through the use of a fuel shut off valve that ceases fuel flow in the carburetor upon determination that the engine throttle has been closed and the engine is not at or near an idle condition.
    Type: Application
    Filed: July 9, 2013
    Publication date: June 12, 2014
    Inventors: James M. Cleeves, Michael Hawkes
  • Patent number: 8689768
    Abstract: The present invention relates to a fuel injection control apparatus for controlling fuel injection and a method therefor in an engine having first and second intake passages provided with first and second fuel injection valves, respectively. Fuel injection modes using the two injection valves include an alternative injection mode in which the first and second fuel injection valves are alternately operated every predetermined number of cycles and a combined injection mode in which both the first and second fuel injection valves are used for each cycle. Then, the combined injection mode is selected in a full load range. In a partial load range, the alternative injection mode is selected in a cold state and the combined injection mode is selected after warm-up. Accordingly, it is possible to reduce an equilibrium amount of adhering fuel to an inner wall of an intake passage.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: April 8, 2014
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventor: Masayuki Saruwatari
  • Patent number: 8670866
    Abstract: An autonomous floor cleaning robot includes a transport drive and control system arranged for autonomous movement of the robot over a floor for performing cleaning operations. The robot chassis carries a first cleaning zone comprising cleaning elements arranged to suction loose particulates up from the cleaning surface and a second cleaning zone comprising cleaning elements arraigned to apply a cleaning fluid onto the surface and to thereafter collect the cleaning fluid up from the surface after it has been used to clean the surface. The robot chassis carries a supply of cleaning fluid and a waste container for storing waste materials collected up from the cleaning surface.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: March 11, 2014
    Assignee: iRobot Corporation
    Inventors: Andrew Ziegler, Duane Gilbert, Christopher John Morse, Scott Pratt, Paul Sandin, Nancy Dussault, Andrew Jones
  • Patent number: 8639431
    Abstract: Systems and methods for identifying alcohol content of a fuel in an engine. In one example approach, a method comprises adjusting fuel injection to the engine based on fuel alcohol content identified from crankshaft acceleration. For example, the crankshaft acceleration may be generated by modulating an air/fuel ratio in a selected cylinder across a range of air/fuel ratios while keeping the engine at stoichiometry.
    Type: Grant
    Filed: March 19, 2013
    Date of Patent: January 28, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Robert Roy Jentz, John Eric Rollinger, Brandon M. Dawson, Michael Igor Kluzner
  • Patent number: 8560209
    Abstract: The present invention includes an automobile including an enrichment delivery system. The enrichment delivery system includes an engine, a catalytic converter, multiple sensors, a memory, and a control unit. The engine includes an enrichment delivery unit, which delivers base fuel and enrichment to the engine. The engine generates an output which can be received by the catalytic converter. Reactions occur within the catalytic converter, and are outputted by the catalytic converter. The sensors detect an air-fuel ratio from the output of the engine, and the output of a catalytic converter. The sensors detect temperature data for the catalytic converter. The memory stores an enrichment curve indicating that an amount of enrichment supplied to the engine should be gradually increased based on the enrichment curve until a target enrichment amount is reached, or a predetermined target enrichment time is reached.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: October 15, 2013
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Heraldo F. Stefanon
  • Patent number: 8538644
    Abstract: A minimum torque module selectively determines a first minimum propulsion torque based on second and third minimum propulsion torques when a torque converter clutch is in unlocked and locked states, respectively. A zero pedal torque module selectively sets a zero pedal torque equal to the first minimum propulsion torque. A pedal request module determines a pedal torque request based on an accelerator pedal position, a vehicle speed, and the zero pedal torque. A driver request module determines a driver axle torque request based on the pedal torque request. A shaping module selectively shapes the driver axle torque request into a shaped driver axle torque request. A conversion module converts the first minimum propulsion torque into a minimum axle torque. A final driver request module sets a final driver axle torque request equal to a greater of the shaped driver axle torque request and the minimum axle torque.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: September 17, 2013
    Inventors: Christopher E. Whitney, Robert C. Simon, Jr., William L. Aldrich, III, Jun Lu, Birendra P. Bhattarai, Adam J Heisel, Ning Jin
  • Patent number: 8468999
    Abstract: A fuel injection control system of an internal combustion engine includes a required injection setting mechanism, a rapid rotational speed change detector, and an injection controller. The required injection setting mechanism calculates a required number of injections and required injection times with regard to a plurality of fuel injections, based on operating conditions of the engine. The rapid rotational speed change detector determines whether the amount of change of the engine speed is equal to or larger than a predetermined value. When it is determined that the amount of change of the engine speed is equal to or larger than the predetermined value, the injection controller controls a fuel injection valve so as to reduce or eliminate differences between the actual injection times and the required injection times. Thereby, even when the engine speed changes rapidly, deteriorations in the driveability and exhaust emissions are prevented.
    Type: Grant
    Filed: January 8, 2009
    Date of Patent: June 25, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Takayuki Demura
  • Patent number: 8442742
    Abstract: The prevention of the occurrence of a shock during acceleration is enabled without impairing acceleration response as to a control apparatus for a vehicle driving unit. By changing a control amount of a specific one or specific ones of the plurality of the control elements when a torque-up request is issued, the output torque of the vehicle driving unit is increased toward a target output torque. In this case, a torque gradient upon changing the control amount of the specific one or the specific ones of the control elements is estimated and calculated on the basis of a current output torque of the vehicle driving unit according to a calculation rule formulated in advance. The control amounts of the respective control elements including the specific one or the specific ones of the control elements are set such that the estimated torque gradient coincides with a predetermined target torque gradient.
