Multiple Crankshafts Patents (Class 123/52.4)
  • Patent number: 9458741
    Abstract: A split cycle phase variable reciprocating piston spark ignition engine comprising a compressor unit having a compression chamber adapted to carry out the intake and compression strokes of a four stroke engine cycle, a power unit having an expansion chamber adapted to carry out the expansion and exhaust strokes of a four stroke engine cycle, a crossover gas passage for transferring compressed gas from the compression chamber to the expansion chamber, an expansion chamber volume modifier to provide nearly full load like combustion chamber condition at all the engine load conditions by means of modifying volume and shape of the expansion chamber, a phase altering mechanism for altering phase relation between the compressor unit and the power unit as a function of engine load variation, an electronic control unit for providing control commands for various electrically operated actuators and motors.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: October 4, 2016
    Inventor: Jiban Jyoti Mistry
  • Patent number: 8960138
    Abstract: A dual-crankshaft engine is presented. In one embodiment, the engine includes a first crankshaft and a second crankshaft. The second crankshaft is coupled with the first crankshaft such that the first crankshaft and the second crankshaft are horizontally coplanar. The engine further includes a first piston that is operable to reciprocate in a first horizontal cylinder via coupling with the first crankshaft, and a second piston that is operable to reciprocate in a second horizontal cylinder via coupling with the second crankshaft. The second horizontal cylinder is horizontally collinear with and opposing the first horizontal cylinder.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: February 24, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Thomas G. Leone, Alvin Henry Berger
  • Patent number: 8813694
    Abstract: An engine has an engine casing with one or more surfaces that define a first substantially tubular coolant passage (e.g., a coolant inlet passage) with an open end that opens inside the engine casing. A first piston assembly is inside the engine casing and configured to reciprocate relative to the engine casing when the engine is operating. The first piston assembly has one or more surfaces that define a piston coolant jacket inside the first piston assembly. The piston coolant jacket has a first opening at an outer surface of the first piston assembly. A first fluid communication conduit extends between the engine casing and the first piston assembly and has a first end that is rigidly coupled to the first opening in the piston coolant jacket and a second end that extends through the open end of the first substantially tubular coolant passage in the engine casing.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: August 26, 2014
    Assignee: Motiv Engines, LLC
    Inventor: John M. Clarke
  • Patent number: 8807098
    Abstract: A twin vertical bank hybrid internal combustion H-engine system; an assembly having an engine block with parallel left side and right side vertical inline piston banks, each having a crankshaft and pistons, a cylinder head, and individual fuel feeds operable on a first and second fuel type respectively. Each piston bank operates independently of the other but is housed within the same engine block and has separate lubrication systems. An operator selects which engine to run based on fuel availability, convenience, or lower cost of a certain fuel type. The chosen engine is mechanically or electrically selected via an engine bank selector box using a selector control which selects the fuel type and engages a drive gear on the crankshaft of the selected engine, and transfers power to the transmission. The selector control actuates a transfer system that prevents simultaneous operation of both engines.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: August 19, 2014
    Inventor: Herns Louis
  • Patent number: 8464671
    Abstract: The horizontally opposed center fired engine improves on the traditional design of the horizontally opposed engines and center fired engines with a better engine geometry. The present invention utilizes four pairs of opposing pistons to compress a larger volume of air-fuel mixture within four different cylinders. The four different cylinders are radially positioned around a center axle in order to achieve a perfectly symmetric engine geometry. The center axle consists of two different shafts spinning in two different directions, which could drastically reduce engine vibrations in the present invention. Engine vibrations are caused by a change in engine speed and result in a loss of energy. Due to the design, the present invention will only experience energy loss in the form of entropy and friction. Thus, the present invention can convert a higher percentage of chemical energy into mechanical energy than any other internal combustion engine.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: June 18, 2013
    Inventor: Bo Zhou
  • Patent number: 8381692
    Abstract: A heat engine employs an auxiliary cylinder to receiving exhaust gases from a main cylinder during its exhaust phase to extract mechanical energy from the heat in the exhaust gases. The auxiliary cylinder has an auxiliary piston that reciprocates with an asymmetric pattern in respect to the main crank a counter-rotating auxiliary cranks such that the downward stroke of the auxiliary piston and the upward stroke of the auxiliary piston correspond to crank angles above and below 180 degrees. In one favorable embodiment, fresh air can be drawn in and combined with the exhaust gases.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: February 26, 2013
    Inventor: John J. Islas
  • Patent number: 8272356
    Abstract: A variable displacement engine comprises two engine modules fed from a common fuel source, each engine module having an individual crankshaft. The first engine module has a high compression ratio (e.g., greater than 13:1), while the second module has a typical compression ratio for a gasoline engine (e.g., between 9:1 and 11:1). In one embodiment, the first engine module operates through high efficiency optimized alcohol fuel combustion when the fuel content exceeds a minimum alcohol content. In an alternative embodiment, the first engine module operates at high efficiency through gasoline HCCI combustion when conditions permit. When operating conditions do not permit the first engine module to operate at high efficiency, the second engine module operates as the primary engine module, with the first engine module available to provide supplemental power (at less than optimal efficiency) if needed to meet driver demand.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: September 25, 2012
    Assignee: The United States of America, as represented by the Administrator of the United States Environmental Protection Agency
    Inventors: David James Haugen, Charles L. Gray, Jr.