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: May 14, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Koji Aso
  • Patent number: 8437943
    Abstract: A method of controlling a diesel engine connected to a load, the method including the steps of detecting an increased torque requirement and matching a fuel flow with an airflow. The detecting an increased torque requirement step detects an increased torque requirement for the engine, the increased torque requirement taking place during a period of time. The matching a fuel flow step matches a fuel flow with an airflow going to the engine during the increased torque requirement, the matching step keeps the airflow and the fuel flow during the period of time at a substantially stoichiometric level enabling the use of a three-way catalyst to reduce NOx emissions during transients.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: May 7, 2013
    Assignee: Deere & Company
    Inventors: Richard E. Winsor, Erik L. Piper, Kirby J. Baumgard
  • Patent number: 8401764
    Abstract: Systems and methods for identifying alcohol content of a fuel in an engine. In one example approach, a method comprises adjusting fuel injection to the engine based on fuel alcohol content identified from crankshaft acceleration. For example, the crankshaft acceleration may be generated by modulating an air/fuel ratio in a selected cylinder across a range of air/fuel ratios while keeping the engine at stoichiometry.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: March 19, 2013
    Assignee: Ford Global Technologies, LLC
    Inventors: Robert Roy Jentz, John Eric Rollinger, Brandon M. Dawson, Michael Igor Kluzner
  • Patent number: 8380422
    Abstract: A primary opening amount setting device sets a primary throttle valve opening amount based on an accelerator-pedal operation amount determined by an accelerator operation amount determination device. An injection amount calculation device sets a fuel injection amount based on the primary throttle valve opening amount. A first index value determination device determines a first index value that indicates a state of combustion of an air-fuel mixture in a cylinder of an engine. A secondary opening amount setting device sets a secondary throttle valve opening amount, which is a final target value of an opening amount of a throttle valve, based on the first index value.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: February 19, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hidenori Moriya, Ryusuke Ogino
  • Patent number: 8340888
    Abstract: A control system for a powertrain includes an energy determination module and a speed control module. The energy determination module determines a rotational energy input to the powertrain during a first period of a negative lash event of the powertrain. The speed control module selectively limits an increase in a rotational speed of the engine to a first predetermined rate based on the rotational energy during a second period of the negative lash event following the first period. The rotational energy is based on an acceleration rate of the rotational speed, and the speed control module limits the increase when the acceleration rate is greater than a predetermined acceleration rate. The speed control module further selectively increases the rotational speed at a second predetermined rate during a third period beginning at an end of the second period. A related method is also provided.
    Type: Grant
    Filed: May 6, 2010
    Date of Patent: December 25, 2012
    Inventors: Michael L. Kociba, Ning Jin, Andrew W. Baur, Daniel N Wehrwein
  • Patent number: 8272367
    Abstract: A control system for an internal combustion engine for driving a vehicle, which controls an output torque of the engine, is provided. In this control system, a rapid change in a demand torque of the engine is detected, and a feedforward correction amount is generated during a correction period which is substantially equal to a resonance period of a powertrain of the vehicle, from a time when the rapid change in the demand torque is detected. An output torque control amount of the engine is corrected with the feedforward correction amount. A torque change amount integrated value is calculated by integrating an amount of change in the demand torque, and the feedforward correction amount is generated according to the torque change amount integrated value.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: September 25, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Mahito Shikama, Ryuji Kohno, Eisei Yamazaki, Hidekazu Hironobu
  • Patent number: 8267076
    Abstract: The present invention performs correction appropriately according to errors in the fuel system and air system respectively and corrects both variations in the air-fuel ratio and torque. When the difference between a target air-fuel ratio and a real air-fuel ratio is equal to or below a predetermined value when feedback control based on the air-fuel ratio of an exhaust manifold 10A is in progress, the air-fuel ratio of a cylinder cyl—1 having the largest variation of angular acceleration is corrected to the rich side, for example, by increasing the amount of fuel. Angular acceleration per cylinder is then detected again and when the variation in angular acceleration among cylinders is not eliminated, it is judged that there is an error in the amount of air control of the cylinder having the largest variation and the amount of air, amount of fuel, ignition timing or the like are corrected.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: September 18, 2012
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Shinji Nakagawa, Kazuhiko Kanetoshi, Kouzou Katogi, Takanobu Ichihara, Minoru Ohsuga
  • Patent number: 8256217
    Abstract: An ECU for determining whether a request for acceleration is made to a supercharged internal combustion engine includes an acceleration request determining unit that determines whether a pressure difference between the upstream pressure and downstream pressure of a throttle valve disposed in an intake system is equal to or smaller than a predetermined value, and determines that a request for acceleration is made when the pressure difference is equal to or smaller than the predetermined value. The ECU also includes a variable valve actuating mechanism control unit that controls an InVVT and an ExVVT so that the intake charging efficiency and output torque of the engine become equal to the maximum intake charging efficiency and output torque at a certain downstream pressure when the acceleration request determining unit determines that a request for acceleration is made.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: September 4, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Masahiro Inoue