  • Publication number: 20090107426
    Abstract: A dual crankshaft internal combustion engine is symmetrically constructed to form a perfectly balanced engine assembly. A first crankshaft, having a first end, a second end, and being formed of a shape and with a torsional flexibility, is housed within a cylinder block and connected to a first series of cooperating pistons and cylinders. A second crankshaft, having a first end and a second end, is formed of substantially the same shape as the first crankshaft and has substantially the same torsional flexibility as the first crankshaft. The second crankshaft is also housed within the cylinder block and connected to a second series of cooperating pistons and cylinders, while being positioned parallel to the first crankshaft, with the first end of the first crankshaft being positioned adjacent to the second end of the second crankshaft.
    Type: Application
    Filed: October 29, 2007
    Publication date: April 30, 2009
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Al Henry Berger, James R. Clarke
  • Publication number: 20080257299
    Abstract: Engine output takeout device includes: a first crank gear mounted on a first crankshaft; a second crank gear mounted on a second crankshaft; a ring gear surrounding the first and second crank gears and having inner teeth meshing with the first crank gear; and an idler gear rotatably mounted coaxially on the first crankshaft via bearings and meshing at its one position with the second crank gear and at its other position with the inner teeth of the ring gear, the first crank gear and the idler gear both meshing with a same inner tooth of the ring gear at any given time.
    Type: Application
    Filed: April 16, 2008
    Publication date: October 23, 2008
    Inventor: Kengo ISHIMITSU
  • Publication number: 20080141956
    Abstract: A Dual Piston Cycle Engine utilizes a unique dual piston apparatus that includes: a first cylinder and housing a second cylinder thermally isolated from the first cylinder and housing a second piston therein; an intake valve coupled to the first cylinder for allowing a fuel mixture to enter into the first cylinder; an exhaust valve coupled to the second cylinder for allowing an exhaust gas to exit the second cylinder; and an interstage valve that couples an internal chamber of the first cylinder to an internal chamber of the second cylinder and configured to minimize dead space between the first and second cylinders, wherein the first piston performs only intake and compression stroked and the second piston performs only combustion and exhaust strokes and the first and second cylinders are thermally isolated from one another.
    Type: Application
    Filed: February 29, 2008
    Publication date: June 19, 2008
    Inventor: Benjamin H. TOUR
  • Patent number: 7237542
    Abstract: The invention concerns a combustion engine comprising a cylinder and a piston which is displaceably guided in the cylinder, the piston having a piston head facing a combustion chamber and being coupled to a crankshaft via a connecting rod, wherein a second piston which is displaceably guided in the cylinder is provided opposite to the piston, the second piston also having a piston head, wherein the combustion chamber is disposed between the two piston heads, and the second piston is coupled to a crankshaft via a connecting rod.
    Type: Grant
    Filed: July 27, 2005
    Date of Patent: July 3, 2007
    Inventor: Heinz-Gustav A. Reisser
  • Patent number: 7152556
    Abstract: A mechanism or “motion converter” including cylinder, piston, yoke, 2 crankshafts and 2 gears converts linear motion of piston to rotary motion (or reverse) of crankshafts without creating the lateral force applied to the piston. Kinematics characteristics of the motion converter reduce the speed of the piston on the way down and enhance the efficiency of the combustion process in the case of using it in the combustion engine.
    Type: Grant
    Filed: November 15, 2005
    Date of Patent: December 26, 2006
    Inventor: Mark M. Goltsman
  • Patent number: 6745729
    Abstract: An internal combustion engine system for providing better fuel economy and fewer toxic emissions.
    Type: Grant
    Filed: April 15, 2003
    Date of Patent: June 8, 2004
    Inventor: Derron E. Ebanks
  • Publication number: 20030111028
    Abstract: Method and device for regulating the phase angle between a first and a second crankshaft of an internal combustion engine. The engine includes primary cylinders that communicate with secondary cylinders and in every primary cylinder there is movably arranged a primary piston that is connected to the first crankshaft and in every secondary cylinder there is movably arranged a secondary piston that is connected to the second crankshaft. The first and second crankshafts are connected to each other by means of a transmission adapted with the device that includes a crankshaft extension for obtaining the control of the phase angle, the extension being fixed against rotation and displaceably connected to one of the crankshafts and via a grooved portion rotationally connected to the second of the crankshafts. When the crankshaft extension in displaced, rotation is obtained in the grooved portion that results in a corresponding phase angle shift.
    Type: Application
    Filed: December 5, 2002
    Publication date: June 19, 2003
    Applicant: Volvo Lastvagnar AB
    Inventor: Oddbjorn HALLENSTVEDT
  • Patent number: 6230671
    Abstract: A variable compression and asymmetrical stroke internal combustion engine includes a cylinder, a drive piston reciprocally disposed in the cylinder, an auxiliary piston reciprocally disposed in the cylinder, apparatus for reciprocating the auxiliary piston at twice the speed of the drive piston and in a manner wherein the relative reciprocation is asymmetrical, an intake port communicably connected to the cylinder, an exhaust port communicably connected to the cylinder, and an ignition device operably connected to the cylinder.
    Type: Grant
    Filed: November 2, 1998
    Date of Patent: May 15, 2001
    Inventor: Raymond C. Achterberg
  • Patent number: 6189493
    Abstract: An internal combustion engine having first and second synchronized subassemblies. The subassemblies are synchronized by a mechanical linkage of their crankshafts to provide identical timing between corresponding pistons in the two subassemblies.
    Type: Grant
    Filed: July 13, 1999
    Date of Patent: February 20, 2001
    Assignee: The United States of America as represented by the Administrator of the United States Environmental Protection Agency
    Inventor: Charles L. Gray, Jr.